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We show that in the quenched approximation, lattice QCD calculations miss important 
corrections to the mass of hadrons. For example, we argue that the nucleon mass is 
overestimated by up to 30% while the nucleon-delta mass splitting is underestimated by a 
similar amount. As the quenched approximation is relaxed, the quark mass decreased and 
the lattice size increased, these errors should go away. A systematic method of monitoring 
the size of the residual error is suggested. 

1. Introduction 

It is a pleasure to offer this contribution as part of the 60th birthday 
celebration for Ian McCarthy. My own research in physics began under Ian's 
guidance at Flinders University more than twenty years ago. As a second-year 
student I learnt with considerable excitement about the (p, 2p) reaction, off-shell 
effects and nuclear structure (McCarthy and Thomas 1969). At that time 
these were very difficult experiments and before long Ian, together with Eric 
Weigold, saw the much riper opportunities to exploit knock-out reactions in 
atomic physics [the (e,2e) process; Weigold 1991, present issue p. 277]. 

Only much later did it become possible, at intermediate energy laboratories 
like TRIUMF and IUCF, to readily explore the (p,2p) process. In the light of 
that recent experience it is clear that many of Ian's ideas were a decade or 
more ahead of their time. A similar observation could be made about his 
much less formal comments (in the late 60s) concerning the possibility of 
making 2:-hypernuclei. These were only found at the beginning of the 1980s 
(at CERN), and the excitement and mystery surrounding their narrowness is 
by now well documented (Bertini 1989). 

My own particular contribution to this Festschrift will deal with the necessity 
to take chiral symmetry seriously when judging the results of lattice QCD 
calculations against data. This is a topic fairly far removed from Ian's own 
areas of research. Nevertheless, there is a very real sense in which my 
contribution on this topic has its roots in the excitement and enthusiasm for 
physics that he was able to communicate over twenty years ago. Undoubtedly 
that enthusiasm is still being shared with each new generation of students. 

* Dedicated to Professor Ian McCarthy on the occasion of his sixtieth birthday. 
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The plan of the article is as follows. We first remind the reader of the 
ultimate aims and present limitations of lattice QeD. This is fOllowed by a 
reminder of the significance of chiral symmetry and a brief review of how 
it is commonly implemented. This leads us naturally to the conclusion that 
lattice calculations in the quenched approximation should not be compared 
directly with experimental masses, but rather with 'bare masses' from which 
certain pion self-energy corrections have been removed. Finally we suggest 
a systematic scheme for undoing these corrections as the lattice calculations 
improve in future years. 

2. Lattice QeD in the Quenched Approximation 

There is no serious theoretical model of the strong interaction other than 
QeD. Furthermore most of the identified mass of the universe is tied up in 
nucleons. It is therefore very important to see if one can derive the mass 
of the nucleon from QeD. At present the only practical suggestion for doing 
so without making (physically motivated) simplifying assumptions is lattice 
QeD (Wilson 1975, 1977). As there are many excellent reviews of the lattice 
approach we need say very little here. The major problem is one of a lack of 
computing power. Indeed it may yet be a decade or two before it is possible 
to accurately compute the mass of the nucleon (Petronzio 1987; Martinelli 
1990). 

At the present time there seems to be a consensus that calculations of 
hadronic masses, form factors and even low moments of structure functions are 
fairly reliable in the so-called 'quenched approximation'. In this approximation, 
it is possible to work with a spatial lattice of order 163 and a lattice spacing 
as small as O· 1 fm. That is, the hadron is necessarily contained in a cubic 
box about 3 fm on a side. Modulo the long-range pion tail, which will be 
discussed at length below, this could be expected to be sufficient. However, 
we shall suggest that the pion tail cannot be ignored. 

It is perhaps worth while, in view of what follows, to explain a little of 
the physical meaning of quenching. Mathematically it is defined by setting 
the fermion determinant to unity, or excluding all fermion loops. (Gluon 
exchange, including self-coupling and loops is nevertheless treated to all 
orders.) This means that once three quarks (in the case of a baryon) are 
initially placed on the lattice we can follow their unbroken propagator lines 
until they are removed in the last time slice. It would be tempting to equate 
this with a valence quark picture in familiar hadronic models, but this would 
be misleading. Fig. 1 illustrates schematically a typical path on the lattice (in 
quenched approximation) which goes beyond the valence approximation. (In 
Fig. lone should understand that all possible gluon exchanges are included.) 

It is particularly relevant to what follows that if one were to calculate the 
axial form factor of the nucleon it would have an induced pseudoscalar piece, 
9p(q2). Furthermore, to the extent that an interacting q - q pair can represent 
a pion, through processes like that shown in Fig. 1, 9p(q2) may have a pion 
pole. But, and this is crucial, processes such as that shown in Fig. 2, which 
would include a pion loop, are definitely excluded by quenching. 

