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Abstract 

Until recently the principal barrier to the accurate theoretical description of electronic collisions 
with polyatomic molecules was the problem of scattering by a nonlocal potential which is 
arbitrarily asymmetric. The last five or six years have seen the development of numerical 
techniques capable of solving the potential scattering problem, and the first applications of 
methods for treating many-body aspects of collisions of electrons with polyatomic molecules 
are beginning to appear in the literature. We describe the complex Kohn method and the use, 
in scattering calculations, of methods for treating electronic correlation which are standard in 
bound-state quantum chemistry. As examples of the application of these ideas we present the 
results of calculations on electron scattering from CH4, SiH4 and C 2H6. All of these molecules 
exhibit Ramsauer-Townsend minima at low impact energies which are entirely correlation 
effects. 

1. Introduction 

Theoretical treatments of electron-molecule collisions are complicated by an 
obvious problem, which it is useful to revisit occasionally. The problem is most 
easily exposed by examining the close-coupling expansion (Taylor 1972), but it is 
inherent in the electronic collision problem and not a consequence of a particular 
representation of the scattering wavefunction. The close-coupling expansion of a 
scattering wavefunction !P, in terms of target states in the case that the projectile 
and target particles are distinguishable, is simply 

!P = L Xr(x) Fr(r) , (1) 
r 

where Xr(x) is a state of the target, which may be an energetically open or 
closed channel, and Fr(r) is the channel wavefunction for relative motion of 
the projectile and target. If only a single channel is included in the expansion, 
then inserting (1) in the Schrodinger equation leads to the problem of finding 
the solution, Fr(r), for scattering from a local potential. That situation would 
obtain in electron scatter~ng except for the fact that electrons are indistinguishable 
particles and the scattering wavefunction must be antisymmetric with respect to 
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the interchange of their coordinates. For electronic collisions (1) is replaced by 

W = L A{xr(rl, ... , rn) Fr(rn+l)}, 
r 

(2) 

where A is the antisymmetriser and r j is the coordinate of the j th electron. The 
insertion of (2) in the Schr6dinger equation leads to the problem of scattering from 
noniocal potentials because of the antisymmetriser. That difficulty is only one of 
the consequences of the fact that the incident electron is indistinguishable from 
those in the target. A more subtle, and ultimately more important, consequence 
is that the electron correlation between the incident electron and those of the 
target, which is displayed in the expansion in (2), is inextricably connected to 
correlation among the electrons of the target. Consistency in the treatment of 
both aspects of electronic correlation in the electron-molecule scattering problem 
is essential, even· though it is not always obvious how to formulate a consistent 
treatment. 

In the theoretical description of electronic collisions with molecules a great 
deal of effort has been expended in the development of methods for the treatment 
of the basic problem of scattering from an asymmetric, nonlocal potential (Lane 
1980; Takasuka and McKay 1981, 1984; McCurdy and Rescigno 1989). To attack 
the problem of arbitrary polyatomic targets, approaches are needed which avoid 
single centre expansions, and which are highly efficient. In recent years several 
methods have appeared, including the one on which we focus here, the complex 
Kohn method. 

Since the problem of electron correlation connects the scattering and bound-state 
portions of the theoretical description of electronic collisions, it is important for 
any method to be able to treat all electron correlation on the same footing. For 
that reason it is highly desirable to be able to formulate the scattering problem 
in such a way that the arsenal of computational tools developed for quantum 
chemistry is easily incorporated into the scattering calculation. 

The complex Kohn method (Miller and Jansen op de Haar 1987; McCurdy et 
al. 1987; Rescigno et al. 1989, 1990; McCurdy and Rescigno 1989; Parker et al. 
1991) is based on a variational principle for the T -matrix, Tr,ro, for transitions 
between states r and ro, which takes the form 

Tr,ro [wr, wrol = T:;i~o - 2 J Wr(H - E) Wro , (3) 

where Tt~i~o appears in the asymptotic forms of the trial wavefunctions W rand 
W ro as described in the following section. The advantages of this approach 
arise largely because the working equations which devolve from (3) involve only 
matrix elements of the Hamiltonian H, and therefore the connection with and 
incorporation of techniques of bound-state quantum chemistry is as straightforward 
as possible. 

In the following section we outline the complex Kohn method and describe 
the correlated trial wavefunction which is employed in the elastic scattering 
calculations we present here. In Section 3 we describe some results for electronic 
collisions with methane, silane and ethane. Finally, in Section 4, we discuss how 
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the problem of consistency between the treatment of correlation in the target 
and in the (N + I)-electron scattering system is addressed by the simple ab initio 
approach we illustrate here. 

