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Abstract 
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In two earlier papers (Brahde 1988, 1989) the atmospheric tide in Oslo (Norway) was studied 
using pressure data for 23 continuous years. In the present paper a similar study based on 
pressure data from Batavia (now Jakarta in Indonesia, latitude 6°08'S, longitude 106°45'E) is 
presented. The result is that the tidal wave caused by the lunisolar tide is represented by a 
one-day and a half-day oscillation with mean amplitudes of 0 ·11 and 0·33 mb respectively. 
The amplitude spectrum reveals amplitudes of up to 1 mb of dynamiC origin. The 'thermal' 
tide is also studied and the connection between the thermal and dynamic effects is discussed. 

1. The Data 

Copies of 'Observations made at the Royal Magnetical and Meteorological 
Observatory at Batavia' were obtained from the Nederlands Meteorologisch 
Institut and records of the air pressure for the 10 years 1913-22 were selected. 
The observations covered every hour local mean solar time, starting one hour 
after midnight. 

The dataset therefore comprises 87648 measured values, a number comparable 
to the 100800 values in Oslo. The scale of the measurements was mm Hg 
minus 750, and they were published in monthly blocks. We copied the data 
into a computer file exactly in this form and they were tested for unavoidable 
mistakes. We prefer to start at midnight, and therefore a value for Oh January 
1, 1913 was extrapolated. The data were transformed to the millibar scale 
and rewritten in annual blocks. While the pressure at the northern station 
Oslo is mainly dominated by the weather (see for instance Brahde 1988, Part 
I, Fig. 13), a regular daily variation is characteristic for the tropical station 
Batavia. 

2. Comparison with the Tidal Acceleration 

An example of the data is shown in the upper part of Fig. 1. The regular 
24-hourly and 12-hourly variation is characteristic. In the lower part we show 
the vertical component of the tidal acceleration (Part I, pp. 808-9) computed 

* Part I, Aust. J. Phys., 1988,41, 807-31; Part II, Aust. ]. Phys., 1989,42, 439-50. 
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Fig. 1. Upper graph gives the observed pressure in Batavia during September 1919. The 
lower graph gives the computed values of the vertical component of the tidal acceleration 
(sign changed). 

for the same times. The sign has been changes as before, and therefore 
the maxima of the acceleration correspond to the minima of the curve. This 
means that the curve shows the variation in gravity. 

As a first attempt the correlation coefficient between the two series was 
formed. We selected data for each year, computed the coefficient, formed the 
mean and then found the standard deviation. We found a correlation coefficient 
of -0 ·107±0· 009. However, if the pressure series is displaced relative to the 



Lunisolar Atmospheric Tides. III 89 

series of the acceleration, the result is different. When we compared the latter 
with the pressure measured one hour later it was 0 ·004 ±O ·012, two hours later 
it became 0·113±0·016, three hours later, 0·191±0·021, and a displacement 
of 4 hours resulted in a correlation coefficient of O· 216±0 . 025. This is a 
maximum value, as a further displacement resulted in values diminishing to 
zero for 7 h, to -0·219 for 10 h, then increasing to zero for 13 h and to a 
maximum of 0·215 for 16 h displacement. This shows that in spite of the 
obvious daily variation indicating a solar origin, there is a connection between 
the tidal acceleration and the pressure wave. 

3. The Method 

The method used in Part II was applied in order to find the dynamic 
component of the variation. Some changes had to be made because the 
present data were measured every hour instead of every 2 hours as in Oslo. 
Another difference is the shape of the curve of the vertical component. In 
Part I, Fig. 2 we noticed that the daily variation dominates, but for Batavia 
the half-day variation is by far the most conspicuous. This is because Batavia 
is a tropical station, only 6° south of the equator. In Part I it was emphasised 
that a station exactly on the equator would exhibit only the half-day variation. 
Therefore another change was made in the method: Instead of a comparison 
between the gradient of the pressure and the 'magnitude' of the acceleration 
defined by the difference between the primary maximum and the following 
minimum, we introduced two 'magnitudes', a primary and a secondary. Tidal 
noon was found as before to be the moment of primary maximum (the deepest 
minimum of the curve). Now the gradient during a tidal day was compared 
with the primary magnitude if it took place after tidal noon, and the gradients 
before tidal noon were compared with the secondary magnitude of the tidal 
day before. 

