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Abstract 

A Monte Carlo simulation method has been developed and tested using the ramp model 
gas proposed by Reid (1979). This method is particularly useful for investigations in gases 
which must be modelled using many cross sections. This paper reports various phenomena 
associated with Townsend discharges in ExB fields in nitrogen. Of particular interest is 
the relative importance of terms in the density gradient expansion of the electron energy 
distribution function. Simulations are conducted to assist in the interpretation of data from 
experimental techniques, particularly the 'photon flux' method. 

1. Introduction 

Solutions of the Boltzmann equation, or the use of Monte Carlo simulation 
techniques, in conjunction with discharge experiments, are well established 
procedures for verification or determination of collision cross-section data at 
low E/N (Crompton 1983). At elevated E/N the collision cross-section set 
deduced by these methods may not be unique. This is due to the relatively 
large number of collision cross sections required to model a gas, compared 
with the relatively small amount of information to be gained from conventional 
discharge experiments. The cross sections may be defined more stringently by 
measuring additional characteristics of the discharge, such as excitation rates 
(see e.g. Phelps and Pitchford 1985; Tachibana and Phelps 1985). Clearly, the 
cross sections deduced by comparisons between experiment and simulation 
should be independent of discharge conditions (e.g. E/N). The superposition 
of a magnetic field perpendicular to the electric field provides an additional 
test for the cross sections. In addition, this configuration is of interest for 
practical applications such as high current switches, cold cathode rectifiers 
and for plasma preparation. 

Experiments in Ex B fields are being conducted in these laboratories using 
the 'photon flux' technique (Blevin 1985). Since these experiments are also 
capable of yielding information about electrode boundary regions (Blevin et al. 
1985; Kelly et al. 1989), the Monte Carlo method was chosen for the theoretical 
study to augment our understanding of experimental details. This paper 
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describes some features of the simulation technique, developed to optimise 
the simulation of a 'many process' gas model, and examines the influence of 
gradients in the electron concentration on phenomena associated with Ex B 
discharges. 

2. Simulation Method 

The method used in the simulation is based on a 'null collision' Monte Carlo 
method (see e.g. Skullerud 1968; Braglia 1985). The algorithm for determining 
the type of event which occurs at each collision includes a technique which 
does not appear to have been reported in the literature. 

In accordance with the null collision method, an electron is assigned initial 
phase space coordinates at the cathode and a mean collision time is determined 
from the total collision cross section: 

QMFT(E) = Qnull(E) + L Q~al(E), 
m 

where Q~al(E) are all the real processes considered in the model of the gas, 
and Qnull(E) is chosen so that 

QMFT(E) = KE-t , 

where K is constant. The electron orbit is calculated between collisions and 
the phase space information is recorded at regular intervals of the order of a 
mean free time, 

TMFT = (NQMFTlvl )-1, 

and after collisions of special interest, for external analysis. This is done 
by dividing phase space into a number of intervals. The resolution of these 
'boxes' may be varied as required. 

In 'conventional' Monte Carlo programs the possible collision probabilities 
are calculated at each collision by evaluating several functions defining the 
cross sections at the current electron energy, or by interpolating between 
values in a table of cross sections. Both of these methods absorb a great 
deal of processor time, especially where a relatively large number of possible 
processes are considered. This process can be accelerated by approximating 
the collision probabilities for any process as a set of step functions, defined 
on a fine set of energy 'boxes', in programs run externally to the simulation. 
The pre-calculated collision probabilities (PCCP, see next section for definition) 
for each process may be then read into the simulation program initially, as an 
array. There are two important limitations on the applicability of this method. 
First, in order to differentiate between processes in the simulation, the random 
numbers used in the collision routines must be of sufficient preciSion to assign 
accurate probabilities to processes with small cross sections, in a large total 
collision cross section. Secondly, an appropriate set of energy 'boxes', on 
which the probabilities are defined, must be chosen. The energy intervals may 
vary in size over the domain of electron energies, but must be sufficiently 
narrow to provide a good description of any structure in the cross sections. 
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In this work the magnitude of a cross section in each interval was made equal 
to the value at the midpoint of the interval. This in turn was determined 
by cubic-spline interpolation of cross-section data. A sufficient test on the 
appropriateness of a set of energy intervals is that they must be at least narrow 
enough so that the output from the simulations, principally the moments of 
the electron distribution and the excitation rates, is independent of box size. 

