
Aust. J. Phys., 1990,43, 453-64 

Effects of Diffraction on the 
(e,2e) Reaction in Crystals* 

L. J. Allen,A l. E. McCarthy,B V. W. Maslen c and C. J. Rossouwc 

A School of Science and Mathematics Education, University of 
Melbourne, Parkville, Vic. 3052, Australia. 
B Electronic Structure of Materials Centre, Flinders University 
of South Australia, Bedford Park, SA 5042, Australia. 
C Division of Materials Science and Technology, CSIRO, 
Locked Bag 33, Clayton, Vic. 3168, Australia. 

Abstract 

An expression is derived for the (e, 2e) differential cross section of a crystal, with allowance 
for dynamic diffraction of both the incident and outgoing electrons, all of which are assumed 
to be fast. Conditions for unique momentum determination on the one hand or for maximum 
enhancement of the (e,2e) signal on the other are discussed. 

1. Introduction 

The successful use of (e,2e) scattering to map atomic and molecular wave 
functions (McCarthy and Weigold 1988) has encouraged renewed efforts to 
apply it to solids. Experimental attempts to study details of solid structure by 
means of the (e,2e) reaction were first reported by Amaldi et al. (1969). But 
their energy resolution of 150 eV did not enable them to obtain information 
on the valence states. The first (e,2e) measurement of the spectral momentum 
density of the valence band of a solid was reported by Ritter et al. (1984), whose 
energy resolution was 6 eY. Though this work was a big advance, Ritter and 
his colleagues (Chao Gao et ell. 1988) have recently expressed pessimism about 
the merits of applying (e,2e) to crystalline solids, stating that .... in general, 
most information regarding the electronic structure of crystalline solids can be 
obtained more expeditiously and with higher resolution by other techniques. 
Where (e, 2e) spectroscopy provides fundamental insights is in the investigation 
of disordered solids.' Hayes et al. (1988) have substantially reduced the data 
collection time of an (e,2e) experiment by using position-sensitive detectors. 

On the theoretical side, Neudachin et al. (1969) provided the first description 
of the (e,2e) reaction in a crystal. They represented the incident and outgoing 
electrons by plane waves, but took account of the periodic nature of the 
crystal when describing the precollision state of the target electron. It was on 
the basis of this theory that Chao Gao et al. interpreted their experimental 
results for graphite. Neudachin et al. (1981) expressed optimism about the 
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merits of applying (e,2e) to crystalline solids, stating that: 'On the whole, 
solid targets offer the most promising possibilities for the (e,2e) method.' 

The present work builds on that of Neudachin and his colleagues (Neudachin 
et al. 1969; Levin et al. 1972) by including diffraction of the incident and 
outgoing electrons. It may also be viewed as an extension of the inelastic 
scattering theory of Rossouw and Maslen (Maslen and Rossouw 1984; Rossouw 
and Maslen 1984; Maslen 1987) to the case where the ejected electron is fast 
and is detected. The theory of electron diffraction at the voltages of, say, 
25 keY being used or contemplated for (e, 2e) studies of solids is well developed 
(see for example Humphreys 1979), and with several groups preparing to 
carry out such experiments, it is an opportune time to study the implications 
of diffraction for (e,2e). We will show that, in the presence of diffraction, 
an (e,2e) experiment no longer provides a 'clean' measurement of the wave 
function being sought and we will discuss the question of how to extract this 
information. 

The form of the (e,2e) scattering amplitude which we derive may be 
interpreted as a sum of amplitudes of many atom-like (e,2e) reactions. We 
therefore first outline the underlying atomic model, then consider the model 
of Neudachin et al. for an (e,2e) reaction in a crystal and finally derive the 
scattering cross section in the presence of diffraction. 

(j 

2. Basic Atomic Model 

~ 

Fig. 1. Assumed scattering geometry of 
the (e,2e) reaction. 

We assume throughout this paper that the incident and outgoing electrons 
may all be considered fast (Humphreys 1979), so that the collision involves a 
large transfer of momentum and large scattering angles as indicated in Fig. I. 

In atomic units, the differential scattering cross section for an (e, 2e) reaction 
may be expressed, essentially without approximation, as 

d6 o- = (2rr)4 kA kB L I tf(kA, kB <- ko) I 2 6(EA + EB - Eo - £), 
ko 

(1) 
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where leo, leA and IeB are the wave vectors, and Eo, EA and EB the corresponding 
energies, of the incident and outgoing electrons, tf is the amplitude of scattering 
to a final state and the summation extends over degenerate final states. The 
difference in energy between the precollision and postcollision states of the 
target is denoted by f. 

