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Abstract 

The thermal radio continuum spectra derived from a selection of nebular models are 
compared. One class of models arises from three-dimensional distributions of emissivity, 
while the remainder are specified in a more abstract way. It is shown that the most 
important distinguishing feature between the models is the proportion of the nebular solid 
angle occupied by very faint emission. This finding is developed into a measure of nebular 
clumping. Practical aspects of the modelling are examined by applying a selection of the 
model spectra to the flux densities observed for the planetary nebula IC418. 

1. Introduction 

It has long been recognised that the shape of the radio continuum spectrum 
of a thermal source, such as an HII region or planetary nebula, is governed 
by the distribution of emitting material as seen by the observer. In fitting 
model spectra to the observed radio flux densities, the nebular morphology 
must therefore be known or some assumptions made concerning it. However, 
the detailed morphological information required is often not available, and 
past workers have resorted to using simple models, such as that of a uniform 
filled sphere, or more elaborate ones consisting of concentric shells of varying 
emissivity. 

The geometric parameters which must be specified in constructing these 
models must be inferred from optical images of the particular nebula and hence 
are not known with any certainty. Indeed, it could happen that the model 
adopted is entirely inappropriate to the actual morphology. The question thus 
arises as to the importance of the choice of model. 

Several models of nebular morphology are examined in this paper, and the 
resulting spectra are presented graphically. A selection of models is then 
applied to the actual radio continuum flux densities observed for the planetary 
nebula IC418 and the results compared. 

2. Theory 

The radio flux density Sy, at frequency v, of an isothermal nebula with 
electron temperature Te is given by 

2kTev2 
Sy = ? Dsr}y, (1) 

c 
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where k is Boltzmann's constant, c is the velocity of light, and 

TJy= ~s f {1-exp[-Ty(e,cj>)]}dBdcj>. (2) 

The integral is evaluated over the solid angle of the source .as, and Ty(e,cj» 
describes the two-dimensional distribution of optical depth at frequency v. 
Coordinates (e,cj» are a convenient Cartesian system. 

Since T y((J, cf» ~ 0, we must have 0:5 1]y :5 1. Referring to equation (1), we 
see that TJy is a measure of the departure of the nebula from a black-body 
radiator. Note that if Ty(e,cj»» 1 over .as then TJy"" 1, whereas if Ty(B,cj»« 1 
then TJy "" (T y), where the angle brackets denote averaging over .as, 

{Ty} = ~s f Ty(e,cp) de dcj>. (3) 

The critical frequency Ve is defined at the intersection of the two regimes so 
that {Ty} = 1 at v = Ve. 

To apply equations 0) and (2) we need to know how Ty(e,cj» varies with 
v, and this was given by Oster (1961) as 

8 Z2 e6v-2 In[ 2(2kTe)3/2 ]E(e,cj» , 
Ty(B,cj» = -.- .1 r> • • .or> 5rre-Ym1/2e2Zv (4) 

where Z (=1) is the atomic number, e and m are the electron charge and mass, 
y (=0·577) is Euler's constant and E(B,cj» is the emission measure, defined as 
an integral of the product of the electron and ion densities along the line of 
sight through the nebula, 

E(B,cp) = f Ne(e, cp,Z)Ni(e, cp,z) dz. (5) 

Equation (4) is difficult to use since Te and v appear in the argument of the 
logarithm. A close approximation to it was given by Altenhoff et al. (960), 

T y(e, cj» = 0·082 Z1. 97;1-35 v-2 ·10 E(e, cp) (6) 

for Te in K, v in GHz, and E in pc cm-6 • As shown in Table 6 of Mezger 
and Henderson (967), the error in equation (6) is mostly <2% in the range 
300 MHz to 10 GHz for temperatures between 6000 and 14,000 K. 