The advantage of the peep technique is obvious: At a collision, the electron 
energy is related to a specific column in the probability array. A random 
number is sequentially tested against rows of this column to determine the 
collision type. Clearly, there is a significant difference between the processor 
time required to interrogate memory for elements of an array and that required 
to evaluate functions or interpolate between measured cross-section points, 
as is conventional practice. 

Table 1. Comparison of simulation techniques for electron transport coefficients 
for the Reid ramp model gas: A, Penetrante et al. (1985); B, present work using 

pre·calculated collision probabilities 
The uncertainty in the derived values is quoted in parentheses 

(E) (eV) W (106 em s-I) NDT (1022 cm-I S-I) NDL (1022 em-I s-l) 

EIN'" 12 Td 
A 0·269 6·84 1·134 0·58 
B 0·269 (0·001) 6·86 (0·01) 1·135 (0·002) 0·581 (0·001) 

EIN= 24 Td 
A 0·408 8·89 1·132 0·46 
B 0·407 (0·001) 8·88(0·01) 1·138 (0·001) 0·46 (0·01) 

3. Reid Ramp Model 

In order to test the peep technique the model gas proposed by Reid (1979) 
was used as a test case, since this model has been studied extensively (see 
e.g. Penetrante et al. 1985; Braglia et al. 1982). The properties of the model 
are: 

Molecular weight M = 4·0 a.m.u. 

Elastic cross section O"e(€) = 6·0 X 10-16 cm2 €>O eV 

Inelastic cross section O"j(€) = 0·0 cm2 € < o· 2 eV 

= lOx 1O-16(€-O·2)cm 2 €~O·2eV 

Gas temperature T=O·OK 

Gas number density N= 1017 cm-3 

As described in the previous section an array (2 by n, where n is the number 
of energy boxes) was constructed on an energy grid between 0 and €max, where 
€max is sufficiently large so that an insignificant number of simulated electrons 
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Fig. 1. Steady stream simulation of the Reid ramp model gas at 12 Td 
(l Td '" 10-17 V cm2 ) showing persistent variations in the mean energy (€) 

and the electron number density n(z). The spatial periodicity corresponds 
to a change in potential of 0·2 eV, the threshold of the inelastic event. 
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Fig. 2. Energy distribution functions for z = 0·9 mm [marker (a) in Fig. 1] 
and at z = 1 ·0 mm [marker (b) in Fig. 1] for the Reid model gas at 12 Td. 
Note that the local mean energy is smaller than the average at (a) and 
significantly higher at (b). This is reflected in the distribution functions 
at (a) and (b). 

reach it. The first row of the PCCP array contains the probability of a null 
collision in every interval. The next row tables the probabilities for either a 
null event or an elastic collision. The remaining probability defines the relative 
likelihood of an inelastic event. Sequential comparison of a random number 
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with these rows determines the type of collision. Note that it is desirable 
to have the most probable events for mean energy electrons in the first few 
rows so that the testing of the array elements against the random number 
at collision is optimised for speed, especially in a model with many cross 
sections. Transport parameters for the Reid ramp model gas are compared 
with the work reported by Penetrante et al. (1985) at 12 and 24 Td in Table 1 
and are found to be in excellent agreement with previous studies, lending 
weight to the validity of the technique. 

An important feature of this model, not discussed in the literature, relates 
to its qualitative similarity to rare gases which generate the Holst-Oosterhuis 
effect (1923) (the occurrence of well separated luminous layers near the cathode 
in rare gas discharges). Just as is found in rare gas simulations (Hayashi 
1982; Sakai et al. 1979; Amies et al. 1985), the present simulations of the 
Reid model yield persistent spatial variations in both the number density and 
the local electron energy. This is most clearly illustrated in Fig. 1, a 'steady 
stream' simulation. The variations in (€) and the number density, with a spatial 
periodicity corresponding to a potential difference of 0·2 eV, are accompanied 
by variations in the electron energy distribution function, which is shown for 
two axial positions in Fig. 2. 

Interestingly however, the time dependence of the spatial moments of an 
isolated electron swarm in this region can be well described by the swarm 
averaged distribution function, as indicated by the close agreement with the 
calculations of Table 1. Nevertheless, there is internal structure in the swarm 
which is not described by the usual concentration gradient expansion. This 
structure persists for times much longer than the time taken for the swarm 
averaged drift and diffusion coefficients to become constant. This behaviour 
has been observed both experimentally (see e.g. Kelly et al. 1989; Fletcher 
1985) and in many simulations (Hayashi 1982; Marode and Boeuf 1983; Amies 
et al. 1985), so that care must be taken in defining 'equilibrium', or steady 
state conditions. 

