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Abstract 

We introduce a model Hamiltonian that describes, for different choices of the parameters, 
simple anharmonic models for a solid. We have applied the Painleve test to identify integrable 
and non-integrable cases. In the integrable cases the identification has been confirmed 
by deriving explicit expressions for the additional conserved quantities. The analysis 
demonstrates the sensitivity of lattice integrability to both the order of the anharmonicity 
and the nature of the boundary conditions. 

1. Introduction 

Equipartition of energy is a fundamental property of crystals. If energy is 
supplied to (or subtracted from) a crystal then eventually the energy will be 
redistributed uniformly among all the degrees of freedom. One consequence 
of this property is that the specific heat of a crystal can be obtained simply 
by counting the number of degrees of freedom and assigning equal portions 
of energy to each degree of freedom. Consider the harmonic lattice model 
for a solid. This system, which consists of N atoms in a three-dimensional 
lattice with linear interatomic forces, is equivalent to a set of 3N uncoupled 
harmonic oscillators. Since there are 6N degrees of freedom (one potential 
energy and one kinetic energy per oscillator) the specific heat is simply: 

Cv=6N(~kb). (1) 

This is the well known Dulong-Petit Law and is well confirmed by experiments 
(at least at temperatures where the classical approximation is valid, Ashcroft 
and Mermin 1976). However, from a theoretical viewpoint the situation is 
less clear; equipartition of energy cannot occur in the harmonic lattice model. 
Uncoupled oscillators cannot redistribute energy among themselves. It is 
therefore supposed that there are anharmonic forces present that allow energy 
exchanges among the modes resulting in equipartition of energy. 

In more general terms, the harmonic lattice model is an integrable system. 
Equipartition of energy is not possible in integrable systems due to the 
presence of additional conservation laws that cause the energy to become 
trapped in some of the degrees of freedom and frozen out of others. In the 
harmonic lattice the fundamental modes are phonons and the phonon energies 
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are conserved. The inclusion of anharmonic terms is a necessary but not sufficient condition for non-integrability. For example, the one-dimensional 
Toda (1981) lattice is an anharmonic but integrable model; the fundamental 
modes are solitons and the soliton energies are conserved. 

In the present paper we examine the integrability properties of some very 
simple one-dimensional anharmonic lattice models. In Section 2 we introduce a 
model Hamiltonian that includes, as special cases, four-particle clamped chains 
and three-particle periodic chains with quadratic and/or cubic interatomic 
forces in addition to the linear forces. In Section 3 we apply the strong 
Painleve test and the weak Painleve test to decide which of these cases is 
integrable. We calculate the additional conserved quantities explicitly for the integrable cases in Section 4. Finally in Section 5 we discuss the sensitivity of integrability to both the order of the anharmonicity and the nature of the boundary conditions. 

2. One-dimensional Models for Solids 
The simplest one-dimensional model for a solid consists of a chain of atoms 

coupled by nearest neighbour interatomic forces that are a function of the relative displacements of the atoms from their equilibrium sites. In general 
the interatomic potential can be Taylor expanded in powers of the relative 
displacements. In the following, Xn denotes the displacement of the nth atom from its equilibrium site and Am are force constants. Two types of boundary 
conditions are investigated: 

(i) Clamped end boundary conditions (xo = XN+I = 0). The Hamiltonian is 

(2) 

If Am is nonzero for some m in the sum to infinity then the model is nonlinear. 
In the absence of the nonlinear terms the normal mode coordinates 

( 2 ) N . (nrrs) 
Xn = N + 1 ~ as SIn N + 1 ' s = 1,2, ... , N, (3) 

with frequencies 

Ws = 2sin( 2(~: 1) ), (4) 

separate the Hamiltonian into a sum of independent harmonic oscillators. The 
full nonlinear Hamiltonian can be expressed in terms of the normal mode coordinates by using identities (AI) and (A2) in the Appendix: 

N N 
J{ = rLa;+~ La; W~ 

s=l s=l 

00 A ±N 
+ L ;; [2(N + 1)rm/ 2 L aSl ••• asm wSl ",WSm KSl+ ... +sm , (5) m=3 sl=±l, ... ,sm=±l 
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where 

{
+(N + 1) 

