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Abstract

Corrections to the usual form factors of the optical potential are studied with a view to getting
a better fit for proton elastic scattering at large angles on 49Ca at 497 and 800 MeV. When
a real surface form factor is added to the central potential in the Schrédinger formalism,
the experimental data are as well reproduced as in the standard Dirac formalism. Coupling
to the strong 3~ collective state gives a better fit. The use of surface corrections to the
imaginary Dirac potential also gives improved results. A slightly better fit is obtained by
coupling to the 3~ state with, at the same time, a weakening of these corrections. Further
corrections to the potential do not give significant improvements.

1. Introduction

In recent articles (Shim et al. 1988; Cooper 1989) it has been suggested that
the form factor of the imaginary potentials used in the Dirac phenomenology
of elastic nucleon scattering should contain a volume plus a surface term
to fit large angle data. Up to now, the advantage of Dirac phenomenology
comes primarily from the results obtained with pure volume potentials. If we
add surface terms this advantage has to be reexamined by comparison with
nonrelativistic calculations which also include some surface terms. Furthermore,
the coupling to a strong collective state such as the 3~ at 3-74 MeV in 4°Ca
also gives a better fit for these data (Raynal 1987) and it is of some interest
to see if these surface corrections persist or are damped by this coupling.

2. Dirac versus Schrodinger Formalism

The Dirac equation used to describe scattering of nucleons by nuclei (¢ =1):

h ih
( T ¢V Bim + Vs(N}+ Vo(r) + ;—n—1Ba . {VVT(r)})tIJ(r) = Ey(r), (1)
where Vs(r), Vy(r) and Vr(r) are three complex potentials, can be replaced by
the Schrodinger equation:

(V2—Vi(r)-i0.VVa() XV +K2}f(r) =0, )
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where
2

_3(VD()\" _ V*D()

Viln = z( D ) 2D
+ -ﬂlf{zmvs(r) + 2EVy(r) + V2(r) - V2(r)}, 3)
Vo =InD(r), 4)
D(r) = D(r) exp{Vr(r)/m}, (5)
DWr)=E+m-Vy(r)+Vs(r), (6)

but where the wavefunction f(r) is given in terms of the large components
F(r) of the Dirac equation by

£(r) =D F(P). )

This derivation takes into account the possible anisotropy of all the potentials;
the tensor potential is written in such a way that it includes the Coulomb
potential multiplied by the anomalous magnetic moment if one wants to take it
into account: therefore, it differs from the one of Clark et al. (1985) which was
the monopole part of the tensor potential used here. The spin-orbit potential
appears in a form used for a long time for nucleon inelastic scattering (Sherif
and Blair 1968; Sherif 1968). If the potentials are allowed to have any radial
dependence, the only difference between Dirac phenomenology and the earlier
one appears in inelastic scattering: in the coupled Schrédinger equations, the
part of D(r) which acts between different levels is neglected in equation (7).
[For example, in the first order vibrational model, the boson operators of
D(r) are neglected.] With a spin-zero target, the difference turns out to be
negligible (Raynal and Sherif 1986). The real part of the potential (3) presents
a ‘wine-bottle-bottom’ shape (Arnold et al. 1981), that is, the same mixture of
volume and surface terms advocated for the Dirac imaginary potentials. The
Coulomb potential, even without a tensor potential, generates a long range term
in 3 in the spin-orbit potential (4) which is the Mott-Schwinger interaction
necessary to describe the polarisation of neutron elastic scattering (Guss et al.
1985) and which must be included in the nonrelativistic optical model. There
is also in the central potential (3) a long range term in r~2 coming from the
square of the Coulomb potential, not justified in the nonrelativistic optical
model and without notable effects. As long as only the elastic scattering
is taken into account, there is no difference between Dirac and Schrédinger
equations if the potentials are allowed to have any form factor and restricted
only to be of finite range.

In the following, we quote as Dirac calculations the ones in which Vs(r)
and Vy(r) are parametrised in terms of Woods-Saxon form factors and their
derivatives; the coupled equations are solved as already described (Raynal
1987). We quote as Schrodinger calculations the ones in which Vi(r) and Va(r)
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are parametrised and the coupled equations solved in the usual way. The
same kinematics are used in the two cases.

3. Analysis of the Different Corrections

To see for which potentials a surface term is necessary, let us consider data
for elastic proton scattering on 4°Ca at 497 MeV (Hoffmann et al. 1981, 1988;
Rahbar et al. 1981; Seth et al. 1985) and at 800 MeV (Blesynski et al. 1982,
Fergerson et al. 1986). Data for the cross sections are available up to a large
momentum transfer; data for polarisation have been measured up to the same
angle at 497 MeV but not so far at 800 MeV; data for Q are available only for
smaller angles. All these data are taken into account, even if two different
measurements are given at the same angle; to overcome the large contribution
of the cross section in the total x2, the contribution of the polarisation is
multiplied by 5 and the contribution of Q is multiplied by 10. Data on the
inelastic cross section and analysing power for the 3~ state at 3-74 MeV are
known; in coupled channels calculations, they are not introduced in the x? but
used to show the prediction with the same deformation parameter f=0-39
for all the potentials. Such a coupling to the 3~ state gives a better fit to the
backward angles (Raynal et al. 1989); we want to see what happens to the
surface terms which are introduced in the potential in order to achieve the
same goal. One has to remember that other collective states can also have
a contribution. In the calculations presented here, the reduced mass is used
and the charge is assumed to be a homogeneous sphere with the same radius
as the volume real vector potential in the Dirac formalism or of the reduced
value 1-05 fm in the Schrodinger formalism.

