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Abstract 

We consider proton collisions from hydrogen atoms in the presence of a laser beam (taken in 
the electric dipole approximation) that resonantly (or nearly resonantly) excites the hydrogen 
atoms from the Is to the 2p state. The laser beam is linearly polarised with polarisation 
either parallel (longitudinal) or perpendicular (transverse) to the direction of incidence of 
the proton. A non-perturbative quasi-energy approach is used to describe the laser-atom 
interaction, while the first-order Magnus approximation is used to describe the collision 
dynamics in the presence of the nearly resonant laser beam. We have calculated the integrated 
cross section o-(2s} for the excitation of the 2s state. It is found that 0-(2s} is small for 
longitudinal polarisation, as compared with transverse polarisation. We have also compared 
our field-free results obtained by using the first-order Magnus approximation to that obtained 
by the close-coupling approximation. Although both methods give excellent results, the former 
method is quite demanding in terms of computer time. 

1. Introduction 

In this paper we study the proton-hydrogen atom collision in the presence of a 
resonant laser field using the first-order Magnus approximation, first introduced 
by Alder and Winther (1960) to describe the multiple Coulomb excitation of 
deformed nuclei by energetic heavier ions. In the past this method has been 
applied to electron-atom scattering (Takayanagi 1963; Callaway and Bauer 1965), 
to proton-hydrogen atom scattering (Callaway and Dugan 1966; Geltman 1969; 
Baye and Heenen 1973), to ionisation of atoms by heavy ion impact (Eichler 
1977) and to atomic and molecular processes in the presence of a laser field 
(Leasure et al. 1981; Sharma and Mohan 1985, 1986a, 1986b; Mohan and Prasad 
1990, 1991). 

In the present paper we use this approximation to study proton impact 
excitation of the 2s state of the hydrogen atom in the presence of a resonant 
laser field. The validity of this approximation for the process is investigated by 
calculating the total cross section for the 2s state excitation of the hydrogen 
atom during collisions with heavier ions (protons) in the presence and absence 
of the laser field. The atom is resonantly excited to the 2p state by the high 
intensity laser pulse and the collision induces a transition to the 2s state. In the 
limit where the spontaneous emission and the splitting of the 2s-2p degeneracy 
are neglected, the integrated cross section /7 (2s) for the atom to undergo a 
transition to the 2s state would be infinite. This divergence of the cross section 
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is a consequence of the fact that the collision induced coupling between 2s-2p 
states is, at large distances, of the form of a non-oscillatory dipole. 

2. Theory 

We suppose the hydrogen atom is initially in the ground state and is resonantly 
excited to the 2p state by a picosecond laser pulse. The laser beam induces the 
hydrogen atom into a dressed state, a time-dependent linear superposition of Is 
and 2p states. While the laser is switched on the atom is bombarded with protons 
and after the collisions are over the laser is turned off. We have calculated the 
cross section 0"(2s) for the atom to undergo a transition to the 2s state. We find 
that 0"(2s) is not infinite because the long range dipole coupling between the 2s 
and 2p states oscillates at a small frequency close to the Rabi frequency. 

The electric field vector E( t) ofthe laser beam is defined by E(t) = eEo cos(wt), 
where e is a unit polarisation vector, Eo is the amplitude of the laser beam and 
w is its frequency. In the impact parameter method (Bates 1958) the incident 
proton is assumed to travel in a classical straight-line constant-velocity path 
with velocity v and impact parameter b. The relative coordinate of the proton 
is described by R(t) = b + vt. Since the incident proton is relatively massive, 
its trajectory will not be affected appreciably by the laser pulse and we can 
neglect the coupling between the laser and incident projectile. We take the laser 
beam to be perpendicular to v and the polarisation to be linear, and so e is 
either parallel to v (longitudinal polarisation) or perpendicular to v (transverse 
polarisation). We define E~ and Eg as the energies of the ground and the first 
excited states of the hydrogen atom. The detuning of the laser from resonance 
is defined by E21 = Eg - E~ - w (we use atomic units throughout this paper). 