KS1+ ... +Sm = ~(N + 1) 

if 51 + ... +5m = 2q(N + 1) 
if 51 + ... + 5m = 2q(N + 1) 
otherwise. 

with q = 0, ±2, ±4, ... , 
withq=±1, ±3, ... , 

(ii) Periodic boundary conditions (xn = XN+n). The Hamiltonian is 

Ji = f (~x~ + ~(Xn+1 -xn)2 + f ~ (xn+l -xn)m). 
n=l m=3 

In this case suitable normal mode coordinates are 

Jl (i21T5n) 
Xn =~N~aS exp ~ ( N ) N 5 = 0, ±1, ±2, ... ± "2 -1 '"2 Neven 
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(6) 

(7) 

(N-1) 5=0, ±1, ±2, ... ± -2- N odd, (8) 

with frequencies 

Ws = 2 sin e:). (9) 

The as are complex with a-s = as * . The nonlinear Hamiltonian is written in 
terms of the normal mode transformation by using identities (A3) and (A4) in 
the Appendix: 

Ji = ~ z: 1 as 12 + ~ z: 1 as 12 W~ 
S S 

(10) 

where 

{
+N if 51 + ... +5m = qN with q = 0, ±2, ±4, ... , 

}Sl+ ... +sm = -N if 51 + ... +5m = qN with q = ±1, ±3, ... , 
o otherwise. 

(11) 

If the nearest neighbour relative displacements are small then the high order 
nonlinear terms may be neglected to a good approximation. Terms above 
fourth order are neglected in the following. Starting with the Hamiltonians in 
equations (5) and (10) it is an easy matter to derive the two special cases: 

(I) Four-particle clamped cubic (A3 # 0) plus quartic (A4 # 0) chain; N = 2, 
m=3,4: 

where x = a1 and y = a2. 
(II) Three-particle periodic cubic (A3 # 0) plus quartic (A4 # 0) chain; N = 3, 

m=3,4: 
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where x = (al + ai>/2, y = (ai -al )/2i and the energy has been rescaled by a 
factor 1/6. 

The pure cubic and pure quartic cases are obtained by setting .\3 = 0 and 
.\4 = 0 respectively. 

We now consider a slightly more general Hamiltonian that includes the above 
physically distinct cases for different choices of the parameters A, B, C, D, E, F, C: 

:J{ = ~(x2 +y2)+ ~(Ax2 + By2) +DX2y_j y3 + i-(Ex4 + 2Fx2y2 +cy4). (14) 

The corresponding Hamilton-Jacobi equations of motion are 

x = -Ax- 2Dxy-Ex3 _Fxy2, 

y = -By-Dx2 +Cy2-Fx2y-Cy 3. 

(15a) 

(15b) 

In the following we determine those values of A, B, ... , C (E:f. 0, F:f. 0, C:f. 0) for 
which the above system is strong Painleve-type or weakPainleve-type (see 
definitions below). Additional constants of the motion are explicitly derived 
for these cases, thus establishing integrability. Painleve analysis has been 
carried out previously for two special cases of the Hamiltonian in (14): (i) the 
generalised Henon-Heiles (1964) Hamiltonian C = F = E = 0 (Bountis et al. 1982; 
Chang et al. 1982); (ii) the generalised quartic Hamiltonian D = C = 0 (Bountis 
et al. 1982; Lakshmanan and Sahadevan 1985). More recently, Yoshida et al. 
(1988) investigated the case of B = A, C = F = E. They used a theorem of Ziglin 
to prove non-integrability except when (i) D = C = 0, (ii) D = -Cj3, E = 2C2/9A, 
(iii) D = - C/2 and (iv) D = C, E = 2C2/9A. We will refer to these exceptional 
cases as non Z-type. 

3. Painleve Analysis 

A system of ordinary differential equations can be classified according to 
the nature of its s~ngularities in the complex time plane as follows: 

(i) Strong Painleve-type (Ablowitz et al. 1980). The solution in the 
neighbourhood of an arbitrary movable singularity to can be expressed 
as an expansion in powers of (t- to)-n, where n is an integer determined 
solely from the leading order. 

(ii) Weak Painleve-type (Ramani et al. 1982). The solution in the 
neighbourhood of an arbitrary movable singularity to can be expressed 
as an expansion in powers of (t- to)-l/n, where n is a nonzero positive 
integer that depends solely on the leading-order behaviour of the 
singularity. 