Since the frequency dependence of Ty(B,cj» is independent of the spatial 
distribution we may write 

Ty(e,cj» = (Ty}T(e,cj>). (7) 

so that (T(B,cp» = 1. Considering equations 0) and (2), we see that Ty(B,cp) 
enters into the determination of Sy only through an integral over the surface 
of the nebula. This means that it is unnecessary to have the detailed 
two-dimensional information implicit in Ty(e,cj». For instance, if T(B,cp) is 
represented by a pixel map, the pixels within .as may be rearranged spatially 
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without affecting the results. Alternatively, if the pixels were lined up in 
decreasing order of pixel height, a function T(.o) of a solid angle variable .0 
would be obtained, and this would contain all of the essential morphological 
information of T(e,cp). It is then natural to work in terms of 

.0 
00 = .os . (8) 

Specifying T(oo) thus determines an infinite equivalence class of nebular 
morphologies which may look very different, but which are similar in terms 
of their radio continuum spectra. Equation (2) may be rewritten as 

1Jy = f: {l - exp[-Ty(oo)]} doo. (9) 

Likewise, combining equations (6) and (7) we have 

( )
-2.1 

Ty(oo) = (Ty}T(oo) = :c T(oo). (10) 

To compare the radio spectra of two models defined by T1 (00) and T2(oo), 

we might fix Te, .os, and Vc at some arbitrary values and compute Sy as a 
function of v for each. The two spectra should differ from one another only 
where they turn over from being optically thick to optically thin. Alternatively, 
to avoid having to specify Te and .os, it is useful to normalise Sy by dividing 
by Sy, where 

2kTev2 .os(Ty}; Sy= c" (11) 

Sy is effectively the extrapolation of the optically thin part of the radio 
spectrum to all frequencies. The modified spectrum 9y, which is asymptotic 
to unity at high frequencies, is given by 

9 Sy 1Jy 
y=-=--' Sy (Ty} , (12) 

9y might be thought of as a 'transparency', since it it unity in the optically 
thin regime and decreases towards zero with increasing optical depth. 

If the value of Vc is given, the spectrum of 9y versus v corresponding to T(W) 

can be constructed through equations (9), (10) and (12). In turn, the observed 
radio flux densities can be fitted to this spectrum of 9y by specifying so, the 
value of Sy at some standard frequency Yo. In practice, the best-fit values 
of Vc and So would be found via the least-squares or maximum likelihood 
methods of estimation. Note that approximate values of these two parameters 
could be measured directly from an adequately observed radio spectrum. The 
value of So is determined by flux densities in the optically thin regime and 
these are often fairly accurate. On the other hand, the determination of Vc 

relies also on observations at or below the turnover region of the spectrum, 
and these are usually fewer and less accurate. Once So and Vc are known and 
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.as provided, Te may be computed via equations (10) and (ll). The emission 
measure may then be derived from equation (6). 

The inverse of T(W) may be written as W(T), a function which gives the 
fraction of the source solid angle occupied by regions of the nebula with 
normalised optical depth exceeding T. By following Salem and Seaton (1974), 
9y can be expressed explicitly in terms of W(T). Combining equations (9) and 
(12) and integrating by parts, noting that Ty = 0 at W = 1, and W(T) = 0 for 
T ~ T max, we have a Laplace transform 

9y =S: w(T)exp(-T{Ty»dT. (13) 

If 9 v is known with sufficient accuracy, equation (13) can be inverted to obtain 
W(T). Unfortunately, this is not practtcal for observed radio spectra, since 
W(T) is extremely sensitive to inaccuracies in 9y. 

3. Models 

Two types of model are presented. Members of the first group are constructed 
simply by specifying the functional form of T(W). The others are derived from 
three-dimensional, radially symmetric models of the radio source. Profiles of 
T(W) and the corresponding spectra of 9y are presented in Figs 1 to 8. Each 
model is properly normalised so that (T(W»= 1, and T(W) is set to zero outside 
the interval 0::; W ::; 1. The model spectra of 9y versus v are constructed 
using the assumption that Vc = 1 GHz. Their parametrisation by {T y} and l1y, 
constructed via equations (10) and (12), is also shown. 