The collision duration T c is generally much shorter than the laser pulse duration 
(for a proton impact energy of 100 keV the collision duration is of the order of 
10-15 s which is less than the laser pulse duration). Subject to this condition 
the particles situated in the radiation field collide. It is well established that 
an atom situated in a radiation field is characterised by a set of quasi-energy 
states (Shirley 1965; Zeldovich 1973; Chu 1985). We assume E21 < w, so that 
the atom is interacting with a nearly resonant field. Using the rotating wave 
approximation, the quasi-energy states (or the dressed states) of the hydrogen 
atom in the presence of a nearly resonant field with detuning E21 are defined by 
(see e.g. Sharma and Mohan 1986a) 

<I>n(r, t) = exp[-i(E~ + An)t][a~ lIs) + a212p)exp( -iwt)] , (1) 

where An = ~E21 ± ~(I E21 12 + I V 1212)1/2 are the set of quasi-energies, and where 
V 12 = -0·7 44Eo is the Rabi frequency and { ai} are the eigenvectors corresponding 
to the quasi-energies {An}. The polarisation of the 2p state is the same as that 
of the laser. In equation (1), lIs) is the normalised vector representing the 
bare atomic ground state. With 12p) the normalised vector representing the 
bare 12p) state with angular momentum projection quantum number m along 
v, the vector is 12p+) for longitudinal polarisation and 12p- ) for transverse 
polarisation, where 

1 
12p±) = V"2(12p+1) ± 12p-1)). (2) 
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The total wavefunction 1]! of the system in terms of the quasi-energy states is 
written as (Gersten and Mittleman 1976) 

1]! = LCn(t) <I>n(r, t) +exp(-iEgt)[C2s (t) 12s) +C2p_12p_)] 

n (longitudinal polarisation) (3a) 

L Cn(t) <I>n(r, t) + exp( -iEgt)[C2s (t) 12s) + cgpo 12po) + C2p+ 12p+)] 

n (transverse polarisation). (3b) 

Note that reflection symmetry in the v. b plane implies C2p+ (t) = 0 in the case 
of longitudinal polarisation. 

Using the wavefunctions (3) and the total Hamiltonian of the system 
Ho(r)+ V(r, t)+ Vt(E,w), where Ho(r) is the unperturbed Hamiltonian of the 
atom, V(r, t) is the time-dependent interaction potential and vt = -r. €E o cos(wt) 
is the interaction of the atom with the laser field (in the dipole approximation), 
the time-dependent Schrodinger equation yields the set of coupled first-order 
linear differential equations 

. aC = Q(t) C(t) . 
1 at (4) 

Here C(t) is the column matrix with elements C1(t), C2 (t), etc. with the initial 
condition Ci(-oo) = Doi where i labels the initial state, and Q(t) is the coupling 
matrix composed of the matrix elements of the interaction potential 

1 1 
V(r, t) = R(t) - I r - R(t) I (5) 

between the atom and the projectile. 
We now employ the dipole approximation used by Seaton (1962). With the 

expansion 

1 00 

Ir-R(t)1 = LP,.(f.R) r~ . ,.=0 r,.+1 ' > 
f.R=cos(}, (6) 

where () is the angle between rand R( t) and r < is the smaller of rand R, and 
r> the greater, the only nonzero contribution to the optically allowed transitions 
comes from the odd values of f.1. satisfying ao ::; f.1. ::; (lj+lk), lj and lk being the 
atomic angular momentum quantum numbers. The dominant contribution comes 
from f.1. = 1. Using only this term I r - R(t) 1-1 may be replaced by r. R(t)lr~, 
and if we assume that r> = R( t) then we have 

(j 11/[r - R(t)] I k) = (j I r. R(t)IR31 k). (7) 