It is widely conjectured that systems that are (non) Painleve-type are also 
(non) integrable (see e.g. the reviews by Steeb et al. 1985; Yoshida et al. 1987; 
Ramani et al. 1989). In the following we use the abbreviation P-type to denote 
Painleve-type. The general method for Painleve analysis consists of a three 
step algorithm that is well described in the above reviews. 

Step 1. Leading-order Behaviour 
Substitute the leading-order ansatz 

x=aoTtx, y=bo -rf3, T=(t-tO); Of.,P<O, (16) 
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into the equations of motion to obtain the leading-order equations 

ao ex (ex _l)T c<-2 = - Ea5 T3c< - Fao b6 Tc<+Ztl , 

bo /3(/3 -1) Ttl-Z = - Fa6 bo TZc<+tl_ Gb5 T3tl • 
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(17a) 

(17b) 

There are three distinct cases to consider: Case 1, ex = /3; Case 2, ex < /3; and 
Case 3, /3 < ex. The exponents and coefficients of the leading-order behaviours 
for each case are listed below. In the following, i\ = F / E and K = F / G. 

Case 1 

ex=-l, /3=-1, 2 ( K-1 ) a6 = E 1-i\K ' 
2(i\-1) b6 = C 1-i\K ' 

x=-Ex3 -FxyZ, Y=-FxZy-Gy3. (1S) 

Case 2(0 

1 

ex = -1, /3 = i[1 + (1 + Si\)"2], Z 2 b Z b" ao = - E ,oar Itrary, 

x=-Ex3, y=-FxZy. (19) 

Case 2(ii) 

ex = -1, 
1 Z 2 /3 = i[1-(l + Si\)"2], ao = - E' b6 arbitrary, 

x=-Ex3, y=-FxZy. 

Case 3(0 

1 
ex = i[l +(1 +SK)"2], /3 =-1, a6 arbitrary, 

2 
b6 =-C' 

(20) 

x = - Fxyz , Y = - Gy 3 • (21) 

Case 3(iO 

1 

ex = i [1- (1 + SK)"2], /3 = -1, a6 arbitrary, 

X =-Fxyz, 

b6=-~ G' 
y=_Gy3. (22) 

From the above analysis we deduce that the most singular behaviour that is 
supported is T-1• 

Step 2. Resonances 
We now look for an expansion about the leading-order term by substituting 

the resonance ansatz 

x = ao TC< + p Tc<+r, y = bo Ttl + q Ttl+r (23) 
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into the leading-order equations (I7) and retaining only those terms that are 
linear in p and q. The resonance equations for the different cases are listed 
below. 

Case 1 

Resonance equation 

( 
(r-l)(r- 2) + 3Ea6 + Fb6 

2Fao bo 
2Faobo ) (P) (0) 

(r-1)(r-2)+3Gb6+Fa6 q = ° . (24) 

This will hold for arbitrary p, q if the determinant of the matrix vanishes. 
Resonances occur at 

r=-l, 4, i±~{9+16(K+;;~;KA)}~. (25) 

The resonance at r=-l corresponds to the arbitrariness of to. For P-type we 
require three additional non-negative integer resonances. There are clearly 
two possibilities: 

r=-l, 0,3,4 

r=-l, 1,2,4 

K+A-1-KA 
KA-1 =0; 

K+A-1-KA I 
KA-1 =-z· 

(26) 

(27) 

The above cases are called main branches. There are other cases where there 
are only two additional non-negative integer resonances. These cases, called 
subsidiary branches (Lakshmanan and Sahadevan 1985), will not be discussed 
here. 

Case 2 

Resonance equation 

( r-1)(r-2)-6 ° )(P) (0) 
-2Faobo r2 +2r/3-r q = ° . (28) 

Resonances occur at 
r=O, -1,1-2/3,4. (29) 

Case 2(0 

/3 = ~ + ~(I + 8A) L (30) 

In order that we have a sufficient number of positive integer resonances we 
require 1-2/3 > 0, i.e. /3 < 1/2; however, this is not allowed in this case. 

