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Abstract 

There has recently been significant progress in the calculation of the twist-two piece of the 
quark/parton distributions corresponding to models like the MIT bag. However, in evaluating 
the required matrix elements of the quark field operators Signal and Thomas (1988, 1989) 
resorted to the Peierls-Yoccoz (1957) approximation-albeit with some cautionary remarks. 
We point out a problem with that approach which is solved by using the Peierls-Thouless 
(1962) approximation for the hadronic states. The very simple case of a nonrelativistic 
constant density quark wavefunction is solved in detail. 

Over the past fifteen years there have been many attempts to relate the 
quark distributions measured in deep inelastic experiments to familiar quark 
models (Jaffe 1975; Le Yaouanc et al. 1975; Parisi and Petronzio 1976; Celenza 
and Shakin 1983, 1989; Ross and Jaffe 1980; Benesh and Miller 1987; Thomas 
1988a). A major problem with many of these attempts was that the calculated 
distributions did not vanish for Bjorken-x greater than one, whereas physical 
structure functions should vanish for x outside the region [0,1]. This could be 
traced to the loss of translational invariance (in time and space) when model 
quark operators were used. Recently Signal and Thomas (1988) suggested 
that one could overcome this problem by guaranteeing energy-momentum 
conservation before making any model-dependent approximations. In this case 
the twist-two quark distribution is (Politzer 1980; Ellis et al. 1983; Jaffe 1983, 
1985) 

q(2)(X,J12 ) = ~ :L J dp 8(m[1-x] - p~)\ (npllJl+(O) I NO}1 2 , (1) 
(2rr) n 

where IJI+ = (1 + ()(3)1JI/2, p~ is the plus component of the momentum of the 
intermediate state I np) [p~ = (m~ + p2)1/2 + pz] and we average over the spin 
of the nucleon target. The momentum scale for the quark field operators 
is J1 2• While (1) is well known in formal derivations of the parton model, 
Signal and Thomas observed that it provides a practical starting point for 
calculations because a simple di-quark state (n = 2) dominates the sum over 
n for x beyond 0·3. 
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For a given model the input to 0) are the masses mn and the matrix elements 
(np I tfJ+(O) I NO). The importance of the choice of masses was illustrated by 
Close and Thomas (1988) who showed that the well-known spin and flavour 
dependence of the parton distributions (e.g. the diu ratio) was related to the 
mass splitting of the spin-O and spin-l diquarks caused by one-gluon exchange. 
On the other hand, the matrix elements present a major problem because of 
the well-known difficulty of constructing eigenstates of momentum in all but 
the simplest nonrelativistic models. For the bag model, Signal and Thomas 
(1988, 1989) proposed using the Peierls-Yoccoz (PY) (1957) procedure, so that 

I np)=</i;/(p) J dxeiPaxl n; x), (2) 

where I n; x) is a bag state centred at x, and cJ>n(P) is chosen to ensure 
D-function normalisation. The coordinate representation is then 

'P~1(XI,X2) =(XI x21 np) 

=cJ>;/(p) f dxeiPax<Pnl(XI-X)<Pn2(X2-X), (3) 

where <Pnj(Xi - x) are the bag wavefunctions for a particle at Xi, in state ni 
[n = (nl,n2)], with the bag centrec;l at x. For the nucleon we make the simplest 
approximation, namely that all quarks are in the Is bag state <P, so that 

'P~~(XI' X2, X3) = (Xl X2 X3 I NO) = cJ>-;/(O) f dx' <P(XI - x') <P(X2 - x') <P(X3 - x'). (4) 

Finally, we can evaluate the matrix element of tfJ+(O) needed in 0): 

(npl tfJ+(O) I NO)=cJ>~I(p)cJ>-;l<O) f dxdx' dXl dX2 e-iPax<P~I(XI-X)cJ>(XI-X/) 

x <P~2(X2 - x) <P(X2 - x') <P+(-x'). (5) 

While the quark distributions calculated for n = 2 using the PY approximation 
[Le. (5) with nl = n2 = 1 s] seemed quite reasonable, the calculation was not 
without ambiguity. In particular, the momentum dependence of the matrix 
elements (np I tfJ+(O) I NO} and (nO I tfJ+(O) I N - p'} [where nonrelativistically 
p' = (mlmn)P] is not the same. This difficulty can be traced to the momentum 
dependence of the normalisation constant cJ>n(P), and the related fact that the 
PY approximation yields internal wavefunctions that depend to some extent on 
the total momentum. On physical grounds one may prefer one form, but this 
is clearly unsatisfactory. Here we shall show that by using the Peierls-Thouless 
(PT) (962) approximation, * which does yield internal intrinsic wavefunctions 
independent of the total momentum, one restores Galilean invariance to the 
matrix elements of 1./1+. Rather than attempt to use the full bag model 

* We note that the PT method is technically much more complicated than PY. The advantage 
of PT is that the internal state is independent of the overall momentum of the system-a 
property not respected by PY. 
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we consider a simple model where the quarks are nonrelativistic and have 
constant density. Even this case is quite complicated to calculate using the PT 
approximation. Nevertheless, this model is simple enough that we can obtain 
analytic results for the matrix elements in both approximations. 