So long as R(t) is greater than r, the radius of the atomic electron, this 
approximation should be valid; it is therefore reasonable to use it for impact 
parameters greater than some mean atomic radius. When the full matrix Q 
was set up, several of the elements had factors exp( ±i ¢). A simple unitary 
transformation of Q removes these factors. 
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Using the first-order Magnus approximation, the solution of equation (4) at 
t = +00 is given by (Callaway and Bauer 1965; Pechukas and Light 1966; Jamieson 
et al. 1975; Sharma and Mohan 1986a; Mohan and Prasad 1990) 

.C(+oo) = U exp(-iMo) UtC(-oo), (8) 

where Mo is the diagonalised matrix whose diagonal elements are the eigenvalues 
of the matrix M defined by 

1+00 

M(+oo) = -00 Q(t') dt' (9) 

and U is a unitary matrix whose columns are the eigenvectors of the matrix M 
satisfying the equation 

Mo=utMU. (10) 

The exponential operator in (8) is unitary and therefore the normalisation of the 
vector C is preserved at all times. The probability for a transition to the 2s 
state at a given impact parameter is then P(2s) = 1 C2s(+00) 12. This probability 
can then be integrated with respect to the impact parameter to give the total 
cross section 

0"(2s) = 211" 100 bP(2s) db. (11) 

The matrix M(+oo) can easily be evaluated in terms of Ko and K 1, which are 
modified Bessel functions. This yields' a complex matrix because of the presence 
of i in Q. The matrix may be made real to speed up the calculation by suitable 
changes in the basis set; in particular, multiplying the 2p wavefunctions by +i 
will yield a real M matrix. . 

3. Results and Discussion 

Before mentioning the numerical results for 0"(2s), let us first describe in brief 
the general trend of the variation of the cross section with velocity for longitudinal 
and transverse laser beam. According to the first-order perturbation theory, the 
ratio of the probabilities for transverse (1.) and longitudinal <II) polarisation is 
given by 

PJ..(2s) _ (a~h \ K1({3) \2 
Pj,(2s) - (a~)" Ko({3) , 

(12) 

where (a~h and (a~)u are the components of the eigenvectors af belonging to 
quasi-energy A = AJ.. for transverse and longitudinal polarisations respectively, and 
{3 = (€21- A1)b/V. Note that for (3« 1 we have Ko({3) ~ -In{3 and K 1({3) ~ 1/{3, 
so that over the range of impact parameters ao $ b $ V /(€21-A1) we have P,,(2s) 
smaller than P J..(2s) by a factor of the order of ({3ln{3)2. We also note that the 
collision induced dipole coupling between the 2s and 2p states for a resonant 
laser field (1021 = 0) is given by 

-(2s 1 r. R(t)/ R3 12p} exp( -i V12 t) = ± 3R-3 (e. R) exp( -i V12 t), (13) 
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where for the resonant laser field we have €21->'1 ~ V12. For f3 « 1 the oscillatory 
term exp( -i V12 t) can be set equal to unity during the collision time which is 
of the order of b/v. For transverse polarisation we find E. R = E. b and the 
coupling is even in time t, but for longitudinal polarisation we find E.R = Vt 
and the coupling is odd in t. Hence, the time average of the coupling over the 
collision duration vanishes for longitudinal polarisation (but not for transverse 
polarisation). It follows that the average coupling is stronger in the transverse 
case and hence P 1. (2s) is larger than PII(2s). 

Table 1. Total cross section u{2s) (in units of 10-17 cm2 ) of atomic hydrogen against proton 
impact energy in the presence of a resonant laser field 

Energy (ke V) 

15 
25 
40 
50 
60 
75 

145 
200 

The intensity of the laser beam is 1= 1010 W cm-2 

0"11 (2s) O".l{2s) O"FF{2s)A 

4·35 174·09 3·19 
6·86 58·19 3·39 
4·32 29·56 2·99 
2·11 18·09 1·13 
1·11 12·30 0·97 
1·00 8·9 0·45 
0·133 2·61 0·051 
0·112 1·10 0·0079 

A Our field-free cross section using the first-order Magnus method. 
B Field-free results of Shakeshaft (1978) using the close-coupling method. 
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Fig. 1. Integrated cross section 0"(2s) against intensity of the 
field. The proton impact energy is 100 keY. The solid and 
dashed curves refer to transverse and longitudinal polarisation 
respectively. 