Case 2(ii) 

a I I .! l-'=z-z(I+8A)2. (31) 
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Once again we require 1-2/3 to be a positive integer. We also require /3 > -1 to 
be consistent with our earlier analysis (see the remark at the end of step 1). 
There are two possibilities: 

r=-I, 0,1,4 

r=-I, 0, 2, 4 

/3 = 0, A = 0; 

R_ 1 ~_3 "'--"1' I\--g. 

(32) 

(33) 

We reject the case corresponding to A = 0 since we assumed at the outset that 
F was nonzero. 

Case 3 
The symmetry between x and y variables in leading-order terms allows us 

to deduce the result immediately from Case 2. In particular we have one 
possibility to consider analogous to Case 2(ii): 

r=-I, 0, 2,4 oc=-~, K=i. (34) 

Step 3. Arbitrary Constants 

We now derive recursion relations for the coefficients in the Laurent series 
by substituting 

00 

x = :L aj(t- toY+1X , 
j=O 

00 

y = :L bj(t - toy+/3 
j=O 

(35) 

into the full equations of motion (15) and equating coefficients of equal powers. 
In this way we verify whether the Laurent series has a sufficient number of 
arbitrary constants without the need to introduce logarithmic terms. After 
some algebra we find the following recursion relations: 

Case 1 

aO: 

Eaij +Fbij =-2, Faij +Gbij = -2. 

aI: 

( 2Eaij - 2 2Fao bo ) (a l ) (- 2Dao bo ) 
2Fao bo 2Gbij-2 bi = -Daij +Cbij . 

aj, bj U~ 2): 

[(j -l)(j - 2) + 3Eaij + Fbij]aj + [2Fao bo]bj = 
j-I j-I 

-Aaj-2- 2D :L aj-k-I bk-E:L aOaj-kak 
k=O k=I 

j-I 1 j-I 

-E:L :Laj-,a,-kak-F:L aObj-kbk 
1=1 k=O k-I 

j-I 1 

-F:L :Laj-,b,-kbk, 
1=1 k=O 

(36a, b) 

(37) 

(38a) 
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[2Fao bolaj + [(j-l)(j- 2) + 3Gb5 + Fa51bj = 

Case 2 
ao. bo: 

al. b1 : 

aj. bj U ~ 2): 

j-l j-l 
-Bbj-2-D :L aj-k-lak+C:L bj-k-l bk 

k=O k=O 
j-l j-l 1 

-F 2 aOaj-kbk-F 2 2 aj-Ial-kbk 
k=1 1=1 k=O 
j-l j-l 1 

-G:L bobj-kh-G 2 :Lbj-Ibl-kh. (38b) 
k=1 1=1 k=O 

2aO =-EaiL lbo = -Fa5 bo. (39a. b) 

( 3Ea5 0 )(a1) (-Fb5aO) 

2Fao bo Fa5-* bl = -Gb6 . 
(40) 

j-l j-l 1 

[(j-1)(j-2)+ 3Ea51aj = -Aaj-2- E :L aOaj-kak-E:L :Laj-Ial-kak 
k=1 1=1 k=O 

j-l 1 

-F:L :L aj-l-I bl-k bk, 
1=0 k=O 

(4la) 

- j-l 1 j-l 
[2Faobolaj+[(j-i)(j-i)+Fa51bj = -Bbj-2- G :L :L bj-l-Ibl-kbk-F:L aOaj-kbk 

Case 3 
ao. bo: 

al. b1 : 

aj. bj (j ~ 2): 

1=0 k=O k=1 
j-l 1 

-F:L :Laj-Ial-kh. 
1=1 k=O 

lao =-Faob5, 2bo =-Gb3· 

( - i- + Fb5 2Fao bo ) (a1 ) = ( - 2Dao bo - Ea6 ) . 

o 3Gb5 bl Cb5-Fa5 bo 

j-l j-l 1 

(4lb) 

(42a. b) 

(43) 

[(j-~)(j-i)+Fb51aj+[2Faobolbj = -Aaj-2- 2D :L aj-l-kh-E :L :Laj-l-Ial-kak 
k=O 1=0 k=O 

j-l j-l 1 

-F:L aobj-kh-F:L :Laj-Ibl-kbk, (44a) 
k=1 1=1 k=O 
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j-2 j-I j-I 1 