With these changes the investigation was carried out as before. The vertical 
component of the combined lunar and solar tide was computed every half-hour. 
Maxima and minima were determined and the primary and secondary maxima 
were separated (minima of the lower curve in Fig. 1) (see also Part II p. 441). 
In Oslo at 60° northern latitude the primary maximum occurs during the day 
when the moon has a northern declination and during the night when it is 
south of the equator. In Batavia with a southern latitude, this is reversed. 

The gradient of the pressure was determined as described in Part I, pp. 
810-11, but now with 51 points in order to cover two days as before. (With 
one-hourly data this corresponds to the 25 values used in Parts I and II.) 
Similarly the noise was determined as before, and it was found that a noise 
limit of 0·20 mb was suitable. A small noise limit results in a smaller number 
of data points in the analysis, and therefore it was not chosen unnecessarily 
small. As a criterion we used the standard deviation of the gradient at each 
tidal hour. With a small number of data participating in the statistics the value 
varied appreciably from one tidal hour to the next, but with (T = 0·20 or 0·25 
the values became comparable. We formed the mean, and Table 1 shows the 
relation between the noise limit (T, the mean error of the gradient, and the 
number of data points participating. In the last row the noise limit 100 mb 
means that all data are included. The number 3513 in this case represents the 
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number of tidal days in the data. We would expect a total of 3652/1·0350502 
or 3528 tidal days, but actually we lose some data when the moon crosses 
the equator and the shift between primary and secondary maxima takes place. 
According to Table 1 the smallest errors occur with a noise limit of 0·25 mb, 
but we preferred to use a value O· 20 mb which includes 96% of the data. 
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Fig. 2. (a) Mean pressure gradient D'(v) as a function of tidal phase. (b) Variation of mean 
dynamic pressure D(v) around T.N., showing its harmonic components DI and Dn. The circles 
represent the mean of the integrated values of the series D(t) and the crosses show values 
with an improved classical method. 
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4. Dynamic Pressure Variation 

In Fig. 2a we show the mean gradient of the pressure distributed through a 
tidal day. This figure corresponds to Fig. 4a in Part I and to the upper graphs 
of Fig. 1 in Part II. We notice that the amplitude is approximately doubled with 
the Batavia data, and that the half-day variation is prominent. The regularity 
of the Batavia data is also reflected in the much smaller error bars in Fig. 2a. 

The Fourier method described in Part I, pp. 818-19 is used to integrate 
D'(v) to D(v). In order to find the period we studied the time intervals 
between adjacent T.N. values through the 10 years. If we exclude intervals 
of length around 12 and 36 hours occurring when primary and secondary 
maxima change pOSition, we get a mean value of 1·0351, or a mean lunar 
day. However, by testing varying values for the period, it became evident 
that a scale of mean solar hours around tidal noon actually diminishes the 
oscillations of the higher modes 3-12. We found a one-day and a half-day 
oscillation with amplitudes 0 ·107 and 0·328 mb respectively. In Fig. 2b the 
resulting function D(v) is shown by the solid curve. The dashed curves show 
the one-day and the half-day modes. The sum of the higher harmonics gives 
variations of ±O· 024 mb around a mean value 0·012 mb. Therefore the mean 
dynamic oscillation D(v) is well represented by the sum of the one-day and 
the half-day modes. We emphasise that in the determination of this curve we 
have used only the gradients determined from the data, in 13 steps of one 
hour on both sides of tidal noon. 

5. The Series D(t) 

In order to find the dynamical pressure variation through the 10 years we 
used the coefficient Ax in the regression equation Y = Ax X, where X is the 
magnitude of the acceleration, primary or secondary, and Y is the gradient 
of the pressure. The coefficient Ax has a minimum of -0 ·175 at T.N. -11 h, a 
maximum of 0·165 at T.N.-5 h, again a minimum of -0·143 at T.N.+l h , and 
a second maximum of 0 ·150 at T.N.+7h . The mean value of the 10 years 
was found for every hour during the tidal day. In addition the correlation 
coefficient between the 'magnitudes', primary or secondary, and the gradient 
was found. 