Some of the models to be discussed here do not have a natural boundary 
for the definition of .as. This is an artefact of the mathematical formulation 
of the model since, in reality, .as cannot exceed 4rr sr. In practice, the source 
solid angle is constrained by the uncertainties of measurement since arbitrarily 
large, vanishingly faint haloes cannot be observed. Thus for models with no 
natural boundary a cutoff needs to be imposed. 

(a) The Uniform Slab 

This is the simplest possible model and is defined by T(W) = 1 for 0::; W :::; 1, 
and T(W) = 0 otherwise. Nevertheless it is important, since its spectrum is an 
extreme case among all possible models. In fact, the spectrum of a uniform 
slab has the sharpest possible turnover in the sense that, for any value of {T y}, 
9 y is higher for a slab than for any other distribution. 

To prove this, consider equation (13) and let Wu(T) denote the uniform slab, 
and W(T) the other distribution. Then we have 

9y(slab) - 9y(other) = S: (wu - w) exp(-T{Ty» dT 

= f: (l-w) exp(-T{Ty» dT- f~ W exp(-T{Ty» dT 

~ exp(-{Ty» [f: (1- w) dT- f~ W dT] 

=0. 
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The uniform slab is included in Fig. 1 as a special case of the next set of 
models. 

(b) Core-Halo Models 

Core-halo models are defined so that the optical depth is constant within 
a core region and constant but at a lower level in the halo region. Two 
parameters are required; Wc defines the relative size of the core and p the 
ratio of optical depths. Figs 1 and 2 show how the spectra change as these 
parameters are varied. 

(c) Exponential Models 

These models are defined by T(W} = a exp(-w/we}, where We is a parameter 
and a a normaliSing constant which depends on We. The exponential form of 
T(W) would arise if Ty(lJ,cp) had a Gaussian profile in two dimensions. In turn, 
this form of Ty(lJ,cp) could arise if the radial (r) dependence of electron density 
varied as exp(-r/ro) in a spherically symmetric nebula in three dimensions. 
However, these are special cases, and wildly different morphologies could 
produce the exponential form of T(W). Fig. 3 shows the profiles and spectra 
of a set of exponential models. 

(d) Power-law Models 

Models defined by T(W) = 8[(w-wu)/0-wu)]-Y are relevant to mass-loss stars 
although Pottasch (984) has applied them to the planetary nebula NGC 2440. 
Panagia and Felli (975), Wright and Barlow (975) and Olnon (975) used 
them to explain why objects like P Cygni, T Tauri, V 1016 Cygni and MWC 
349 have radio spectra with spectral index DC::; +0· 7 over a large range of 
frequencies. They showed that this arises naturally if the electron density 
falls off slightly faster than the inverse square of the distance from the star. 

The power-law models presented in Fig. 4 cutoff explicitly at W = I, at 
which point T = 8, where 8 is a free parameter chosen to be very small. 
The power-law divergence at zero radius was handled by past workers by 
assuming a core region of uniform electron density. In effect, this core 
allows the computed spectrum to reach the normal optically thin regime at 
high frequencies, otherwise the spectrum would diverge. However, it is not 
necessary to make any assumptions about what happens in the core since it 
should be of negligible angular extent, so long as the electron density does 
not diverge. In the present treatment the core region is simply excluded 
through the introduction of Wu. Its value is chosen to normalise T(W). 

(e) Uniform Shell Models 

As yet nothing has been said about the three-dimensional structure of a 
nebula and how this affects the radio continuum spectrum. In the absence 
of information regarding the distribution of optical depth over the face of 
a nebula, the procedure often adopted is to assume a sphere of uniform 
emissivity. A refinement is to use a uniform shell based on an assumed or 
observed parameter cp, the ratio of shell thickness to exterior radius. The 
case cp = 1 is a uniform sphere. 
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As shown by Fig. 5, there is very little difference between the radio 
spectra of the simple shell models. This arises from three effects. Firstly, 
the radio spectrum is insensitive to the three-dimensional distribution of the 
omitting material, since the optical depth arises from an integration along the 
line of sight. Secondly, we have the fact (mentioned above) that the actual 
two-dimensional distribution of optical depth is not important; all of the 
essential information can be expressed as a one-dimensional function T(W). 