[(j-l)(j-2)+3Gba]bj = -Bbj-2-D ~ aj-2-kak+C ~ bj-I-kbk-F ~ ~aj-I-Ial-kbk 
k=O k=O 1=0 k=O 

j-I j-I 1 

-G ~ bObj-kbk-G ~ ~bj-Ibl-kbk- (44b) 
k=I 1=1 k=O 

The above recursion relations can be solved explicitly for the coefficients of 
the Laurent series_ In order to verify that there is an arbitrary coefficient at 
each of the resonances j = Y, we solve a number of matrix equations of the 
form 

( All(aj-I, bj-I) AI2(aj-I, bj-I») (aj ) = (BI(aj-I, bj-I») 

A2I(aj-l, bj-I) A22(aj-I, bj-I) bj B2(aj-I, bj-I) 

and find additional constraints on the parameters in order for the determinant 
of the matrix A to vanish at the resonances j = y_ We then have to check that 
these constraints are also satisfied by the full matrix equation at the resonance. 
If there is an arbitrary coefficient at each resonance, then the system is P-type 
for the corresponding parameters. The algebraic symbol manipulation package 
REDUCE facilitated the algebra at this step. The P-type cases are listed below: 

Case 1(i) 

(I) 

(II) 

Case 1(ii) 

(III) 

(IV) 

Case 2(ii) 

(V) 

(VI) 

Case 3(ii) 

(VII) 

(VIII) 

C=O, D=O, G=F=E, 

D=-C/3, G =F=E= 2C2/9B. 

B =A, D= C=O, G =F/3 =E, 

B = A, D = - C, G = F /3 = E. 

B=A/4, D=C=O, G=F/6=E/16, 

B=A/4, D=C=O, G=F/3=E/8. 

B=4A +4D2/3E, D=-C/8, G=8F/3=8E, 

B = 4A -6D2/3E -DC/3E, G = 8F/3 = 16E. 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

Thus we find that the generalised Hamiltonian considered here, equation (14), 
exhibits only four P-type cases (II, IV, VII, VIII) in addition to those special 
cases (I, III, V, VI) reported earlier by Lakshmanan and Sahadevan (1985) for 
the reduced Hamiltonian with no cubic terms (C = D = 0). 

4. Additional Conserved Quantities 

A Hamiltonian system with N degrees of freedom is integrable if and only 
if there exist N independent isolating integrals that are in involution (a set 
of functions is in involution if the Poisson bracket for all pairs vanishes). 
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In the case of the two-dimensional Hamiltonian we have been studying it is 
sufficient to explicitly establish the existence of just one additional constant 
of the motion. 

For each of the P-type cases identified above, equations (45)-(52), we have 
conducted a systematic search for invariants which are polynomial up to order 
four in the velocities. The most general form for such invariants is (Hietarinta 
1983, 1987; Lakshmanan and Sahadevan 1985): 

/ = Zl X4 +Z2X3Y+Z3X20 + Z4 Xy 3 +zs0 +Z6X2 +Z7Xy+zsy2 +Z9, (53) 

where the Zj are functions of (x, y) alone. It may be that invariants if they exist 
are of higher order than four in the velocities or are not simple polynomials 
in the velocities. The method for searching for integrals of the form (53), 
whose Poisson bracket 

{ H} 0/.. 0/.. 0/. 0/. 
/, =oxx+oyy+oxx+oyy (54) 

vanishes, is described in Lakshmanan and Sahadevan (1985). Using this method 
we established that all P-type cases identified above have non-trivial invariants 
(i.e. those that are functionally independent of the Hamiltonian) expressible 
in the form (53). The P-type cases and the non-trivial invariants obtained 
from this analysis are listed below. The cases with C = D = 0, which have been 
derived previously by Lakshmanan and Sahadevan (1985), are also listed here 
for completeness: 

(I) C=O, D=O, G=F=E, 

/ = (A -B)[Ex4 + Ex2y2 + 2Ax2 + 2X2] -E[xy_yx]2. (55) 

(II) D=-C/3, G=F=E=2C2/9B, 

/ = 4C2[xy-yxf +4AC2y2[y2 +x2]-12ABCy[x2 + 2y2] +9AB2[x2 +4y2] 

+ 12BCx[xy-yx] + 9B[x2 +4Ay2]. (56) 

(III) B = A, D = C = 0, G = F /3 = E, 

(IV) 

(V) 

(VI) 

/ = Exy[x2 + y2] +Axy+xy. 