4. Density Gradient Expansion for Ex B Discharges 

The macroscopic transport parameters such as drift velocity, diffusion, 
ionisation and excitation rates are related to the collision cross sections 
through the Boltzmann equation. The Boltzmann equation describes the 
population of elements of phase space as a function of time in terms of 
a probability distribution function {(r, v, t). The distribution of electrons in 
velocity space may be approximated using a two term Legendre expansion: 

{(r, v, t) = (o(r, v, t) + (VjV){l (r, v, t). 

The electron concentration n(r, t) at any point in space is given by 

n(r, t) = 41T f 000 v2 (o(r, v, t) dv = f 0 00 fo(r, €, t) d€, 

where (o(r, €, t) is the symmetric term in the Legendre expansion above. For a 
configuration of fields that includes a magnetic field By lying perpendicular to 
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an electric field -Ez, the time evolution of the symmetric part of the probability 
distribution function fo(r, E, t) is governed by the relation [K. Ness, personal 
communication (1982); cf. Holt and Haskell (1965), equations (10·84), (10·85) 
and (10·86) for the B = 0 case]: 

ofo _ ~M .. ( o2fo -e~ O(Ejfo») 
ot 3m lJ OXiOXj OE OXj 

2 -! eEi 0 ( lM ofo !. M E Ofo) (F) + E 2 - - E2 ij - - E2 e ij j - = -}o 10 
3m OE aXj OE ' 

where Mij are components of a tensor: 
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In these equations E is the electron energy, y is an effective frequency of 
electron-molecule collisions involving momentum transfer [see Huxley and 
Crompton (974) for a discussion of how inelastic collisions and isotropic 
scattering effect the effective momentum transfer frequency] and w is the 
electron cyclotron frequency, while }o(fo) is the rank zero Boltzmann collision 
integral, including elastic, inelastic and reactive collisions. 

In the work reported here we are not concerned with an evaluation of terms 
in the Legendre expansion of f(r, v, t). However, an understanding of how the 
symmetric term fo(r, E, t) evolves in an Ex B discharge is required to determine 
the relevant transport parameters. Indeed an investigation of experimental 
techniques, such as the photon flux method, demands a knowledge of the 
effect of spatial gradients in n(r, t) on excitation rates (Wedding and Kelly 
1989). 

To examine the influence of gradients in n(r, t) on transport parameters 
in the Ex B configuration, the energy distribution function is expressed in a 
three-dimensional gradient expansion (cf. Parker and Lowke 1969). Assuming 
that fo(r, E, t) can be separated into spatially dependent and energy dependent 
terms we have 

fo(r, E, t) = n(r, t)[9000(E) __ 1_ (0 n(r, t) g100(E) + 0 n(r, t) g001(E») 
Azn ox oz 

+ __ __ g200(E) + _ g020(E) + _ g002(E) 1 (o2n o2n a2n 
A~ n ox2 oy2 OZ2 

o2n 110 o2n 101 o2n 011 )] 
+ 2 oxoy 9 (E) + 2 oxoz 9 (E) + 2 oyoz 9 (E) + .... (2) 
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In this expansion, we have 

fa 00 gOOO(E") dE = 1 and fa 00 gUk(E) dE = 0 for i + j + k > 0, 

where r is used to denote the coordinate system (x,y,z), and l/Az (=Wz/2Dz) is 
of the order of the characteristic length for energy exchange and is included 
to make gUk(E) independent of pressure. 

By inserting equation (2) into (1) and integrating over all electron energies 
one obtains, to second order in the derivatives, a continuity equation of the 
form 

on 0 ( on) 0 ( on) at + ox nWox -Dwx ox + oz nWoz -Dwz oz + ... 