In the Dirac phenomenology there is a large ambiguity between the imaginary
parts of the scalar and the vector potential (Raynal 1987). The imaginary
part of the scalar potential can be suppressed (De Swiniarski et al. 1988),
at least when the large angle data are not known. Five searches on all
the parameters have been done: this 9-parameter Dirac potential, the usual
12-parameter Dirac potential, adding tensor potentials, adding surface terms to
the imaginary potentials and adding surface terms to both real and imaginary
potentials. These searches were done for elastic scattering only and with the
coupling to the 3~ state. With tensor potentials, the fits are slightly better
than with the addition of imaginary surface potentials, but the parameters
are unrealistic, very different without and with coupling. The optical model
parameters of the other searches are given in Table 1 and the results of the
9-parameter Dirac potential are shown by the dot-dash curves in Fig. 1. As
seen in Table 1, at 497 MeV, with the coupling to the 3~ state, the 9-parameter
Dirac potential gives better results than the plain 12-parameter one, except
for Q; at 800 MeV, results are similar for the cross section and polarisation.
Coupled channels results at 497 MeV with the 12-parameter Dirac potential
are shown by the solid curves in Fig. 1. These results are slightly better
than the no-coupling results with surface imaginary potentials at 497 MeV, but
not at 800 MeV. However, coupling to the 3~ state improves the fits at the
two energies; it decreases the imaginary surface potentials by a factor greater
than 2 at 497 MeV where they are very peaked; at 800 MeV it suppresses
the vector one, but these form factors are broad and all the parameters of
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Fig. 1. Cross section, polarisation and Q parameter at 497 MeV. The short-dash curves
are obtained with the 12-parameter Schrodinger equation and the dot-dash ones with the
9-parameter Dirac equation. The solid curves are the results obtained with the 12-parameter
Dirac equation including the coupling to the 3~ state. The long-dash curves are obtained
with the 24-parameter Schrédinger equation including the coupling to the 3~ state: the total
x2 is only 1% larger than the best result obtained with the Dirac equation.
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Fig. 2. Cross section, polarisation and Q parameter at 800 MeV. The short-dash and dot-dash
curves are as in Fig. 1. The solid curves are the results obtained with the 15-parameter
Schrodinger equation (with surface real potential) including the coupling to the 3~ state.
The long-dash curves are obtained with the 24-parameter Dirac equation without coupling
to the 3~ state: the total x2 is 4-8% smaller than that obtained with coupling and 3-3%
smaller than the best result obtained with the Schrodinger equation.
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the imaginary potentials are significantly changed. With real and imaginary
surface potentials, the fits are very good with and without coupling to the
3~ state but the inelastic analysing power gets considerably worse than in all
other cases.

Five searches on all the parameters have been done with the Schrédinger
equation: the usual 12-parameter volume optical potential, adding a surface
real central potential, adding a complex central potential, adding a surface real
central potential and an imaginary spin-orbit potential, and adding surface
potentials everywhere. A complex surface central potential does not improve
the fits obtained with a real one: its imaginary part vanishes by getting too
small a radius and diffuseness at 497 MeV and stays small at 800 MeV. Results
of all the other searches are given in Table 2. Here also, coupling to the
3~ state improves the fits in all cases; the inelastic analysing power is quite
good except when surface potentials are added everywhere. Results of the
usual 12-parameter Schrodinger potential are given by the short-dash curves
in both Figs 1 and 2; coupled channels with a surface real central potential
at 800 MeV are given by the solid curves in Fig. 2.

4. Conclusions

In conclusion the 9-parameter Dirac potentials and 12-parameter Schrodinger
potentials are quite similar. This does not contradict De Swiniarski et al.
(1988) where no large angle data were taken into account. There is also a
rough equivalence between 12-parameter Dirac potentials and 15-parameter
Schrodinger potentials (with addition of a surface real potential) and also
between the 18-parameter potentials (two imaginary surface potentials in Dirac
phenomenology or surface real central and imaginary spin-orbit potentials
with Schrodinger equation). In the Dirac phenomenology, the coupling to the
3~ state decreases the imaginary surface potentials and gives a change of sign
for the real scalar surface potential at 800 MeV: so, the imaginary surface
potential appears as a correction to the absence of coupling and the real surface
potential appears more as an unjustified random result. In the Schrédinger
phenomenology, the surface potentials are more stable with respect to the
coupling. In all these cases, the coupling to the 3~ state improves the fit
except for a 4-8% increase of the total x? with the 24-parameter Dirac equation
at 800 MeV. With this coupling and the optical potential obtained with the
elastic scattering, x? increases strongly for small scattering angles (not shown
in the figures). The use of 24 parameters always gives a very poor inelastic
analysing power; at 497 MeV, all the other calculations give fair agreement
for the inelastic scattering with a ratio of 2 between the maximum and the
minimum x2 for the cross section and for the analysing power; at 800 MeV,
the backwards inelastic scattering is not reproduced and the x? are more
spread, but the small angle scattering is well reproduced. Attempts to use
the Dirac equations with only one imaginary volume plus surface form factor
failed. Some calculations done with coupling to the 3~ and 2* states gave
slightly better results. It is not certain that the coupling to the 3~ state at
3.74 MeV accounts for all the second order collective effects. So, it is not
reasonable to obtain a very good fit to the scattering at large angles at the
price of too many parameters. For these reasons, it seems reasonable to use
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the 12-parameter Dirac potential or the 15-parameter Schrodinger potential,
their results, including the coupling to the 3~ state, are shown by the solid
curves in the figures at 497 and 800 MeV respectively. The best results
with 24-parameter potentials are given by the long-dash curves to show that
equivalent results can be obtained with both formalisms.
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