To conclude this section we quote some recent results for hadron masses 
in state-of-the-art, quenched lattice QeD (Petronzio 1987; Negele 1990). By 
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Fig. 1. One possible path allowed even in the quenched approxi­
mation. (All possible gluon exchanges are included.) The extension 
downwards would give rise to an induced pseudoscalar form factor. 

o 
Fig. 2. A loop correction to the nucleon mass which is forbidden in 
the quenched approximation. It is expected to be well approximated 
by the processes shown in Figs 3a and 3c below. 
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using mTT and mp to set the lattice spacing and the light quark mass, one 
can predict mN and m,1. The result is that mN always comes out too high 
(of order 1·2 GeV) while the N-.1 splitting is always too small (of order 0·2 
GeV). For a first principles calculation agreement with data at the level of 30% 
is already very impressive. On the other hand, one would like to do better. 

3. Chiral Symmetry-the Role of the Pion 

The success of the PCAC hypothesis in low energy physics is very well 
known (Pagels 1975). From the point of view of QCD the reason for this 
success is to be found in the small values of the u and d running quark 
masses (at a typical hadronic scale). In the limit where m rm = (mu + md)/2] 
vanishes the axial current would be exactly conserved (ojJAr = 0). Then it is 
straightforward to show that the induced pseudoscalar piece of Ar must have 
a zero mass pole corresponding to the exchange of a massless, Goldstone 
pion. As we discussed earlier, even in the quenched approximation (Jp(q2) 

should have a pion pole, and even though one cannot realistically hope to 
calculate at exactly m = 0, for m of order 10-20 MeV one could expect to see 
its effect. One very impressive method for extracting rigorous results from 
QCD has been developed by Gasser and Leutwyler (1982). The idea is to use 



176 A. W. Thomas 

the small values of mu and md (and to a lesser extent ms) to make rigorous 
expansions for physical hadron masses about the chiral-SU(3) limit. (In this 
limit, for example, the whole nucleon octet would be degenerate.) It is found 
that the coupling of the baryons to the pseudo-Goldstone bosons gives rise 
to non-analytic corrections to properties like the mass of the nucleon and 
the nucleon (T-term. Relying on the mathematics for guidance, Gasser and 
Leutwyler argued that it makes sense to keep only the leading non-analytic 
corrections (LNAC) to the chiral limit-that is terms involving ml/2 and .enm. 
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Fig. 3. (a) and (b). Contributions to the Nand .1 self-energy allowed 
under the LNAC philosophy; (c) and (d) additional contributions which 
need to be included in realistic calculations. 

For the nucleon and delta the LNAC are shown in Figs 3a and 3b. At 
the hadronic level they involve pionic loops, but they clearly correspond to 
precisely the sort of fermion loops that we saw earlier are excluded from a 
quenched lattice calculation. In order to calculate these loops one needs only 
the NNrr and L1L1rr coupling constants and form factors (i.e. high momentum 
cut-offs). The NNrr coupling constant is of course known very accurately, 
while the L1L1rr coupling can reasonably accurately be inferred from it using 
SU(6) symmetry. Symmetry considerations also suggest that the two form 
factors should be the same. Gasser and Leutwyler took a dipole of mass 0·4 
to 0·7 GeV, in order that the pion loop correction should not be too large. 
In fact, there is now very good evidence that this cut-off mass should be 
more like 1 GeV (or 0·73 GeV in a monopole form factor) with an error of 
perhaps 10% (Thomas and Holinde 1989; Holinde and Thomas 1990; Coon 
and Scadron 1981). Using this preferred value would dramatically increase 
the pionic correction to the chiral limit. 

Our major concern is not with the correction to the chiral limit but with 
regard to lattice calculations the effect of ignoring pion loops altogether. As 
we have seen this is the situation in the quenched approximation. Using 
the same form factors for the NNrr and L1L1rr vertices and the SU(6) ratio 
of coupling constants, one easily finds that the pion loops shown in Fig. 3 
lower the Nand L1 masses by the same amount-between 100 and 200 MeV 
depending on the form factor used. In view of the earlier discussion of the 
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results of quenched lattice QCD, it is clear that this is already a step in the 
right direction! 

4. Beyond LNAC 

Our discussion thus far has emphasised that chiral symmetry is a vital 
property of QCD. No quark model can be considered correct if the pion loop 
corrections demanded by chiral symmetry are omitted. This is also true of 
the quenched approximation to lattice QCD. We have already seen that the 
loop corrections to mN and mLl which give rise to the leading non-analytic 
behaviour in m are numerically significant. In this section we ask whether it 
is sufficient to stop at LNAC. 

Over the last decade a great deal of experience has been accumulated 
with so-called chiral quark models, in which chiral symmetry is restored to 
a quark model by surrounding it with a pion cloud (Jaffe 1982; Brown and 
Rho 1979; Theberge et al. 1980). For example, in the cloudy bag model (CBM) 
a perturbative pion could restore the chiral symmetry lost when quarks are 
confined in the MIT bag. Such a model sacrifices some of the mathematical 
rigor of the LNAC approach. In compensation it allows one to make predictions 
for a wide range of phenomena without additional parameters (Thomas 1984; 
Miller 1984). It also provides a sensible physical picture of hadron structure. 