02n 02n 0 2 ( ) 0 2 ( ) -Dox -2 -Doy -2 - -2 nDoz -... - ~ nDsh - ... 
ox oy OZ uXuZ 

on on 
= nviO - Wjx ox - Wiz OZ + ... , (3) 

where 

W 2 eE f 00 w ~ 0 (_1. OOO()) d Ox = - 1" - 2 2 E2 ~ E 2 gEE, 
m 0 v +w uE 

Woz=-~- 2 2E'2~ E-'2g000 (E) dE, eEfOO v 30( I ) 

m 0 v +w uE 

Wix = - Vi glOO(E) dE, 1 f 00 

Az 0 

1 f 00 Wiz = Az 0 Vi gOOl (E) dE. 

The diagonal components of the apparent diffusion tensor are 

Dox = Doz = 2 - EgOOO(€) dE, 1 f 00 V 

1" m 0 V 2 +W2 

1 fOOl Doy = ~ m 0 v €gOOO(€) d€, 

Dwx = - t - ~ 2 2 {i ~ €-'2g 100(€) dE, eElf"" W 30( I ) 

m (\z 0 V +W u€ 

eElfOO V 30( I ) Dwz= -~ m Az 0 V2+W2 €'2 O€ E-'2 gOOl (E) dE, 
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and the swarm averaged ionisation rate is 

Vio = J 0 00 Vi gOOO(E) dE 

[ef. Blevin and Fletcher (1984) for the B = 0 casel. The term 

Dsh = 3~z ~ Loo 
v2 ~W2 d[ V :E(E-1 g 100(E») +w :E( E-1 g001 (E»)] dE 

is a diffusion coefficient arising from the off-diagonal terms in the diffusion 
tensor. This is analogous to the Hall conductivity in plasmas (see e.g. 
Tanenbaum 1967), and consequently we refer to it as the Hall diffusion 
coefficient. 

Now, by collecting terms of the same order in the derivatives of the 
concentration, equation (3) may be rearranged and is to second order: 

an ( )on ( )on at + WOx + Wix a x + WOz + Wiz a z 

( )o2n o2n o2n ( )o2n 
- Dox + Dwx --2 - Doy --2 - Dsh ~ - Doz + Dwz --2 = nviO . ax oy uXuZ oz (4) 

It is clear from equation (4) how gradients in the energy distribution function 
can alter the 'swarm averaged' coefficients. For example, a significant degree 
of ionisation changes the measured axial drift velocity from WOz because 
ionisation occurs preferentially at the front of the swarm where the mean 
energy is higher. It is important to realise that neither Wix nor Wiz contribute 
to the electron flux, but arise from the source term in equation (1). 

Experimental techniques do not resolve the components of the bracketed 
coefficients in equation (4), so that terms of similar dimensions in this equation 
may be grouped together as 'measurable' parameters: 

an an an o2n o2n o2n o2n 
-;;;- +Wx~ +Wz~ -DX - 2 -DY- 2 -Dz - 2 -Dsh~=nviO. (5) 
ut uX uZ ax oy OZ uXuZ 

If the second order derivatives of equation (2) had been retained in the 
analysis, then third order derivatives appear in the continuity equation (5) 
and are related to the 'skewness' of the distribution. These second order 
derivatives in the gradient expansion also modify the diffusion coefficients 
when inserted in the source terms of equation 0). For example Dz becomes 
Doz +Dwz +Diz, where 

1 J 00 Diz = A; 0 Vi g002(E) dE. 

5. Production of Excited States 

In an earlier paper (Blevin and Brennan 1983) an analytic solution of equation 
(5) was presented for a gaussian electron source and a perfectly absorbing 
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cathode boundary. Expressions for the electron concentration, integrated along 
a line of sight, were presented for steady stream and pulsed sources. These are 
necessary in the analysis of experimental data from the photon flux method. 
However, it is also necessary to relate the spatial and temporal distribution 
of excited states to the parent electron population, since rate coefficients for 
production of excited states are also affected by gradients in the electron 
number density. The spatially varying rate of production of states, excited by 
a process Q(/), is 

(2)t fOO 1 nCr, t) v(/)(r, t) = m N 0 Q(l#)6 (o(r, E, t) dE. 

Using the gradient expansion for (o(r,E,t) as before (cf. equation 2) we have 

( 000 100 _1_ on _ V 001 _1_ on + ... ) 
nCr, t) v(/)(r, t) = nCr, t) v(/) - v(/) Az n ox (/) Az n OZ (6) 

to first order in the gradient expansion, where 

i Ok ( 2 ) t fOOl ° ° v0) (r, t) = m N 0 Q(/)(E)E2 gljk(E) dE. 