B = A, D = - C, G = F /3 = E, 

/ = 3Exy[x2 + y2] + 3Axy + 3xy- Cx[x2 + 3y2]. 

B=A/4, D=C=O, G=F/6=E/16, 

I = Exr[2x2 +y2] +4Axy2 + 16Y[Yx-xy]. 

B=A/4, D=C=O, G=F/3=E/8, 

/ = E2[2x2y2 + y4f + 8AEy4[2x2 + y2] + 32E[y4(x2 + y2) 

+ 2xy2y (3xy-2yx)] + [4Ar + 16y2f. 

(57) 

(58) 

(59) 

(60) 
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(VII) 

(VIII) 

B = 4A + 4D2/3E, D = - C/8, G = 8F /3 = 8E, 

I = 81Es[x4 + 2x2y2]2 + 216DE4x4y[x2 + 2y2] + 324AE4 [X2 + 2y2] 

+ 324rx2[x2(x2 + y2) _ 2xy(2xy- 3yx)] + 324E3[Ax2 +x2]2 

+ 432DE3x2x[3yx-xy] + 432ADE3x2Y[3x2 +4y2]_72D2E3x6 

-192E2D3x2y[x2 + y2] + 144AD2E2x2[x2 + 12y2] + 1728DA2E2x2y 

+ 192ED(9AE-D2)x[xy-yx]-16ED4 X2[x2 + 12y 2]-192AED4x2y 

-64D2(9AE _D2)[Ax2 +x2] _ (61) 

B = 4A -6D2/3E-DC/3E, G = 8F/3 = 16E, 

1= 24E2x2Y[X2 +2y2]+ 12EDx2[X2 + 2y2] +CEx4 + 24AEx2y 

+ 2A(6D + C)x2 + 2(6D + C)x2 + 24EX[xy- yx]. (62) 

Thus, we have verified that each of the P-type cases listed in Section 3 is 
integrable by explicitly deriving additional constants of the motion for each 
case. 

5. Discussion 

Consider the following two physical cases of interest: 

(i) B = 3A, D = C/3, G = 3F = 9E. This corresponds to the four-particle 
chain with end particles held fixed and with linear (A # 0), quadratic 
(C # 0), and cubic (E # 0) interparticle forces, equation (12). Our analysis 
shows that if we restrict E # 0, F # 0, G # 0 then the system is not 
P-type in this case for any values of the parameters. Note, however, 
that the four-particle chain with the ends held fixed, and with linear 
and cubic interparticle forces (B = 3A, D = C = 0, G = 3F = 9E) is 'close' 
to the integrable case VII. The additional conserved quantity in case 
VII, equation (61) may be 'approximately' conserved in this physical 
system. 

(ii) B = A, D = C, G = F = E. This corresponds to the three-particle periodic 
chain with linear (A # 0), quadratic (C # 0), and cubic (E # 0) interparticle 
forces, equation (13). Our analysis shows that if we restrict E # 0, 
F # 0, G # 0 then the system can only be P-type in this case if D = C = o. 
Physically these parameter values correspond to the three-particle 
periodic chain with linear and cubic interparticle forces. In terms of 
the particle coordinates, the invariant in this case is given by 

I ex: Xl (X3 -X2) + X2(XI -X3) + X3(X2 -Xl). 

Note that the three-particle periodic chain with linear and quadratic interparticle 
forces (B = A, D = C. G = F = E = 0) is equivalent to the Henon-Heiles (1964) 
Hamiltonian (Lunsford and Ford 1972)-a paradigm model for non-integrability 
(Bountis et al. 1982; Chang et al. 1982) and chaos (Ford 1975) in a two degrees 
of freedom system. 
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Our analysis has also shown that of the four non Z-type cases found by 
Yoshida et al. (1988) for the Hamiltonian (14) with B = A, G = F = E, only two 
are P-type: D = C = 0; D = -C/3, E = 2C2/9A. We established the integrability of 
the two non Z-type, P-type cases by constructing non-trivial invariants that are 
polynomial up to order four in the velocities (equations 55 and 56). We have 
also conducted a systematic search for invariants which are polynomial up to 
order 4 in the velocities for the two non Z-type, non P-type cases: D = -C/2; 
D = C, E = 2C2/9A. This search ruled out the possibility of any non-trivial 
invariants of the form (53). Thus, the analysis here strongly suggests that 
whilst these cases are non Z-type they are also not integrable. 