Our model of an atomic (e,2e) event assumes that the incident and outgoing 
. electrons can be described by plane waves and that atomic ionisation can be 

described by an independent particle model, so that f becomes the energy of 
the precollision orbital occupied by the target electron. The expression for 
the differential scattering cross section then reduces to 

d5~ k k 
d.QA d.QB dEA "" (2rr)4 Zo B fee I CP(K)I 2, (2) 

where 

fee = _1_( 1 _ 1 + __ 1_....,..) 
(2rr2)2 I leo -leAl 4 I leo -IeA1211eo -IeBI 2 I leo -IeBI 4 ' 

(3) 

K = leA + IeB - leo , (4) 

and CP(K) is the wave function of the precollision state of the target electron 
in the momentum, or wave vector, representation. The expression for fee 
takes into account the indistinguishability of the two outgoing electrons, and 
indefinite spin states are assumed in its derivation. The factorisation of the 
expression for the differential scattering cross section, which is evident in 
equation (2) and which also occurs for the more accurate distorted wave 
impulse approximation, enables a 'clean' measurement of I CP(K) 12. 

1<1> (K) 12 

sr::::: .......... < :::::.... ... " 

Fig. 2. Map of I cp(K) I 2 along one direction for a p-type orbital of energy e, obtained by an 
atomic (e,2e) experiment. 

For an atom, f is discrete and I CP(K) I 2 is a continuous function of K. Energy 
and momentum are conserved in the reaction. One can obtain I CP(K)l2 by 
varying the scattering angles while keeping the energies fixed and Fig. 2 shows 
a plausible map of I CP(K)l2 along one direction for a p-type orbital. 
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3. Crystal Model without Diffraction 

Neudachin et al. (1969) used plane waves to describe the incident and 
outgoing electrons, and the precollision target orbital was represented by a 
tight binding wave function, 

Y'k(r) = IN ~ exp(i k. Rn) t/J(r - Rn), (5) 

where Rn denotes a crystal lattice vector, N is the number of unit cells in 
the crystal and t/J(r-Rn) is an atomic orbital. The momentum representation 
of Y'k(r) is 

tPk(q) = .IN ¢(q) 8q,k+g, (6) 

where (J is a vector of the reciprocal lattice. 
The conditions under which an (e,2e) reaction in a crystal will be observed 

are the conservation of energy, 

EA +EB -Eo = €(k) , (7) 

and the conservation of crystal momentum, 

kA + kB - ko =K= k+(J. (8) 

The continuous dependence of €(k) on k describes a crystal energy band and 
it leads to an additional factor, which we call the energy dispersion factor, in 
the expression for the differential scattering cross section. Thus we have 

d 5 
(J" :::l (2 rr)4 N k~:B fee 1 ¢(K) 12 

{ ( o€ o€ o€ )/ }-l 
X 1 - kBx okx +kBy oky +kBZ okz 2EB 8K,k+g. (9) 

If in the (e,2e) experiment the scattering angles are varied while the energies 
are held fixed, one would obtain 1 ¢(K)j 2, but only for the discrete wave vectors 
k. k + (Jl, k + (J2, ... , as indicated in Fig. 3. One would have to vary both 
energies and angles to obtain 1 ¢(K) 12 for a continuous range of K. In the case 
of extreme tight binding, where € is independent of k, one would reproduce 
the atomic results of Fig. 2. 

4. Crystal Model with Diffraction 

The model of Neudachin et al. does not mention crystal surfaces. We 
assume the crystal to be a thin plate, with the x and y dimensions large 
and the z dimension small, with thickness d. The origin of coordinates and 
the xy-plane are chosen to lie in the entrance surface, and the z-axis points 
normally inwards (Fig. 4). We use the standard Bloch wave theory of dynamical 
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Fig. 3. Observed values of 1 <Ph(lC) 12 along a fixed direction and at fixed energies. The 
dashed curve illustrates 1 <I>(IC) 1 2 • 
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Fig. 4. Assumed scattering geometry of the (e,2e) reaction in a crystal. 

electron diffraction (Humphreys 1979; Metherell 1975) to describe the incident 
and outgoing electrons, which are assumed to be fast. This theory is mostly 
applied to situations of small momentum transfer, where the scattering cross 
sections are much higher, but we see no reason in principle why it should 
not hold for large momentum transfer as in (e,2e) scattering. 