Equation (6) may be re-expressed as 

100 001 1 -::. ) v(/) 1 on v(/) vn 
n(x,y,z,t)v(/)(x,y,z,t) = v3?0(n(x,y,z,t) - 000 A ox - v Ooo Az oz + .... 

v(/) z (/) 
(7) 

If the gradient terms are small, then it is clear that equation (7) can be 
considered as an appropriate expansion of the relation 

n(x,y, z, t) v(/) (x, y, z, t) = v3?0 n[(x - Cl 100), y, (x - Cl 001), t], (8) 

where Clijk = (l/Az)vijk Ivooo . That is to say, the production of excited states 
at any position (x,y,z) is proportional to the electron number density at 
[(x - Cl 100), y, (z - Cl 001 )]. This approximation is the key to the experimental 
photon flux method, when applied to Ex B discharges. 

6. Simulation Results for Discharges in Nitrogen 

Some of the aspects of the behaviour of discharges mentioned above may 
be examined by simulation, using the PCCP technique. Molecular nitrogen was 
chosen as the model gas for this investigation of the phenomena associated with 
Townsend discharges in Ex B fields, because it has been studied extensively 
in these laboratories (see e.g. Wedding et aT. 1985). It has also been the 
subject of extensive theoretical study, notably by Penetrante et aT. (1985), 
Phelps and Pitchford (1985), Taniguchi et aT. (1978), Tagashira et aT. (1980) 
and more recently by Ohmori et aT. (1988). 
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Fig. 3. Monte Carlo simulation of average position (z) versus time 
for electrons released at the cathode (0), the swarm as a whole (~), 
and excitation to the c3nu state (*), in an Ex B field at E/N = 500 Td, 
B/N=500x10-17 Gcm3 and p=l Torr. These yield: 

o Wz(primary electrons) = 34· 67±0· 01 cmllS-I, 
~ Wz(total electrons) = 39·91±0·01 cmllS-I, 
* Wz(excited states) = 39· 9S±0· OS CmIlS-I. 

Note that Wz(total electrons) = Wz(excited states). 

In this purely theoretical study, we have adopted set C from Tagashira et 
al. (1980) and modified the set to include an excitation to the B2 2:~ state 
of nitrogen (Stanton and St. John 1969) and a dissociative ionisation cross 
section (E. E. Kunhardt, personal communication 1983). This was performed 
in such a way that the sum of the ionisation cross sections was identical 
to that by Tagashira et al. These alterations to the model allow comparison 
with the experiments of this laboratory (Kelly et al. 1989; Wedding and Kelly 
1989), some of which have observed transitions from the B2 ru state. 

The nitrogen model of Tagashira et al. is based on cross-section measurements 
for excitation of electronic states in nitrogen by Cartwright et al. (1977) and 
Chutjian et al. (1977). In order to achieve agreement between measurements 
of transport parameters and the calculations, Tagashira et al. modified the 
measured cross sections of Cartwright et al. by reducing by 15% the magnitude of 
the cross sections describing the excitation of electronic states with thresholds 
below 12·25 eY. The triplet state cross sections of Cartwright et al. are modelled 
in the present work by an exponential decay with respect to energy above 
50 eV in the current work. The cross section for dissociation, as calculated 
using the data of Winters (1966) and Rapp et al. (1965), was reduced by 60%. 
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Fig. 4. Monte Cario simulation of (xl versus time in a magnetic 
field at fiN = 500 Td, BIN = 500 x 10-17 G cm3 and p = 1 Torr: 

o Wx(primary electrons) = 13· 96±0 ·01 cm ps-I , 
/::, W x(total electrons) = 14· 06±0 . 01 cm pS-1 , 
* Wx(excited states) = 14 ·15±0· 08 cmps-I. 

Note that Wx(primary) '" Wx(total) '" Wx(excited). 

37 

These cross sections provide a useful model of nitrogen which can be used 
to study the phenomena of Ex B discharges. 

It should be noted that in our simulations isotropic scattering is assumed 
in all channels, elastic, inelastic and reactive. All electronic excitations are 
modelled by an excitation to the lowest vibrational level, with an energy loss 
equal to the threshold of that level. Following an ionising collision the residual 
energy was randomly partitioned between the two outgoing electrons. 