2. Theory 

(2a) Complex Kohn Method for Electron-Molecule Scattering 

The complex Kohn method has been discussed at length in a number of papers, 
and has recently been employed in several studies of low-energy electron-molecule 
scattering (Miller and Jansen op de Haar 1987; McCurdy et al. 1987; Rescigno et 
al. 1989, 1990; McCurdy and Rescigno 1989; Parker et al. 1991; Lengsfield et al. 
1991). For that reason we only briefly outline the method here and discuss the 
form of the trial scattering function that is employed in the Kohn calculations 
reported below. 

For application to electron scattering we tailor the trial wavefunction to 
make the interface with electronic structure calculations easy. The sum in (2) is 
partitioned to separate the contributions of open and closed channels. Furthermore 
the closed channel contributions, which can be thought of as (N + I)-electron 
correlation terms, are expressed in terms of (N + I)-electron configurations of 
Gaussian orbitals. Thus the trial scattering wavefunction for scattering from an 
initial state r' is chosen to be of the form 

"" "" r l ~ tffT' = w A {Xr(rl, ... ,rn )FrT'(rn +1)} + w d/L '::::/L(rl, ... ,rn +1). (4) 
r /L 

The one-electron scattering orbitals FrT' are expanded in Bessel functions and 
cartesian Gaussians as explained in McCurdy and Rescigno (1989): 

"" rrl "" r rrl r Frrl = w Cu CPu + W (JIm timml till' tirT' + Timl/ml glm), (5) 
u 1m 

where fir;. and gf,.,. are incoming and outgoing continuum functions respectively. 
The continuum functions behave asymptotically as linearly independent regular 
and outgoing Ricatti-Bessel and Hankel functions, 

fir;. rv krl/2 sin(kr r - l7r /2) 

gf,.,. rv kr1/ 2 exp[i(kr r - l7r /2)] 

asrrvoo, 

asrrvoo. 

(6) 

(7) 

The square-integrable scattering functions CPu in (5) are orthogonal to the orbitals 
occupied in the target wavefunctions, Xr. The (N + I)-electron configuration state 
functions (CSFs) E/L which appear in (5) are used, as noted above, to incorporate 
the effects of closed channels [and therefore (N + I)-electron correlation] in the 
trial scattering function. In cases where there are open shell contributions to the 
target wavefunction, some of these (N + I)-electron CSFs are needed to relax 
the constraint that the one-electron scattering function FrT' be orthogonal to 
the orbitals occupied in the target wavefunction. 

The calculations we report here are for elastic scattering so there is only one 
state Xr, and the closed channels are included in the second term in (4). In 
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this study, we employ a trial scattering function we call a polarised-SCF trial 
scattering function. In this case xr is a self-consistent field (SCF) wavefunction 
for the ground state, and the closed channels are single excitations from the SCF 
wavefunction as described below. The T matrix elements,T/J;:ml, appearing in 
(5) are the fundamental dynamical quantities which determine the scattering cross 
sections. The stationary expression for the T matrix is obtained by differentiating 
the Kohn functional 

T[lP] = Ttrial - 2 J (PlP)(Heff - E) (PlP) , (8) 

where the Feshbach projection operator P projects on the open-channel space. 
In (8) Feshbach partitioning has been used to define an effective Hamiltonian 

Heff = Hpp + HpQ(E - HQQ)-lHQp 

= Hpp + Vopt • 

(9) 

(10) 

The energy-dependent optical potential Vopt describes target polarisation and 
relaxes the orthogonality constraints imposed on the one-electron scattering 
function Frrl. In equations (8)-(10) the P-space consists of all the configurations 
generated by the first term in (4), which is denoted as (PlP) in (8), and the 
Q-space is composed of the (N + I)-electron configurations =,.. in the second 
term of this equation. The (N + 1 )-electron configuration state functions (CSFs) 
comprising Q-space in this trial function have been formally incorporated into 
the optical potential and will not explicitly appear in the T-matrix expression 
in this formulation of the Kohn method. Polarisation is introduced in this trial 
function by including in Q-space those (N + I)-electron CSFs that are the direct 
product of closed-channel wavefunctions and square-integrable functions. In the 
polarised-SCF trial function employed in this study, closed-channel wavefunctions 
are generated by singly exciting the orbitals occupied in the SCF wavefunction 
of the target. Instead of using all of the virtual orbitals to define a space of 
singly excited CSFs, only a subset of these virtual orbitals, the polarised virtual 
orbitals, is used (Lengsfield et al. 1991). The polarisability obtained from the 
closed channels described in this reduced singly excited space is found to agree 
with the value obtained in the calculations which employed the full singly excited 
virtual orbital space to one per cent. This transformation to the polarised orbital 
basis produces a much more compact trial function and also provides a better 
balance of the short-range interactions which arise in these calculations. This last 
point was discussed in some detail in Lengsfield et al. (1991). The transformation 
that is used to define this polarised virtual orbital subspace will be discussed in 
the next section. 