Thirdly, the radio spectrum is given as the Laplace transform of W(T), and 
this tends to smear out detailed structures. 

(f) Two-component Shell Models 

This family of models combines elements of the core-halo models and the 
simple shells. The inner shell of thickness 0 ~ cf> ~ 1 has unit radius and 
emissivity and is surrounded by a concentric shell of emissivity 0 ~ p ~ 1 and 
outer radius X ~ l. 

Higgs (1971) used two-component shell models in his analysis of all radio 
flux densities available for planetary nebulae at that time. Approximate values 
of the three parameters were estimated from the nebular morphology of 
Hromov and Kohoutek (1968a, h, c). This is probably the limit of what can 
be done in matching model parameters to observed nebular structure. Beyond 
this it would be simpler to use nebular isophotes themselves. 

With three parameters to vary it is obviously difficult to investigate this 
family of models fully. Assuming base values of cf> = 1, X = 2, and p = 1/8, 
Figs 6, 7 and 8 show what happens to the radio spectra as one parameter is 
varied while keeping the other two fixed. 

4. Results for Ie 418 

Perhaps the best way to compare different models is to use them to fit the 
observed flux densities for a particular nebula and compare the results. The 
young planetary nebula IC 418 is one of the most frequently observed objects 
of its type, and has a well-defined radio continuum spectrum. It thus seems 
appropriate for use as a benchmark. 

The flux densities for IC418 were obtained from the following sources: all 
flux densities obtained from observations before 1971 from the compilation of 
Higgs (1971), thereafter Terzian et al. (1974), Gopal Sistla et al. (1974), Milne 
and Webster (1979), Milne (1979), Milne and Aller (1982), and Calabretta (1982). 
An unpublished measurement by the author of O· 57±0· 06 Jy at 843 MHz from 
the Molonglo Observatory Synthesis Telescope (MOST) was also used. 

A wide range of models from the six families described above were applied 
to IC 418 using the procedure described in Section 2 with maximum likelihood 
estimation. The results are presented in Table 1, together with those obtained 
for the distribution of T(W) derived from the Hf3 isophotes of Reay and 
Worswick (1979). Fig. 9 shows the best fit spectra derived for the isophotes. 
IC 418 has been observed many times at frequencies near 0·408, 1·420, 2·700 
and 5·000 GHz, and the data points in Fig. 9 have been shifted a little in 
the horizontal direction to avoid overlap. This is indicated in the figure by a 
brace which groups the data points together at the frequency corresponding 
to its cusp. The reference frequency for So was taken at 1 GHz, the error 
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Table 1. Results of modelling lC418 

Model 

Uniform slab 
Core-halo 

Exponential 

Power law 

Uniform shell 

Two-component 
shell 

lsophotes 

Parameters 

None 

We = 1/2 P = 1/2 
We = 1/2 P = 1/4 
We = 1/2 p= 1/8 
We = 1/2 P = 1/16 
We = 1/2 P = 1/32 
Wc = 1/4 P = 1/8 
Wc = 1/8 P = 1/8 

We = 1/4 
We = 1/8 
We = 1/16 
We = 1/32 

8=0·01 y=3·5 
8=0·01 y=2·5 
8 = 0·01 Y = 1 . 5 

cp=l 
cp = 1/2 
cp = 1/4 
cp = 1/8 
cp = 1/16 
cp = 1/256 

cp = 1 X = 2 P = 1/8 
cp = 1/2 X = 2 P = 1/8 
cp = 1/2 X = 2 P = 1/8 
cp = 1 X =4 p= 1/8 
cp = 1 X = 8 P = 1/8 
cp = 1 X = 2 P = 1/2 
cp = 1 X = 2 P = 1/16 
cp = 1 X = 2 P = 1/32 