It has a shape similar to Ax, but it varies between the limits -0·745 and 
+0·737 with a standard deviation of 0·023. It was computed in order to 
show the strong connection between the 'magnitudes' of the acceleration and 
the gradient of the atmospheric pressure. [This is important as the gradients 
were based solely on the pressure data arranged according to tidal hour, 
independent of the values of the acceleration. Therefore the numerically high 
values of the correlation coefficient, depending on the tidal phase, prove that 
the gradient D'(v) has a dynamic cause.] 

We selected the time for each tidal noon in the list, formed 25 moments 
from T.N.-12h to T.N.+12h and computed a series D'(t) by means of the 
regression coefficient Ax and the primary or secondary 'magnitude' of the 
acceleration. In accordance with the determination of the coefficient, we used, 
the primary magnitude if the gradient was obtained from T.N. to T.N.+12h , 

and the secondary magnitude of the previous tidal day if it was obtained 
before T.N. Since we wanted values at every mean solar hour, we found this 
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Table 2. Spectrum of the dynamic variation 2A for Oslo 1957-79 

Numbers in italics are yearly maximum values 

Year 2A(mb) 
0·05 0·15 0·25 0·35 0·45 0·55 0·65 0·75 

1957 10 25 84 119 80 34 1 0 
1958 14 25 86 121 77 30 0 0 
1959 10 28 94 117 77 25 2 0 
1960 10 31 105 102 77 26 3 0 
1961 7 36 87 110 84 28 0 
1962 11 27 84 105 87 41 0 
1963 8 27 75 105 93 41 5 0 
1964 7 22 73 105 90 44 14 0 
1965 5 22 68 101 92 51 15 0 
1966 6 22 66 82 87 68 21 1 
1967 6 20 61 77 96 73 20 0 
1968 9 15 62 83 92 66 25 3 
1969 6 16 60 85 88 70 25 4 
1970 5 26 52 82 94 66 26 2 
1971 7 23 55 78 102 69 17 0 
1972 9 20 60 101 89 56 19 1 
1973 9 19 69 100 96 44 16 0 
1974 9 26 68 112 89 39 11 0 
1975 9 31 78 111 84 42 0 0 
1976 10 28 88 121 81 25 2 0 
1977 15 25 94 114 75 26 2 0 
1978 11 29 96 113 77 20 5 0 
1979 11 28 98 115 74 27 0 0 
Sum 204 571 1763 2359 1981 1011 231 11 

Table 3. Spectrum of the dynamic variation 2A for Batavia 1913-22 

Numbers in italics are yearly maximum values 

Year 2A(mb) 
0·10 0·30 0·50 0·70 0·90 1·10 1·30 1·50 1· 70 1·90 

1913 2 4 45 49 54 83 67 30 14 4 
1914 3 5 41 52 59 69 73 29 19 2 
1915 3 6 31 58 57 69 63 53 11 0 
1916 3 9 28 56 54 72 67 50 11 0 
1917 2 2 37 55 57 65 80 30 18 5 
1918 3 0 37 56 59 62 80 36 17 3 
1919 3 0 27 58 58 55 74 57 19 0 
1920 3 2 24 57 57 59 74 59 20 0 
1921 1 23 58 59 61 71 54 20 
1922 2 0 29 53 60 59 83 39 21 4 

Sum 25 29 322 552 574 654 732 437 170 19 

by means of interpolation. Finally, the amended series D'(t) was integrated to 
give the dynamic pressure variation D(t), where t is an index marking every 
hour of local mean solar time (see Part I, p. 815). As mentioned above, we 
loose values sometimes when the moon crosses the equator and the primary 
and secondary maxima change position. In order to include these intervals, 
the missing values of D'(t) were set equal to zero. 

In order to compare the result with the values of D(Y) shown in Fig. 2b, 
we selected the moments of tidal noon, found the nearest mean solar hour, 
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grouped the series D(t) into 25 steps around this hour and formed the mean 
values. The circles in Fig. 2b demonstrate the result, which is a test on the 
two different methods. The amplitude has become somewhat higher than in 
curve D(v), but the maxima and minima are found in the same positions. 