O"FF{2s)B 

3·41 
3·98 
2·33 
1·39 
0·82 
0·42 
0·040 
0·0087 

In Table 1 we show the variation of 0"(2s) against proton impact energy for a 
transverse and longitudinal polarised laser beam. The intensity of the laser beam 
is taken to be 1= 1010 W cm-2 • The cross sections are obtained by using the 
solution (8). As expected, we find that O"1.{2s) is greater than 0"11 (2s) for all impact 
energies. We have also shown in Table 1 the field-free (Eo = 0) cross section 
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O"FF(2s) obtained using the Magnus approximation. Upon comparison of our 
field-free results with those obtained by Shakeshaft (1978) with the close-coupling 
method, we find that our results are in good agreement which shows that the 
Magnus approximation (or the diagonalisation method) is also valid for atomic 
scattering problems. We also notice that O".L (2s) is 10-100 times larger than its 
value in the absence of the laser field, which shows that the near resonant laser 
field greatly enhances the cross sections. 

In Fig. 1 we show the effect of the laser intensity I on 0"(2s) for a fixed proton 
energy of 100 keY. We find that 0".L(2s) increases linearly with I and has a 
maximum value at 1= lOlD W cm-2 . With a further increase in intensity 0" .L(2s) 
starts falling. However, 0"11 (2s) varies quite slowly with an increase in intensity, 
and remains somewhat stationary near the region where O".L (2s) peaks. Such 
behaviour can be understood as follows. When the intensity of the laser beam is 
quite weak (I ---> 0) the cross sections reduce to those obtained in the field-free 
case. However, with an increase in intensity the 12p) state population also 
increases and becomes roughly constant, equal to a half at and above the intensity 
Ip where 0".L(2s) peaks. The main contribution to 0".L(2s) comes from the range 
of impact parameters ao :S b :S V / V12 , while for greater impact parameters the 
2s-2p coupling averages to zero over the collision time b/v. Since V 12 increases 
with intensity (roughly as the square root of I), the significant range of impact 
parameter decreases. This leads to a decrease in 0".L(2s). Consequently, 0".L(2s) 
rises and then falls as I increases. 

On the other hand, 0"11 (2s) varies quite slowly compared with 0".L(2s) and levels 
off at an intensity Ip where 0".L(2s) peaks. We note from (13) that the 2s-2p 
coupling for longitudinal polarisation is odd in t and therefore averages to zero 
over the collision time if the factor exp( -i V12 t) is set equal to unity. However, 
the sin(V12 t) component of exp(-i V12 t) combines to make the longitudinal 
2s-2p coupling even in t, so that it no longer averages to zero for b:S V / V 12. 

We also note that the magnitude of sine V12 t) increases with I. Hence, while the 
range of b decreases with increasing I, the magnitude of the longitudinal 2s-2p 
coupling increases so that the two effects combine to make 0"11 (2s) roughly constant 
for I > I p, as can be seen from Fig. 1. Finally Gersten and Mittleman (1976) 
also obtained analytic solutions for the cross sections of the H(2s) excitation 
by electron impact in a resonant laser field. However, they did not show the 
numerical results for the intensity dependence of 0"(2s). 

4. Conclusions 

The quasi-energy technique which is non-perturbative in nature provides a 
simple and elegant picture of atomic scattering problems in the high intensity 
limit (Chu 1985). We have used the quasi-energy method for the radiation part 
without allowance for the fine structure of the atom. We have also shown that 
the close-coupling diagonalisation method gives results close to other theoretical 
methods. Finally, our method is quite general and can be extended to other ion 
(atom)-atom collisions in the presence of a laser field. 
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