Additional calculations have been performed with the data of Phelps and 
Pitchford (1985), allowing us to conclude that the general features discussed 
here are not invalidated by the particular choice of model for nitrogen, although 
it is expected that the detailed agreement with experimental data will be altered. 
Such a comparison is the subject of a future paper (Brennan and Garvie 1990). 

Following the time evolution of appropriate moments of the spatial distribution 
of a pulsed swarm enables transport parameters to be calculated. When a 
magnetic field is present there are several more transport parameters to be 
considered, as indicated by equation (5). Figs 3 and 4 illustrate the mean 
position of a swarm with respect to the z and x axes, as a function of time, 
for EIN = 500 Td and BIN = 500 xl 0-17 G cm3 at a pressure of 1 Torr. In order 
to investigate the influence of density gradients on the transport parameters 
we have separated the evolution of the initial (primary) electrons from the 
group as a whole. Excitations to the c3nu state were also recorded. Several 
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Fig. 6. Contour diagrams of electron number density, integrated along lines of sight parallel 
to the magnetic field at two times (see text) and for E/N = 500 Td, B/N = 1000 X 10-17 G cm 3 

and p = 1 Torr. Contours appear at intervals of 10% of the peak height of the later swarm 
(16 and 80 ns)_ 
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features in these figures are worthy of comment, besides the fact that they 
yield values of the components of the drift velocity from the slope of the 
graph for the different components: 

(i) Fig. 3 shows that there is a difference of approximately 13% between 
the z components of the drift velocity of the primary electrons and the 
complete swarm under these conditions. This difference is a measure 
of Wiz, since the centre of mass drift of the primary electrons is 
found to be equal to the instantaneously averaged velocity Woz , at 
least within the accuracy of the simulation. 

(ii) However, Fig. 4 indicates that Wix is less than approximately 2% of 
Wiz! 

(iii) The corresponding results for the C3 flu excitations show that .1 100 «.1001 

which, taken together with the previous observation, implies that 
glOO «gOOl for energies greater than the excitation threshold of 
11 ·03 eV, for these conditions. 

By determining the time rate of change of (x2), (y2) and (Z2) the diagonal 
elements of the diffusion tensor may be found. Fig. 5 shows the dependence 
of the diffusion coefficients on magnetic field strength for a given fiN. The 
influence of the different terms in equation (4) on the 'measured' diffusion 
is evident. For zero magnetic field there is a clear difference between the 
'longitudinal' and 'transverse' diffusion, due to the term Dwz in equation (4). 
Note that Dx and Dy are identical within the limits of the simulation accuracy 
for B = 0, as expected. As the magnetic field is increased the mean energy of 
the swarm drops and produces the slow change in Dy with magnetic field. The 
magnetic field has a more marked effect on Dox and Doz (see definitions in 
equation 3), and these both decrease with magnetic field. At 'high' magnetic 
field strengths, where w '" v, the situation is approached where the swarm can 
be roughly characterised by a diffusion along the magnetic field Dy , and across 
the field Dx '" Dz. This implies that the terms Dwx and Dwz are comparable, 
and this is supported by other simulations (Garvie 1988) which show that 
glOO(€) and gOOl(€) are comparable under these conditions. 

Further characteristics of a swarm in Ex B fields are illustrated in Fig. 6 
where simulation results of the line of sight density of electrons (looking 
along the magnetic field) are shown for two times. The smaller swarm has 
only travelled 200 mean free times in our model (about 80 ps in 1 Torr of 
gas) and is still influenced by the cathode boundary. After 1000 mean free 
times the swarm has moved under the influence of the electric and magnetic 
fields, along the x axis and further into the drift region. Notice that in this 
simulation it is only after times of this order that the cathode has no further 
influence on the swarm development. After this time, the influence of the 
off-diagonal components in the diffusion tensor, which lead to the term Dsh 

(Blevin and Brennan 1983), is also evident. It causes the major axes of the 
contours of constant line of sight electron density, drawn at equal fractions 
of the peak height of the second swarm, to be rotated and changes their 
characteristic lengths. 