With the regular data we might ask whether it is possible to simplify the 
method. Instead of searching for the gradients of the pressure we might 
use the pressure itself and arrange the values in groups for each tidal hour. 
The mean values found by this method are shown by crosses in Fig. 2b. 
In the process the selection of data was restricted by the noise which was 
determined as before from the gradients. This procedure would be an improved 
Chapman-Miller method. First, the use of mean lunar time was abandoned 
and replaced by our tidal days defined by means of the actual pOSition of the 
moon and the sun and, second, the noise was defined differently. 

We notice that the dynamic pressure wave has a range of 0·75 mb as a 
mean during the tidal day. Haurwitz and Cowley (1969) in Table 1 reported 
for Batavia a dynamic amplitude of 0·082 mb. Again we have found a value 
considerably higher with our new method. 
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Fig. 3. Amplitude spectra of the dynamic oscillation D(t): (a) Corrected result for Oslo (see 
Part II, p. 444); (b) Result for Batavia. 

6. Spectrum of the Dynamic Variation 

In Part II, Table 2, p. 443 and Fig. 3, p. 444 the amplitude spectrum of 
the complete daily pressure oscillation in Oslo is shown. Unfortunately, an 
error had been overlooked in the program, and so the correct table and figure 
for Oslo are presented together with a similar table and figure based on the 
Batavia data. Tables 2 and 3 show the spectra of the differences 2A between 
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daily maximum and minimum values of the series D(t) for Oslo and Batavia 
respectively. In Fig. 3 we have combined the amplitude spectra for Oslo 
(corrected) and Batavia. In Oslo the mean daily variation has an amplitude of 
o ·lS mb, whereas in Batavia it has a mean of 0·52 mb. The peak values in 
Table 2 show that in Oslo the most frequent value of 2A is O· 35mb from 1957 
to 1965, increasing to 0·45 in 1966-71 and falling back to 0·35 in 1972-9. 
This is in agreement with the effect of the position of the node of the lunar 
orbit. In March 1969 the ascending node coincided with the vernal equinox 
and the monthly range of the moon's declination was ±2So. This means that 
the term cos2z in formula (2) of Part I varied between 0·72 and 0 during a 
lunar day when the declination had the extreme values. In 1960 and again in 
1975 the node coincided with the autumnal equinox, the declination varied 
between ±lSO and the term varied between 0·55 and 0·05. Consequently 
Table 2 shows an expected variation with the nodal cycle of IS· 613 years. 

A similar result could be expected for Batavia. The longitude of the node 
was zero in May 1913 and the range of the term was greatest that year, 
diminishing to a minimum in 1922. However, Table 3 shows an increase in 
2A from 1913 to 1922. Since a smaller noise limit might alter the result 
the procedure was repeated from the outset with (T = 0 . 15 and O· 10. The 
unexpected increase was removed, but the most frequent values were not 
decreasing from 1913 to 1922. 

However, we have seen that the correlation coefficient betweeen the tidal 
acceleration and the gradient of the pressure yields values between -0·745 
and o· 737 during the tidal day. Therefore, it is inevitable that the position of 
the lunar node must be important. A period of 10 years covers only half the 
nodal period and this is obviously not enough to show the effect. In Section 
10 we also see that the dynamic and the thermal waves are more entangled 
in Batavia than in Oslo. 

7. Importance of the Noise Limit 

In Part II, Fig. 2 we demonstrated the resulting gradient of the pressure 
during the tidal day when the noise limit was omitted, or what is equivalent, 
set to 100 mb. The same procedure was followed with the Batavia data, and 
the result is shown in Fig. 4. Compared with Fig. 2a, the general form of 
the curve is similar, but inclusion of the remaining 4% of the data causes 
the errors to increase, in particlular for the values after tidal noon, exactly 
as seen for Oslo (Part II, Fig. 2). This could be explained as an effect of the 
tide on the weather but, as we shall see, it may just be the occurrence of 
turbulent weather during afternoon and evening. 