The incident electron is represented by a plane wave before entering the 
crystal, 

X(+)(ko) = I , /') exp(i ko • r) , z < 0, 
(2rr) 

(10) 

and by a sum of Bloch waves within the crystal, 

x(+)(ko) = 13/2 L 0(3 L C3g (ko) exp {i(k3 + g). r}, 0 ~ z ~ d. (11) 
(2rr) A g 
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The quantities k3 and C3iko) are eigenvalues and eigenvector components 
of the dynamical diffraction eigenvalue problem determined by ko and the 
crystal potential. The eigenvalue k3 has the special form 

k3 =d{o + )'3 Z (12) 

and the values of the )' are typically of order 0·02 times a reciprocal lattice 
vector. The Bloch wave coefficients oc3 are determined by boundary conditions 
at the entrance surface and are proportional to elements of the inverse 
matrix Co-1 (Allen and Rossouw 1989). In electron diffraction terminology, 9 
indexes a beam and A indexes a branch of the dispersion surface associated 
with the incident vector ko and electron energy ~k5. Common situations in 
electron diffraction are those of planar and axial diffraction where, to a good 
approximation, only vectors belonging, respectively, to a single row and to 
a single plane of reciprocal space need be included. The coefficients oc3 are 
well approximated by (C3*) except when the angle between ko and the surface 
normal is large. 
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Fig. 5. Illustration of the dispersion surfaces (dashed curves) and reciprocal lattice vectors 
contributing to the diffraction of electrons 0 and A. 

The outgoing electrons are similarly represented, except that matching at the 
exit surface, Z = d, leads to an additional factor in the Bloch wave expressions. 
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Thus we have 

X<-l(kA) = 1 3/2 l: oc~ exp(-i){ d) l: C~h(kA) exp{i(~ + h) • r}, 0 ~ z ~ d, (13) 
(2rr) /.I h 

1 ~ I? exp(i kA. r), z > d; 
(2rr) 

(14) 

X<-l(kB) = ( 1 3/2 l: ocK exp(-i rK d) l: C;l,(kB) exp{i(kK + I). r}, 0 ~ z ~ d, (15) 
2rr) v , 

1 ~ I? exp(i kB • r), z > d. 
(2rr) 

(16) 

The superscripts (+) and (-) refer to ingoing and outgoing electrons respectively. 
Fig. 5 depicts the different dispersion surfaces and reciprocal lattice vectors 
contributing to diffraction of the incident electron and of one of the outgoing 
electrons for the case where two beams are associated with each electron. 

Since, in the Bloch wave theory, each o( the fast electrons in the (e,2e) 
reaction is represented by a double sum of plane waves the amplitude 
tf(kA, kB <- ko) becomes a six-fold sum of terms, each of which is a crystal 
(e,2e) amplitude of the type considered by Neudachin et al. We write it as 
follows: 

where 

t (k k <- k ) = x.A/.IV XA/.Iv y/.lV ZA/.IV WA/.IV 
f A, B 0 gh' gh' gh' , 

xA/.IV = oc8 (oc~ ocK)*, 

y/.lv = exp {i(){ + rK) d} , 

zA:,,~ = C~g (~h cK,)*, 

(17) 

(18) 

(19) 

(20) 

and w';:,.~ is the (e, 2e) amplitude associated with the vector triple (110 + g, 
~ + h, kK + I). It readily follows that 

where 

v ! A v W;~, = ({le):",4>(K + h + 1- 9 + rA/.IV Z)SA/.IV , 

yA/.IV = ){ + rK - r8 , 

sA/.IV = _1_ l: exp{i(k -K- yA/.IVz). Rn}, 
IN n 

! A/.IV 1 ( . 1 1) 
({le)gh'=2rr2 IIIo+g-~-hI2 ±11Io+g-kK-11 2 ' 

(21) 

(22) 

(23) 

(24) 
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By regarding !/l(r - Rn) in equation (5) as a non-overlapping unit cell wave 
function rather than an atomic orbital, equation (21) is then not limited to the 
valid range of tight binding theory. The ± sign in equation (24) indicates an 
uncertainty in total spin of the outgoing electrons, which will be dealt with 
later by averaging the scattering cross section over various possibilities. 