Finally, we note that the entire discussion in this section has treated the 
coordinates of the nuclei of the molecule as fixed parameters. Thus, these 
calculations are done in the 'fixed-nuclei' approximation, and the T-matrix in 
(3) and (5) provides the information necessary to construct total and differential 
scattering cross sections within the framework of that approximation. The 
procedure for doing so is discussed in McCurdy and Rescigno (1989) and Rescigno 
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et al. (1990), and requires an average of the cross section over molecular 
orientations. Dynamical coupling of the electronic motion to the rotational and 
vibrational degrees of freedom is neglected in fixed-nuclei calculations, although 
one may approximate the effects of these couplings using theories which exploit 
the parametric dependence of the T-matrix on the nuclear coordinates (Lane 
1980). 

(2b) Polarised Orbitals 

The notion of a polarised orbital in scattering calculations can be said to 
have originated with the polarised orbital method of Callaway (1957), Callaway 
et al. (1968), Temkin and Lamkin (1961). We have discussed its adaptation and 
refinement in the context of the complex Kohn method elsewhere (Lengsfield et 
al. 1991), but we summarise it here because it is essential to the physics of the 
polarised-SCF trial function. 

The first order perturbation theory expression for a component of the dipole 
polarisability of an atom or molecule is 

O!k = 2 L (Pi , ILk 'Po) 2 

i¥O Ei - Eo ' 
(11) 

where ILk is a component of the dipole operator, Po is the target wavefunction 
and Eo is its energy. Here Pi is an excited state wavefunction with energy 
Ei . If we adopt an independent orbital approximation, where one orbital will 
be polarised and all of the other orbitals frozen, this polarisability expression 
reduces to a simpler form which only requires the construction of one-electron 
Fock operators, 

virtual 
O!n,k = 2 L ('Pi' ILk , 'Pn ) 2 

i¥n Ei - En 
(12) 

where 'Pn is the Hartree-Fock (HF) orbital that is being polarised and En is 
its HF eigenvalue. In order to employ this simple polarisability expression the 
virtual orbitals must be eigenfunctions of a one-electron VN-l Fock operator, 
and thus in (12) 'Pi is an improved virtual orbital (IVO) , an eigenvector of the 
one-electron IVO or VN - 1 Hamiltonian, FIVO, with eigenvalue Ei: 

FIVo = Te + Vnuc + 2Jm - Km + I n + Kn . (13) 

Here Te is a one-electron kinetic energy operator, Vnuc is the electron-nuclear 
attraction operator, and Jm and Km are the Coulomb and exchange operators 
for the set of doubly occupied orbitals, less the orbital that is being polarised. 
Further, I n and Kn are the Coulomb and exchange operators of the valence orbital 
that is being polarised. Similarly, in this independent-orbital approximation the 
expression for a first-order perturbed orbital is 

virtual 
'P;',k = L 'Pi ('Pi , ILk , 'Pn ) 

Ei - En 
(14) 
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It can be easily seen that this orbital can also be constructed by diagonalising 
the matrix (Lengsfield et al. 1991) 

n,k (<pi I J.Lk I <Pn) (<Pn I J.Lk I <pj ) p .. = 
'3 (€i - €n)(€j - En) 

(15) 

This operator has the property that it has at most one nonzero, positive eigenvalue. 
The eigenvectors of this operator are the polarised virtual orbitals we seek. 
In general, three polarised orbitals will be generated for each occupied valence 
orbital, one orbital being generated for each component of the dipole operator. 
Fewer than three polarised orbitals will be obtained if the Gaussian basis set 
does not contain (1 + 1) angular momentum functions, where 1 is the angular 
momentum of the orbital being polarised. This procedure is repeated for each 
occupied orbital shell and the resulting polarised orbitals are orthogonalised. 
The closed-channel wavefunctions that are used to define Q-space in our Kohn 
calculations are then constructed by singly exciting the valence orbitals into the 
polarised orbital space. 
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Fig. 1. Low-energy cross sections obtained for elastic electron-methane collisions. 
Experimental results are from Sohn et al. (1986). 