8. 'Thermal' Oscillation of the Pressure 

The gradients of the pressure were found as before, but this time they 
were grouped according to the hour of the day. At first they were grouped 
around local mean noon, but later this was improved insofar as we added 
the equation of time to obtain true solar hours and found the value of the 
gradient precisely as we found values around tidal noon in the search for the 
dynamic effect. The difference between the use of mean or true solar time 
was small, but we prefer to use the latter in the following. 
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Fig. 4. Mean values of the gradient of the pressure 15'(v) when the noise test is omitted. 

The method described in Part I, pp. 819-21 was pursued and monthly means 
of the daily variation of the series T(t) are shown in Table 4. The last column 
shows the yearly mean. This table can be compared with v. Hann (1919, p. 
477) where Batavia data for the years 1866-1905 were presented. We remark 
that v. Hann's result reveals a higher maximum at 9 h (+0·23 mb) and a lower 
minimum at 15 h (-0·28 mb). Apart from this the two results agree very well. 

Since our method was based on the determination of the function Y'(v) by a 
procedure similar to the determination of the dynamic gradient O(v), we could 
also integrate Y'(v) to find Y(v) by means of the same Fourier method. This 
resulted in a 24-hour period with mean amplitude 0·843 mb and a 12-hour 
period with amplitude 1· 209 mb. 

In Fig. 5 we show the resulting 'thermal' variation with the solid curve 
and the 24- and 12-hour components with dashed lines. The sum of the 
higher harmonics results in variations of ±O· 038 mb around a mean value 
of -0·007 mb. However, we also used the simpler method of grouping the 
actual pressure data according to the hour of the day. Local mean solar time 
was used, and the noise limitation was omitted. Now, the yearly mean of 
the daily variation shown by the crosses and dashed curve in Fig. 6 agrees 
to 0·02 mb with the results of v. Hann. This means that the simple method 
of summing the pressure values directly in groups for each hour of the day, 
without regard to noise, may lead to a somewhat enlarged amplitude. 

For the series D(t) we realised that it was possible to use a modified method 
where the gradients were only used to determine noise, and the pressure was 
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Fig. 5. Variation of mean 'thermal' pressure T(Y) around true noon, showing its harmonic 
components 1'1 and Tn. 

J3 
.s 

2.0 

1.0 

~ 

)(, f(t) 
I , 

X X 
I \ 

I \ 
I \ 

I \ 

1< ~ 
\ 
\ 
\ 

X-~ 
I \ 

I , 
X X 
I 

I 
I 

I 

.~ 01 '~'? '('.~. 1"-cu I \ I 
~ X \ I 

~ '11. I '. X 

·1.0 

-2.0 

I 
I 

I 
I 

\ I \ X 
\ I 
\ I 
\ I 
X I 

\ I 
\ X 
\ I 
\ I 

Noon X'~X 
o 6 12 18 24h 

-1'2 -~ T.~. +~ +1'2h 

Fig. 6. Circles and the solid curve show the dynamic variation around tidal noon, determined 
directly from the pressure values without noise limitation. Crosses and the dashed curve 
show the 'thermal' variation during the mean solar day, also determined directly from 
pressure values without noise limit. 
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Fig. 7. Distribution of tidal noon (T.N.) according to time of day. 

found directly from the data. Now this has been repeated, but without the 
noise limitation. In Fig. 6 the result is shown by the circles and solid curve. 

9. Separation of the Dynamic and 'Thermal' Variation 

In Fig. 4 we saw that inclusion of all data without noise limitation might 
be interpreted as turbulent pressure prevailing during the 'tidal afternoon and 
evening'. However, if we arrange the occurrence of tidal noon according to 
the times of day, we find a distribution with two maxima, at midnight and 
midday as shown in Fig. 7. If we also account for the 'magnitudes' of the 
acceleration the clustering around midnight and midday becomes still more 
prominent (cf. spring tide). Therefore, the result shown in Fig. 4 is probably 
due to the effect of the inclusion of more turbulent weather in the afternoon 
and evening. 

10. Statistical Tests 

In Parts I (p. 816) and II (p. 447) we introduced statistical tests. Similar 
tests were made on the Batavia result. With O(t) as the series of the observed 
pressure we produced a series O(t)-D(t) and used this series instead of O(t) 
as the data in the search for new values of D'(v) , assuming that we would 
find a statistically zero result. This was not the case, in contrast to the 
analogous tests for Oslo, shown in Part II, Table 4. The same happened when 
we introduced a dataset O(t)-T(t) in the search for the 'thermal' gradient T'(v). 