Using the PCCP method it is also possible to determine the functions gijk 

introduced in Section 4. This is important in determining the number of terms 



40 M. j. Brennan et al. 

0'10 Tr-r-Y--r-r-r-Y--r-r-T-'--r-r-T-'--r-r-r--,-.,..,r-r-r-~ 

'§" 
'c 
::J 0'05 

.e 
~ 
c: 
o 
13 
c: 
.2 
c: 
.Q 
:5 
.0 0 .;:: 

iii 
is 

...{j·05 -'Ih-r-y--r-...-" ........ ,--...-,-,ro-o-,--r-...-.., ........ -,-....-! 
o 10 20 30 40 50 

Energy (eV) 

Fig. 7. Comparison between simulated determinations of gOOO(E)' gOOI (E) and g002(E) at 
500 Td for BIN = O. Note that in the high energy tail gOOO(E) and gOOI (E) are of comparable 
size. The smaller magnitude of g002(E) causes difficulties in a more accurate determination. 
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Fig. 8. Comparison between simulated determinations of gIOO(E) and yOOI (E) at fiN = 500 Td 
and BIN = 500 x 10-17 G cm3 . 
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to be included in the gradient expansion for an accurate evaluation of the 
transport parameters. By incorporating Kumar's (1981) method of moments 
into the simulation, it is possible to obtain a good estimate of the swarm 
averaged distribution function gOOO(e"). Kumar has shown that 

Sx S y Sz f(x,y,z,€) dx dy dz = Ne gOoo(€), 

where Ne is the total number of electrons. Related expressions for the other 
functions gijk(€) may also be derived from Kumar's work. Those of principal 
interest to this investigation are 

S S S xf(x,y,z,€) dxdydz = NexgOoo(€) + Ne gIOO(€), 
x y z Az 

S S S zf(x,y,z,€) dxdydz=NezgOoo(€) + Ne gOOI(€), 
x y z Az 

S· S S z2 f(x,y,z,€) dx dydz = Ne z2g 000 (€) + 2!"e zgOOI(€) + 2~e g002(€). 
x y z '\z Az 

The gijk(€) were obtained by storing Xx(€) , Xz(€) and XZ 2(€), together with the 
total number of electrons Ne over a period of 500 mean free times, at intervals 
of the order of a mean free time. The energy domain was represented by 
fine scale boxes, in a similar manner to the collision cross sections. Each 
electron was 'started' with the velocity components of the previously simulated 
electron, ensuring that the initial energy distribution corresponded to that in 
equilibrium. The addition of the contributions from typically 108 simulated 
collisions gives acceptably accurate representations of gijk(€) for our model 
gas (Figs 7 and 8). Notice in Fig. 7 that the magnitudes of these functions 
become similar in the tail of the distribution function. This suggests that for 
higher energy processes there is a compelling argument that more terms may 
be required in the gradient expansion and hence the continuity equation (4 
and 5). 

The general formalism developed above makes few assumptions about the 
nature of the gradient expansion, save the fact that we note gOIO must be 
zero and we have generally truncated our expansions at first order. However, 
Fig. 8 indicates that the effect of the term g100 on the electron energy 
distribution function at most energies is negligible in comparison with gOOI for 
the conditions simulated, which has important implications for experiments 
using the photon flux technique: Remembering that the C3 flu state is the 
usual 'probe' transition used in 'photon flux' experiments in nitrogen, it is 
not expected that such experiments would be sensitive to spatial gradients in 
x under the conditions studied, since the onset energy of the C3flu state is 
11 ·03 eV, where the influence of g100 is trulv negligible. Under experimental 
conditions similar to the simulations we may simplify equation (8), considering 
terms involVing gOOI only. So, to a good approximation, the production of 
excited states at any pOSition (x,y,z) is proportional to the electron number 
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density at [x,y,(Z-L1001)], the same approximation used for analysing discharges 
under the influence of an electric field only (see e.g. Wedding et al. 1985), 
although this approximation may be sensitive to the particular optical transition 
being studied. 

7. Conclusions 

A modification to the 'null collision' Monte Carlo simulation method has 
been developed and used to illustrate features of electron swarm behaviour 
in nitrogen, particularly those in Ex B fields. Testing of the PCCP technique 
against the Reid ramp model gas has clearly verified previous work which 
suggests that under certain conditions the macroscopic behaviour of a swarm 
is well described by the so-called 'equilibrium transport parameters' even 
though the spatially resolved energy distribution function is quite distinct 
from its equilibrium form. 

The results presented here show that the results from experiments in Ex B 
fields using the photon flux technique can be successfully interpreted in terms 
of the swarm transport parameters, although for conditions generating high 
mean swarm energies an accurate analysis must include careful consideration 
of the effect of spatial gradients on the higher order transport coefficients. 
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