3. Results of Calculations on Electronic Collisions with Polyatomic Targets 

(3a) Low-energy Electron-CH4 Collisions 

Our calculations for methane make use of a contracted Gaussian basis consisting 
of (12s,6p)/[8s,4p] on the carbon, (6s,lp)/[3s,lp] on the hydrogens, and an 
additional diffuse s-type function on the hydrogens together with (Is, 2p, 5d) 
diffuse functions on the carbon. It is well known that the static-exchange 
approximation fails to produce any Ramsauer-Townsend (RT) minimum in the 
cross section for this molecule (Lengsfield et al. 1991; Lima et al. 1989). In 
Fig. 1 we compare our polarised SCF results with experimental values below 
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Fig. 2. Differential cross sections at (a) 0·5 eV and (b) 3·0 eV with l < 2 contributions from 
the polarised-Born approximation. Triangles are the experimental results of Sohn et al. (1986). 

0·6 eV. It is clear that the polarised SCF trial function quantitatively describes 
the Rarnsauer minimum. Moreover, it is apparent that in the molecular case 
higher partial waves modify and partially obscure the dramatic RT minimum in 
the contribution from overall 2 Al symmetry which is dominated by the s-wave. 

Differential cross sections, in which partial waves for l < 2 are included in the 
Born approximation, are shown in Fig. 2. At 0·5 eV, near the location of the 
RT minimum, the sharp dip in the experimental cross section near 60° is not 
reproduced exactly by our complex Kohn calculations. However, at 3·0 eV the 
theoretical and experimental cross sections agree nearly exactly. It is substantially 
more difficult to reproduce differential cross sections in the RT energy range, 
because over that range the relative contributions of various partial waves are 
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Fig. 3. Integrated cross sections for electron-silane elastic scattering. 
The dashed curve is the static-exchange result from Temkin and 
Lamkin (1961); dotted curve, the present static-exchange results with 
basis A; dot-dash curve, the polarised-SCF results with basis A; and 
solid curve, polarised-SCF results with basis B. Experimental results: 
stars, O. Sueoka (personal communication; see Winstead and McKoy 
1990); circles, Wan et al. (1989). 

changing rapidly, and the differential cross section changes radically with small 
energy changes, as we will demonstrate in another case below. Other calculations 
on CH4 are discussed in Lengsfield et al. (1991). These calculations were the 
first to indicate that the polarised SCF trial function is sufficient to provide a 
quantitative description of low-energy elastic collisions for a polyatomic target. 

(3b) Low-energy Electron-SiH4 Collisions 

For our calculations on silane we employed a silicon basis of (lls,6p)/[5s,2p] 
contracted Gaussians augmented by (4s,6p) diffuse functions. A (5s, 1p)/[3s, 1p] 
basis was used on the hydrogens. Two additional augmentations of diffuse 
Gaussians were used: (4d, 3f) on the silicon, to which we refer as basis A, and 
(7d) on silicon, which is basis B. The polarisabilities computed using basis sets A 
and B are 29 .151a3 and 32· 365a3, respectively, both of which compare favourably 
with the experimental value of 30·368a3. 

In Fig. 3 we compare the calculated integral cross section with recent 
experiments. Several features of the calculation are immediately apparent. First 
of all, the static-exchange approximation fails totally to provide a description 
of the RT minimum and disagrees with experiment below 5 eV. Both basis A 
and basis B predict the RT minimum correctly, with the differences between 
the two calculations roughly indicating the uncertainty introduced by our finite 
basis expansion. Finally the d-wave shape resonance near 3 eV is correctly 
predicted, but appears slightly sharper than the experimental observation. There 
may be several reasons for that discrepancy, and we speculate that the fixed 
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nuclei approximation employed in these calculations may be a major cause, in 
addition to the contributions which a more complete treatment of correlation 
would include. Fig. 4a shows the differential cross section at 3 eV. While a clear 
d-wave character is seen in the calculated differential cross section, there is a 
significant discrepancy with experiment in the forward direction. On the other 
hand, at 4 eV, away from the resonance, there is much better agreement with 
experiment as shown in Fig. 4b. 