The analysis above demonstrates the sensitivity of integrability properties 
(and therefore energy sharing) to the types of boundary conditions and 
the particular form of interatomic potential. Integrability properties are also 
sensitive to the number of degrees of freedom in the system (see e.g. the review 
by Ramani et al. 1989). To date there have been few algebraic results reported 
for systems with many degrees of freedom. Lakshmanan and Sahadevan 
(1985) have carried out a Painleve analysis for a system of N coupled quartic 
anharmonic oscillators. Yoshida (1989) has established sufficient conditions 
for non-integrability for N degrees of freedom Hamiltonian systems with a 
homogeneous potential. 

Acknowledgments 

This work was supported by the Australian Commonwealth Government 
National Research Fellowships Scheme-Queen Elizabeth II Award. The author 
thanks Professor J. Grindlay and Dr N. Joshi for a critical reading of the 
manuscript. 

References 
Ablowitz, M. j., Ramani, A., and Segur, H. (1980). J. Math. Phys. 21, 715. 
Ashcroft, N. W., and Mermin, N. D. (1976). 'Solid State Physics', p. 427 (Saunders College: 

Philadelphia). 
Bountis, T., Segur, H., and Vivaldi, F. (1982). Phys. Rev. A 25, 1257. 
Chang, Y. F., Tabor, M., and Weiss, J. (1982). J. Math. Phys. 23, 531. 
Ford, J. (1975). In 'Fundamental Problems in Statistical Mechanics', Vol. 3 (Ed. E. D. G. Cohen), 

p. 215 (North-Holland: Amsterdam). 
Henon, M., and Heiles, C. (1964). Astron. J. 69, 73. 
Hietarinta, J. (1983). Phys. Lett. A 96, 273. 
Hietarinta, j. (1987). Phys. Rep. 147, 87. 
Lakshmanan, M., and Sahadevan, R. (1985). Phys. Rev. A 31, 86l. 
Lunsford, G. H., and Ford, J. (1972). J. Math. Phys. 13, 700. 
Ramani, A., Dorizzi, B., and Grammaticos, B. (1982). Phys. Rev. Lett. 49, 1539. 
Ramani, A., Grammaticos, B., and Bountis, T. (1989). Phys. Rep. 180, 159. 
Steeb, W.-H., Klobe, M., Spieker, B. M., and Kunick, A. (1985). Found. Phys. 15, 637. 
Toda, M. (1981). 'Theory of Nonlinear Lattices' (Springer: Berlin). 
Yoshida, H. (1989). In 'Singular Behaviour and Nonlinear Dynamics' (Eds St. Pnevmatikos et 

al.), p. 114 (World Scientific: Singapore). 
Yoshida, H., Grammaticos, B., and Ramani, A. (1987). Acta Appl. Math. 8, 75. 
Yoshida, H., Ramani, A., and Grammaticos, B. (1988). Physica D 30, 151. 



Integrability of Low Particle-number Models 

Appendix: Table of Identities 

~ . (nTTS) . (nTTS') N + 1 ~ Sin N + 1 Sin N + 1 = -2- (jS,sI, 

N 
L exp [i TTy(n + i )/(N + 1)] = 
n=O 

{

+(N + 1) 
-(N+ 1) 

4r[1- exp (i TTY)] 

Y= 2q(N + 1) 
Y= 2q(N+ 1) 

Y # 2q(N + 1) 

q = 0, ±2, ±4, ... , 
q =±1, ±3, ... , 

Wr = 2Sin( 2(~~ 1) ). 

N L exp[i 2TTyn/N] = {+N Y = qN q = 0, ±1, ±2, ... , 
n=l ° Y # qN, 

N {+N y=qN q=0,±2,±4, ... , 
L exp[i 2TTy(n- i)/N] = -N Y = qN q = ±1, ±3, ... , 
n=l ° Y# qN. 
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