We also tried the use of datasets of the form O(t)-aT(t)-bD(t) in an attempt 
to find values of a and b which would reduce the oscillations of new values 
of D'(v) and T'(v) below the standard deviation. The values of the gradients 
were reduced considerably with a = 0·7, b = 0·3 or a = 0·9, b = 0·9 in the two 
cases, but were not below the standard deviation. The explanation may be 
that in Batavia the two effects are more entangled. 

However, it was possible to perform an entirely independent test on the 
importance of the series D(t). The difference between the maximum and the 
minimum pressure for each mean solar day was found and the values sorted 
according to the lunar phase. Fig. 8 shows the result. The daily variation 
of the pressure has the smallest values 2-3 days after the new moon and 
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full moon, and the largest values 2-3 days after the first and third quarter. 
The uncertainty marked by the error bars is of course fairly high and could 
only be reduced by means of a longer data series. But as we have seen, the 
pressure variation during a tidal day depends on the 'magnitude' of the tidal 
acceleration which is largest around new and full moon. In Fig. 8 we notice 
an increase of the amplitudes from the new and full phase to the quarter 
phases, which may be interpreted as an augmenting dynamic wave. 

11. The Moon and the Weather 

In Part I we raised this question and referred to Adderly and Bowen (1962) 
and Bradley et al. (1962). Recently Currie and O'Brien (1988) have shown that 
records of the yearly total precipitation in the north-eastern United States are 
highly correlated with the tidal maxima of the 18·6 year lunar tide, and also 
with the sunspot cycle. 

12. Conclusions 

We have shown that the values of the dynamic atmospheric tides inherent 
in the pressure records from Oslo and Batavia reach values many times higher 
than the amplitudes referred to by Haurwitz and Cowley (1969). In records 
from Japan, Currie (1982) has found amplitudes between 0·1 and 0·3 mb. 
Currie (1987) gave samples worldwide but erred by reducing to unit variance, 
thus losing units. Currie (personal communication, 1990) reprocessed all the 
data and found that amplitudes of the 18·6 year term reach as high as 0·5 mb 
in parts of South America and the USSR. Currie and O'Brien (1988, p. 274) also 
discussed the physical mechanism in terms of Doodson's (1922) development 
of the tidal potential. They quoted the ratio MN/M2 = 0·036, where MN is 
Doodson's constant for the longitude of the lunar node and M2 is the lunar 
half-day constant. However, with reference to Haurwitz and Cowley's value of 
o . 08 mb for M2 in Indonesia, they concluded that the MN term in pressure is 
an order of magnitude larger than that for M2. 

It is true that Doodson's method, and the more precise revision by Bartels 
(1957), can be used to compute the tidal acceleration if all terms are included. 
However, as we have shown, this does not support the idea of using mean 
lunar time to search for the tidal wave. 

Our method differs from Doodson's mainly because we do not develop 
series based primarily on the mean lunar day. The moon and the sun do 
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not circle the earth in the plane of the equator at constant distances. We 
have treated the tidal forces as quasiperiodic entities and developed a method 
where the principal variable cos2 Z, with z the zenith distance, is made use 
of in the study. The extreme value of the moon's declination varies between 
±IB 0 and ±2B 0 with the nodal cycle of IB· 613 years, and it is not surprising 
that this cycle must be important. 

In Parts I and II we used the word 'thermal' in connection with the oscillation 
which is connected with the time of day, but part of which must of course be 
caused by the exclusive solar dynamic tide. The argument that this may be 
the cause of the semi-diurnal variation has formerly been dismissed by the 
smallness of the hitherto discovered dynamic variation, of which only about 
one-third is caused by the sun (see Chapman andLindzen 1970, pp. 10-11). 

The explanation so far has been a possible free resonance period of the 
atmosphere of 12 hours. Now we have seen that the dynamic variation attains 
much higher values than that determined by the old method. We have also 
demonstrated that the quasiperiodic tidal noon has a tendency to cluster 
around midnight and midday. Therefore, it is possible that the 'thermal' 
12-hour variation is induced by the complete lunisolar dynamic tide. 
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