None 

Vc So 
(GHz) (Jy) 

1·49 1·87 
1·47 1·88 
1·43 1· 91 
1·35 1· 93 
1·26 1· 91 
1·18 1·90 
1·36 1·99 
1·42 2·02 
1·33 1·96 
1·01 1·98 
0·73 1·98 
0·53 1·98 
0·87 2·04 
0·74 2·09 
0·37 2·39 
1·46 1·88 
1·47 1·88 
1·47 1· 88 
1·47 1·89 
1·46 1· 91 
1·46 1·95 
1·39 1·97 
1·40 1· 95 
1·46 1·89 
1·46 1·91 
1·46 1·89 
1·45 1·90 
1·30 2·01 
1·14 2·00 
1·19 1· 95 
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L Vt 

(GHz) 

-23·5 0·85 
-22·6 0·85 
-21·7 0·89 
-22·6 0·90 
-23·3 0·91 
-22·7 0·90 
-24·6 0·92 
-23·8 0·89 
-23·1 0·92 
-25·8 0·94 
-25·9 0·94 
-25 ·9 0·95 
-36·9 1·01 
-48·5 1·07 

-135·4 1·48 
-22·6 0·86 
-22·7 0·86 
-22·6 0·86 
-22·3 0·86 
-21·9 0·87 
-21·5 0·87 
-22·6 0·90 
-21·5 0·90 
-22·2 0·87 
-21·9 0·87 
-22·5 0·86 
-22·1 0·87 
-27·7 0·97 
-33·8 1·00 
-25·2 0·94 

in Vc is ±o· 05 GHz, and in So it is ±O· 04 Jy. These errors correspond to 
the points where L, the loge-likelihood, fell 0·5 below the maximum value, 
and are virtually model-independent. Also listed in Table 1 is the turnover 
frequency Vt, defined as the frequency for which 9v = 0·3. This definition is 
intended to reflect a measurable property of the observed radio spectrum in 
the expectation that it will be largely model-independent. 

5. Discussion 

Values of the loge-likelihood listed in Table 1 should give some indication 
of the appropriateness of each model for Ie 418. The formal 30" range should 
correspond to values of L between the maximum of -21· 5, and -23· O. Clearly, 
the power-law models do not serve at all well, and the exponentials provide 
a poor fit for some values of We. However, the small differences between 
the other models are proabably not significant, although it is interesting to 
note that T(W) derived from the H/3 isophotes provides a poorer fit than 
some simpler models. The turnover in the observed spectrum seems to be 
somewhat steeper than that derived from the isophotes (which is somewhat 
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Fig. 9. Best fit model spectra of IC418 derived using the H{3 isophotes 
of Reay and Worswick (1979). 

like an exponential), although not as steep as a uniform slab. The differences 
in the values of the loge-likelihood would be weighted heavily by a small 
number of flux densities in the turnover region of the spectrum, since this is 
principally where the model spectra differ. 

Table 1 shows that, except for the power-law models, the best fit value of 
So is little affected by the choice of model, ranging as it does from 1·87 to 
2,02 ]y, or 1 ·95 ]y ±4%. This is quite understandable, since the optically thin 
part of the spectrum is well defined by the flux densities, and most models 
look the same in this regime. 

However, the range of Ve is rather wider. From a maximum of 1·49 GHz 
for the uniform slab it drops to 0·53 GHz for the exponential model with 
We = 1/32, and clearly it could be made arbitrarily smaller. The determining 
factor in the value of Ve is the proportion of the model with very low values 
of T. Thus for the exponential models, as We decreases so does Ve. Likewise, 
with the core-halo models and two-component shell models, as p decreases 
so does Ve. 

Excluding those models for which L < -30, Vt lies in the range 0·85 to 
o . 97 GHz, or 0·91 GHz ±7%. Considering the wide variation seen in the derived 
values of Ve, that of Vt is quite small. It is therefore a better indicator of the 
point where the spectrum starts to become optically thick. 