Within the CBM pion loop corrections arise very naturally. However, unlike 
the LNAC approach, some additional contributions are expected to be important. 
For the Nand .£l these are shown in Figs 3c and 3d. They are the processes 
N- .£lrr -N and .£l- Nrr - .£l respectively. They enter on the same footing as 
N- Nrr -N and .£l - .£lrr - .£l because none of the valence quarks is excited 
in the intermediate states (Theberge et al. 1980). Simply on the basis of the 
uncertainty prinCiple we expect these processes to dominate the long-range 
structure of the Nand .£l. If further evidence were needed we recall the crucial 
role of the .£l in the Adler-Weisberger relation for gAo 

The importance of the pion tail in understanding the neutron charge form 
factor (through the virtual process n - prr- - n) has been stressed many 
times (e.g. Thomas 1984), although the lesson is occasionally forgotten. The 
important role of the .£l in calculations of the nucleon magnetic moments 
(Theberge and Thomas 1983) and the renormalised rrN coupling constant has 
also been detailed elsewhere (Dodd et al. 1981; Thomas 1984). With respect 
to the mass problem the effect of including the .£l for the nucleon, and N for 
the .£l is dramatic. First the process N- .£lrr -N gives as big a contribution as 
N- Nrr -N. Thus the attractive nucleon self-energy is doubled. Even more 
dramatic, the process .£l - Nrr - .£l involves an open channel and hence, for 
the real part of the self-energy, a principal value integral. This is much 
smaller than the additional contribution to the nucleon self-energy, and as a 
consequence the mass of the N moves down with respect to the .£l (Theberge 
et al. 1980, 1982). 

Depending on the form factors used the total N self-energy correction should 
be between -300 MeV and -400 MeV, while the N-.£l splitting from this source 
is of order 100 MeV. Since, as we have seen, these corrections are entirely 
absent for quenched lattice QCD, such calculations should be compared not 
with the experimental masses but rather with masses corrected for the pion 
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loops. It is therefore (to say the least) encouraging that quenched lattice QeD 
tends to give mN of order 1·2 to 1·3 GeV and to underestimate the N-Ll 
splitting. 

s. Bevond the Quenched Approximation 

It would be tempting to conclude from the success of the pionic corrections 
in reconciling quenched lattice results for mN and mil with data that the problem 
is solved, QeD is correct and the nucleon is essentially three interacting quarks 
with a perturbative pion cloud. On the other hand, no QeD purist is going 
to be satisfied by this argument. 

Eventually, with a powerful enough computer, no approximations like 
quenching will need to be made. Unfortunately that day seems a long way 
off. We would like to suggest a procedure for systematically improving the 
lattice results as quenching is relaxed. It has the additional advantage that 
it offers an independent check on the convergence to the limit where chiral 
symmetry is being accurately incorporated. 

The suggestion is simply that for any calculation of mN and mil in which 
the quenched approximation is not used, one should also calculate m TT (this 
would usually be done) and gp(q2) (this would not normally be done). Given 
m TT and gp one could estimate the pion loop correction included in the 
lattice calculation. One would then compare the results with physical masses 
corrected, not by the full pion loop corrections given above, but by the 
difference between the full correction and that estimated as we just indicated. 
As the lattice calculation becomes more reliable this residual correction should 
vanish (within the errors of the calculation). 

6. Concluding Remarks 

We believe that the arguments presented here are quite compelling. Quenched 
lattice QeD for mN and mil, augmented by pionic self-energy corrections, agree 
rather well with the experimental values. Furthermore it should be possible to 
systematically monitor the decreasing need to supplement the lattice results 
with such a correction as those calculations move beyond quenching. 

Rather than end on a note that might be considered indecently optimistic, 
we mention two problems which stem from our discussion. The first is a 
cautjon on just how big a spatial lattice must be to contain a nucleon. As 
m;l is of order 1·4 fm, it is clear that a 3 fm cube can only be considered 
barely adequate-4 or 5 fm would be better. Since one would also like a 
spatial resolution not worse than 0·05 fm this means that one should aim 
for a spatial lattice of order 803 or even 1003 . 

The second open problem involves an unresolved question of principle. If 
one is able to work with a quark mass light enough that mTT has its physical 
value, the Ll will be unstable to decay into NIT. (The p will also be unstable 
to ITIT, which could complicate the use of mp to set the lattice scale.) This 
will lead to complications for the usual lattice procedure whereby the 3q 
correlation function behaves like exp[-MT] in Euclidean time T. When the Ll 
acquires a width one might naively expect this to become exp[-(M - il/2)T] 
which would complicate the extraction of M. On the other hand, in this case 
the Ll is not an eigenstate of the Hamiltonian and the naive expectation is no 
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more than that. A lot more serious thought needs to be put into this problem 
and one may need to formulate the lattice calculation to yield a (real) bare 
mass as in the cloudy bag model. 
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