We now encounter a problem which did not arise in the theory of Neudachin 
et al. Equation (23) suggests that SAIlV will vanish unless 

K = k + G - yAIlV Z , (25) 

where G is either zero or an arbitrary reciprocal lattice vector. The relation 
(25) depends on the branch indices of the dispersion surfaces. But one cannot 
generally satisfy Simultaneously both this relation and the condition of energy 
conservation, which does not involve these indices. This problem, resulting 
from the boundary conditions imposed by the finite thickness of the crystal, 
was resolved by Young and Rez (1975). In the present case, their solution 
involves summing over a small range of kz, the z component of the wave 
vector of the target orbital, which is not measured but only inferred in an 
(e,2e) experiment. 

Now SAIlV can be reduced to a one dimensional integral as follows. Let G 
be that reciprocal lattice vector such that the 'reduced' wave vector 

KR =K- G (26) 

lies in the first Brillouin zone. Then, because yAIlV is small, SAIlV should be 
very small unless KR is close to k.. Thus we can approximate SAIlV by the 
integral 

SAil V - 1 fff . - Q.JN exp{l(k-KR- y AIlVz ).R}d3R, (27) 

where Q is the volume of a unit cell. Because of the large x, y dimensions of 
the crystal, this reduces to the single integral 

(2rr)z f d 
SAIlV", Q.JN 8z(ks -KRs) 0 exp{i(kz - KRz - yAIlV)Z} dz, (28) 

where the subscript s (surface) denotes projection onto the xy-plane. It is 
important to note that one cannot consider the z dimension of the crystal to 
be large and to make the corresponding approximation for it, thereby reducing 
SAIlV to a three dimensional delta function. Physically, this would imply that 
the detectors are inside the crystal and that we can resolve the individual 
yAIlV, which we cannot. 

Evaluation of Differential Scattering Cross Section 

To obtain the differential scattering cross section for the (e,2e) reaction, 
taking diffraction into account, we insert tf(kA, kB +- ko), given by equations 
(17)-(21), into equation (1) and then integrate over EB and sum over k.. Using 
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expression (28) for SAIlV in tf(l<A. ks +- ko) and expression (23), with primed 
superscripts, in tf'" we obtain 

d 5
(J" = 16rr2 _V_ kAkS IIII 8(EA+Es-Eo-€(k»8(k s -KRs) 

DN (2rr)3 ko 

1 

X XAIlV XAIlV YIlVZ AIlV(F2 )AIlV A..(K+ h + 1_ n + "All V z) ghl ghl I ee ghl '+' ~ .I 

x I 0 d exp{i(kz - KRz - yAIlV)Z} dz 

1 

"NIl'v'XNIl'v'yll'V'ZNIl'v'(F2 )NIl'v' A..( 1./ I' ,.f NIl'v'") 
X L.ultl' Ultl' lee Ultl''+' K+ n + - ~ + y z 

x L eXp{i(k-KR - yNIl'v' Z). Rn} dEs d 3k. (29) 
n 

Here V is the volume of the crystal and the factor V /(2rr)3 arises from 
replacement of the sum over k by an integral. 

Integrating firstly over ks, the second delta function in equation (29) 
disappears, €(k) becomes €(KRs, kz ) and the lattice sum reduces to 

N I d {'(k NIl'v') '} d ' d 0 exp I z - KRz - Y z z. (30) 

Integration over Es is carried out next, with kA and kz held fixed. The first 
delta function in equation (29) disappears and the resulting expression is 
subject to the conservation of energy relation 

€(KRS, kz ) = EA + Es - Eo· (31) 

The integration also gives rise to an energy dispersion factor of the same 
form as in equation (9) except for the absence of the term ksz (J"€/(J"k z The 
final integration, that over kz, has the form 

I = I exp {i(kz - KRz)(Z - Z')} M(kz ) dkz , (32) 

where we assume that M(kz) is a slowly varying function of k z. The dependence 
of KRz on kz implied by equation (31) allows us to approximate I by 

where 

I:::. I exp {i (1 - b)(z - z')kz } M(kz ) dkz , 

1 o€ b-- --, 
- ksz okz 

(33) 

(34) 
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Provided the range of integration is sufficient, I can be further approximated 
by 

2IT 
I ~ --b 8(z - z) M(KRz) • 

1-
(35) 