Figs 1 to 8 show spectra derived from a wide range of quite different models. 
However, the one feature which distinguishes most clearly between them is 
the amount of low-level emission in T(W). This can be seen in the core-halo 
models. Consider Figs 1 a and 1 b, which illustrate the core-halo models for 
We = 1/2 and p = 1, 1/2,... 1/512. The case with p = 1 is a uniform slab, 
the model having the sharpest possible turnover. At the other extreme, the 
spectrum for p = 1/512 is virtually constrained to the locus of I7v = 0·5, even 
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to quite low frequencies. Clearly only the core of this model is contributing 
any flux. the halo becoming visible only at much lower frequencies. It might 
be said to exhibit pseudo-asymptotic behaviour. 

The core-halo model spectra in Figs 1 band 2b exhibit pseudo-asymptotic 
behaviour to some degree before making a transition to the true asymptote 
at I1v = 1. The spectrum with We = O· 1 and p = 1/64 makes the transition in 
quite a pronounced way in Fig. 2b. and similar behaviour can be seen for the 
two-component shell models in Fig. 8b. The exponential models in Fig. 3b. 
however. do not make the transition from their pseudo-asymptotes within the 
range of frequency considered. 

The rate at which the various model spectra approach their true asymptotes 
accounts for the wide range in the value of Ve derived for IC 418. However. it 
was shown above that the turnover frequency Vt is largely model-independent. 
The difference between these two frequencies is indicative of the relative 
amount of low-level emission in the models. Noting that vclvt is constant 
for a given model. we can define a measure of the degree of clumping. C. 
associated with T(W) as C = We. where the value of We is that for which a 
core-halo model with p = 0 has the same values of Ve and Vt. It can be shown 
that 

( )
201 

C= O· 575 :: ' (14) 

where the value 0·575 is simply the ratio vt!ve for a uniform slab. This 
definition of the clumping factor may be compared with that of Terzian (1978). 

Consider the temperature derived for IC418 using the results of Table l. 
Using equations (10) and (11) with .as = 543 arcsec2 from the Hf3 isophotes. 
we find Te as low as 2060 K for a uniform slab. 3450 K for the isophotes. and 
as high as 19.200 K for the exponential model with We = 1/32. The different 
temperatures arise only from the different values of Ve derived for each model. 

Working backwards from the electron temperature of 9000±500 K derived 
from the forbidden optical emission lines by Barker (1979). we find that for 
.as = 543 arcsec2 and So = 1·95 ± 0·07 Jy. we obtain Ve = 0·75 ± 0·03 GHz. 
Combining this with the average turnover frequency Vt = 0·91 ± 0·06 GHz. 
the measured clumping Cm is O· 21±0· 05. This value. which is largely 
model-independent. may be compared with the value Cj = 0·52 obtained from 
Ve = 1 . 19 GHz and Vt = 0·94 GHz derived from the isophotes. 

Seeing effects can broaden the measured value of .as. so how much of the 
difference between Cm and Cj does this account for? The FWHM seeing for the 
isophotes of IC418 used here was 2 arcsec. A fairly severe correction would 
be to reduce the effective radius of the nebula by 2 arcsec. thereby giving 
.as = 390 arcsec2 • Recomputation gives ve = 0 . 88 ± 0 . 04 GHz and a corrected 
value C/n = 0·29 ± 0·07. still disparate with respect to Cj. 

The difference between C/n and Cj is indicative of a degree of fine structure 
in the morphology of IC418 which is not evident in the Hf3 isophotes. As a 
measure of this unresolved structure we define 

u= 1- ~7. (15) 
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Thus if U = 0, all structure in the nebula has been resolved, while for U = 1, 
the opposite is true. For IC418, U=0·42, which indicates that the present 
isophotes have failed to reveal quite a deal of the nebular structure. 
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