In general the PT wavefunction has the form 

1J'~({x;}) = ei" .(x) f die' F(Ie') f dr ei"'. (r-(x» n 4I(x; - r), (6) 
1=1 

where (x) is the c.m. coordinate of the particles located at {x;}. There are 
a number of ways by which one could choose the weight function F(Ie'); 
for example, by minimising the expectation value of the Hamiltonian. We 
shall choose the simplest scheme, namely F(Ie') constant, in which case the 
wavefunction becomes 

1J'~(X1' X2, X3) = ei".(x) N3 4I(XI - (x» 4I(X2 - (x» 4I(X3 - (x». (7) 

Note that physically this wavefunction is very attractive because the centre of 
the bag is now defined by the position of the three quarks, rather than being 
an independent variable as in the case of equations (2H4). 

The calculation of the matrix elements is much more complicated in the 
PT case than in the PY because of the complicated mixing of the pOSition 
variables appearing in (7). This is the reason why we only attempt to do the 
calculation with constant density wavefunctions: 

( g(r») 4I(r) = (4rr)-1/2N 0 X, (8) 

where g(r) is 8(R - r), N-2 is R3/3 and X is a Pauli spinor. However, regardless 
of the choice of wavefunction, one can show formally that the matrix elements 
required in (1) are well defined, Galilean invariant and vanish as the momentum 
transfer becomes large. For example, for the 3 --+ 2 matrix element, using the 
fact that l/1(x) destroys a quark at pOSition x, one readily finds that 

(pn=211/1(x)1 p' N=3}=(Nr)(N~T)63(4rr)-3ei(p'-p).x f dord~ 
x eiIJ • (3p-2p') cJ>+(or) cJ>(or + m cJ>+(--«) cJ>(~ - or) cJ>(-2m . (9) 

We note the factor of exp{i(p'-p). x} which ensures translational invariance. 
By inspection of (9) it is obvious that the ambiguity mentioned earlier has 
been resolved. 

Although we evaluate (9) for the simple, constant density wavefunction given 
in (6), we are eventually interested in calculating q(2)(x) for the MIT bag model 
(Chodos et al. 1974). Therefore we choose the di-quark mass to be 700 MeV 
and take the radius to be 1 fm (Thomas 1988b). With these parameters we 
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Fig. 1. Twist-two valence-quark momentum distributions corresponding to only di-quark 
intermediate states (cf. equation 1) for a bag of radius: (a) 1·0 fm and (b) 0·5 fm. See text 
for details. 

compare, in Fig. 1 a, the 3 -+ 2 contribution to the twist-two quark distribution 
calculated in the PY and the PT approximations. In both cases the matrix 
elements were obtained analytically and then q(2)(x,j.l2) evaluated by numerical 
integration over the transverse momentum [pz being fixed by the 8-function 
in (1)]. 

The shape of the PY and PT quark distributions are very similar, both 
peaking at x ~ 0·35. (This is of course primarily determined by the choice 
of di-quark mass.) However, there is almost a factor of 2 difference in the 
magnitude of the two calculations. This was quite a surprise to us, and we do 
not know how much of this reduction is specific to the constant density case 
with its sharp edge. (For example, for a nonrelativistic harmonic oscillator 
the PY and PT procedures give identica\ results.) 

As explained in detail by laffe (1983, 1985), equation (1) does not give the 
complete quark momentum distribution for x < O. In particular, one would need 
to include semi-disconnected and even (for x < -1) disconnected diagrams to 
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obtain the full result. Nevertheless, if we retain just the connected diagrams 
(1) has the convenient normalisation condition 

f+l 

-00 dx q(2)(X. Jl2) = 1. (10) 

For the PY approximation to the bag (or constant density model) it is easy to 
show that this sum rule is satisfied exactly by the 1S2 configuration, provided 
the same radius R is used. On the other hand, explicit calculation for the 
PT case gives O· 504-again using the same radius for the intermediate state. 
This suggests that excited configurations play a more important role in the 
PT case (at least for the constant density case). The weakness of the constant 
density model is that we do not have a Hamiltonian and cannot improve 
the first term by adding excited states. However, if we were to use the 
closure approximation, that is to replace mn by m in (1), the sum over n 
can be formally carried out. One then obtains a distribution, q~l(x,tP), which 
automatically satisfies (7): 

with 

q~l(x,J.l2) = ~ f dp 6(m[l-x] -p+)p(p), 
(2rr) 

p+ = (p2 + m2)1/2 + pz, 

p(p) = (2rr)966(N~T)2 ( 4~R3)-3 

(11) 

(12) 

2 

X f dalf d/le3iP ·"8(R-1 a+/l1)8(R-1 a-/l1)8(R-2P)I· (13) 

[It is clear from (11) that no matter what choice we make for m the quark 
distribution still vanishes for x ~ 1.] 

Equation (13) has been evaluated by expanding the two 8-functions in 
terms of Legendre polynomials. The results for m = 700 MeV and R = 1 fm are 
also shown in Fig. 1 Q. Clearly there is a quite respectable semi-quantitative 
agreement between this calculation and the PY result. A similar level of 
agreement is obtained for a much smaller bag radius, R = O· 5 fm, as shown 
in Fig. 1 b. Of course, if one were really attempting a precision comparison 
with data there are significant differences. In particular, the PT result does 
extend to significantly larger values of x. For the present, however, we are 
not in a position to determine m2 (or m) to better than a few hundred MeV. 
For many purposes then the PY approximation should provide an acceptable 
level of precision. 

It is obviously of considerable interest to see whether the unexpectedly large 
difference between the 1 S2 contribution and the closure result persists with 
a smoother quark wavefunction. This is actively under investigation, but the 
algebraic difficulties are such that for most applications the PY approximation 
will continue to be preferred. 
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