As pointed out by Young and Rez, the presence of 8(z-z) in equation (35) 
implies that crystal layers of different z contribute incoherently to the cross 
section. It also enables the two outstanding integrals over z and z to be 
reduced to the single integral 

f 0 d exp {i(yA'J.I'Y - yAJ.lV)zl dz. (36) 

whose form is elementary. 
The final expression for the differential scattering cross section, which 

results from carrying out the integrations indicated in equation (29) and 
averaging over spins, is 

dSo-
dnA dnB dEA 

4N kA kB [L!:.J.lV XAJ.lVZ;,J.lV </>(K+ h+ 1_ g+ yAJ.lVz)] .. ko ghl ghl 

x [~~r, xNJ.I'Y ~~r, </>(K+ Ii + I' - g' + yNJ.I'Y z)]* 

x -( 1 1 1 
2' , 2"2" 2 N ',2 II<3+g-~-hlll<3+g'-~-1i1 II<3+g-~-hllko+g'-Its-11 

1 1 1) 
-"2" 1 l<3+g-k8-11 2 1 1<3' +g'-It/.. _1i12 + 1 l<3+g-k8-11 21 1<3' +g'-k~ _1'12 

exp{i(yA - yN)dl - exp{i{yJ.l + yV - yJ.l' - yY)d)} 
x A •• N ' Y , i d{(y -.r) - (yJ.l + yV - yJ.l - Y )} 

(37) 

where 

1 (DE DE) a ="2 k Bx ~k + kBy D k • 
kB U x Y k=KR 

(38) 

1 (DE) . 
b = kBz D kz 1c=KR 

(39) 

5. Implications of Diffraction for (e,2e) Experiments 

Our expression (37) for the differential scattering cross section for an (e,2e) 
reaction, which takes into account diffraction of the incident and outgoing 
electrons, is much more complicated than the corresponding expression 
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ignoring diffraction, equation (9), which is itself closely related to equation 
(2), the expression for an atom. Equation (37) does not provide for a 'clean' 
measurement of the wave function of a valence band state of the crystal. 

If diffraction could be ignored, equation (37) would reduce to (9) except 
for a small difference in the energy dispersion factor resulting from the 
inclusion of crystal surfaces in the present model. One might therefore seek 
experimental conditions that avoid diffraction, and this seems quite feasible. 
Equation (37) can be considerably Simplified without gross approximation even 
when diffraction cannot be ignored. Firstly, d is usually large enough and 
the final interference factor so oscillatory that only the diagonal elements of 
the sums over branch indices need be retained. Secondly, a, b and the yare 
usually small. Thus, to a reasonable approximation, we have 

d 5(J" 

d.!hdDB dEA '" 

4Nk~kB L L cp(K+h+l-g)CP*(K+h'+I'-g') 
o ghl glfl' 

( 
1 1 1 

x I ko+g-kA-hI 21 ko+g'-kA-h'12 - 21 ko+g-kA-hI 21 ko+g'-kB--I!f2 

1 1 1) 
- 2" I ko + g - kB - II 21 ko + g' - kA - h'1 2 + I ko + g - kB - II 21 ko + g' - kB - I'I 2 

x LA/lVI XA/lVI2 i'~~ [Z~;"l* . (40) 

To appreciate the physical Significance of equation (40) we recall that, in the 
absence of diffraction, a variation of scattering angles, with energies held 
fixed, yielded separate measurements of I cp(K) I 2, I cp(K + g1) I 2, .... Using many 
beam theory to describe the electron diffraction, these quantities are no longer 
obtained separately, but are coupled together in the form 

L L Agh cp(K+ g) Cp*(K+ h). 
9 h 

(41) 

Each measurement, with energies held fixed but with different scattering 
angles, now yields an expression of the same form as equation (41) but with 
different coefficients. These are available from the solution of the dynamical 
diffraction eigenvalue problem. 

Can diffraction be used to advantage in (e,2e) experiments? Apart from 
the complications of multiple inelastic scattering, low count rates are a major 
problem in (e,2e) experiments on crystals. If the (e,2e) reaction probability 
is sensitive to electron channelling then one might expect a substantial 
increase in count rate for an experimental arrangement such that the incident 
and outgoing electrons are all channelled. Williams and Bourdillon (1982) 
have provided theoretical arguments and experimental evidence from electron 
Compton scattering in favour of such an enhancement. 
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