Finally, we show the calculated differential cross sections in the RT region 
in Fig. 5. As the incident energy is scanned through the RT minimum the 
differential cross section changes radically. The s-wave contribution goes through 
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Fig. 5. Differential cross sections for electron-silane scattering below 
1 eV using the complex polarised-SCF method and basis B. Each 
curve is labelled with the incident electron energy in eV: 

a rrummum and the interference with higher partial waves changes character 
rapidly. Our calculations suggest that such a rapid variation in differential cross 
section at low energies characterises RT minima in polyatomic molecules. The 
large size and asymmetry of these molecules results in significant contributions 
from higher partial waves in the RT region which can increaase rapidly with 
increasing energy. Further calculations on low-energy electron-SiH4 collisions are 
presented elsewhere (Sun et al. 1992a). 

(3c) Low-energy Electron-C2 H6 Collisions 

The case of ethane is interesting because the low barrier to internal rotation 
(0·13 eV) allows a significant amount of hindered rotation at room temperature. 
One can therefore ask what is the effect on the electron scattering cross section 
of conformational changes in the molecule. For our calculations on ethane 
we employed a (lOs, 6p, 1d)/[5s, 3p, 1d] contracted basis on the carbons and a 
(5s, 1p)/[2s, 1p] contracted basis on the hydrogens, together with (5s, 3p, 2d) 
functions at the centre of mass of the molecule. Two further augmentations with 
diffuse Gaussians were employed: basis A with (2p,2d) diffuse functions at the 
centre of mass, and basis B with (3p, 3d, 3f) functions at the centre of mass. 

In Fig. 6 we compare the integral cross sections computed at both the eclipsed 
and staggered geometries with available experiments. In the RT minimum region 
there is little difference between the results for the two conformers, but a significant 
difference is seen in the vicinity of the broad shape resonance near 7·5 eV. The 
shape resonance is predominantly f-wave in character. The staggered geometry 
produces a sharper, lower energy resonance, apparently because the presence of 
a centre of inversion in this conformer decouples even and odd values of the 
angular momentum quantum number l, and provides fewer couplings leading to 
the decay of the resonance. There are no experimental observations of the total 
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cross section below 2 e V available, and our calculations therefore predict a clear 
RT minimum will be seen near 0·18 eV, as suggested indirectly by momentum 
transfer measurements discussed below. 

Differential cross sections are shown for 2 and 4 eV in Fig. 7. The strong 
d-wave character is apparent in these cross sections as well as the fact that 
there is only a small difference in the cross sections for eclipsed and staggered 
geometries at these energies. The similarity of the results for the two geometries 
is suggested by the small variation in polarisability with changing conformation. 
We find polarisabilities of 29· 04ag for the eclipsed and 29· 20ag for the staggered 
geometry, as compared with the experimental value of 30· 17ag. 

Finally, the momentum transfer cross section is shown in Fig. 8 and compared 
with values derived from two swarm experiments. The RT minimum is clearly 
seen in all the results. Above 0·3 e V the experimental determinations disagree 
with each other dramatically, and our results clearly suggest which is correct. 
Further results of our calculations on this system are presented elsewhere (Sun 
et al. 1992b). 

4. Discussion 

The simple polarised-SCF trial function described here apparently· describes 
low-energy electron-polyatomic molecule collisions in near quantitative fashion, 
with a few discrepancies at shape resonances as we have noted. After our 
emphasis in Section 1 on the question of consistency in the treatment of N - and 
(N + I)-electron correlation effects, one can ask how the polarised-SCF approach 
provides that consistency. 

All of the Q-space configurations in the polarised-SCF trial function are formed 
by adding an electron to a configuration which is a single excitation from the 
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Hartree-Fock target wavefunction. The P-space configurations are constructed by 
adding an electron to the target wavefunction. As the scattered electron recedes 
from the target the coupling between channels which remains is determined by 
a matrix element of the Hamiltonian between the Hartree-Fock ground state 
and a single excited configuration. That matrix element vanishes by Brillouin's 
theorem. This point is the underlying reason that the ground state wavefunction 
and energy are not modified implicitly by the inclusion of the Q-space correlating 
configurations in these calculations. 

The case of correlated target wavefunctions is obviously more complicated, 
and we defer a discussion of that case to a later publication. The encouraging 
result of the studies reported here is that some common features, which are pure 
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correlation effects, of electron-polyatomic molecule scattering are well described 
by this simple ab initio treatment of correlation. 
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