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Some recent studies of electron swarms in gases under the action of an electric field are 
introduced. The studies include a new type of continuity equation for electrons having a 
form in which the partial derivative of the electron density with respect to position and 
to time are interchanged, a method to deduce the time-of-flight and arrival-time-spectrum 
swarm parameters based on a Fourier-transformed Boltzmann equation, an examination of 
the correspondence between experimental and theoretical electron drift velocities, and an 
automatic technique to deduce the electron-gas molecule collision cross section from electron 
drift velocity data. We also briefly introduce a method for the deduction of electron collision 
cross sections with gas molecules having vibrational excitation cross sections greater than the 
elastic momentum transfer cross section by using a gas mixture technique, an integral type of 
method for solution of the Boltzmann equation with salient numerical stability, a quantitative 
analysis of the effect of Penning ionisation, and the behaviour of electron swarms under radio 
frequency electric fields. 

1. Introduction 

The significance for physics of studying electron swarms is threefold. The first 
is that the study deepens our understanding of the mechanism by which a group 
of charged particles drifts in an array of randomly dispersed point scatterers 
under an electric field. This also stimulates the development of techniques by 
which the properties of electron swarms are analysed. The second is that the 
parameters characterising the properties of swarms, often referred to as electron 
swarm parameters, are determined by the study. These parameters are important 
not only for characterising the properties of electron swarms in a variety of 
gases, but also for analysing, predicting and simulating the properties of gas 
discharges and gas discharge plasmas. We live in an era in which gas discharges 
and discharge plasmas play an important role in dealing with environmental 
problems, in manufacturing electronic devices such as VLSls and solar cells, and 
in the design of electrical insulation which supports the present day electricity 
transportation systems. The third is that the study enables us to determine the 
electron-gas molecule collision cross sections. The technique by which the cross 
section is worked out by electron swarm studies is independent of other methods 
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of determining the cross sections and has its own characteristic advantages in 
certain circumstances .. 

In what follows, some recent developments in the study of electron swarms 
and their applications are described. One thing that must be borne in mind is 
that the topics treated here are by no means comprehensive, and other authors 
would treat different features of the properties of electron swarms. 

2. Arrival Time Spectrum Representation-A New Form of Continuity Equation 

The equation of continuity of electrons in gases is important for representing 
the behaviour of the species which plays the main role in gas discharges and gas 
discharge plasmas. Until recently, a type of continuity equation represented by 
equation (1) was regarded as unique: 

8n 8n 82n (82n 82n) 83n 
-8 = Vi n - Wr - + DL --2 + DT --2 + --2 - D3 --3 + .... 

t 8z 8z 8x 8y 8z 
(1) 

Here n == n(x, y, z, t) is the electron density, Vi is the ionisation frequency, Wr 
is the centre-of-mass, or centroid, drift velocity, DL and DT are respectively 
the longitudinal and transverse diffusion coefficients and D3 is a higher order 
coefficient. The electric field is assumed to be uniform and in the inverse z 
direction. Equation (1) has been used practically in all treatments in which 
continuity of electrons in electron swarms and in weakly ionised gases is considered 
quantitatively (e.g. Huxley and Crompton 1974). It is to be noted that, when 
integrated with respect to x, y and z, equation (1) reduces to the form 

where 

dN =Vi N , 
dt 

N == J J J n(x, y, z, t) dx dy dz 

is the number of electrons in the electron swarm at time t. 

(2) 

In a previous paper (Tagashira et al. 1977) we pointed out that the drift 
velocity Wr, defined as the centre-of-mass velocity, and the drift velocity Wm' 
defined as the ratio of the distance between two positions in the field direction 
to the difference between the mean arrival times of the electrons at the positions, 
generally assume different values if electron impact ionisation of gas molecules 
and/or electron attachment to the molecules exist. 

It is interesting to note that the definition of these two drift velocities are 
symmetric with respect to time and position: 

Wr=d(z) 
dt ' 

dz 
Wm = dt' 

(3) 

(4) 
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Here, < z) is the average position of electrons in a swarm at a time in the field 
direction and t is the mean arrival time of electrons at a position in the field 
direction. 

Another example of such a symmetry is the well-known formula for electron 
current growth in the steady-state Townsend experiment: 

where 

dn(z) = aT n(z) , 
dz 

n(z):= J J J n(x,y,z,t) dx dy dt 

is the number density of electrons at z in the field direction. 

(5) 

The symmetry between equations (2) and (5) is obvious; t and VI in equaton 
(2) are respectively replaced by z and a r in equation (5). The symmetries 
between equations (3) and (4) and also between (2) and (5) strongly suggest 
that there might be another method of representing the development of electron 
swarms, in which the position z and the time t are interchanged. 

Recently, Kondo and Tagashira (1990) worked out a representation along this 
line. The analysis starts with a Boltzmann equation, however, the continuity 
equation will be introduced here instead since it is of greater interest to investigators 
working on electron swarms in gases, gas discharges and weakly ionised plasmas. 
The new continuity equation is written as 

an an a2n a3n 
- = aD n - al - + a2 -2 - a3 -3 + ... , 
az at at at 

(6) 

where 

n:=n(z,t) = J J n(x,y,z,t)dxdy 

is the number density of electrons in the field direction and the a are the electron 
swarm parameters as follows: ao:= aT is the Townsend first ionisation coefficient, 
al := l/Wm is the reciprocal of the mean arrival time drift velocity as given by 
equation (4), a2 is a parameter representing longitudinal diffusion and therefore 
closely related to the longitudinal diffusion coefficient, and a3 is a higher order 
coefficient. 

In the deduction of equation (6), it is assumed that an/at is the small expansion 
parameter, in contrast to previous works where \In was the relevant expansion 
parameter. Interchanging the roles of z and t is equivalent to exchanging the 
roles of wand k in the dispersion relation given subsequently. 

It is interesting to note that equation (5) is deduced if both sides of equation 
(6) are integrated with respect to time t. This is similar to the way in which 
equation (2) is deduced from (1). 

A few comments can be made on the new continuity equation (6). It has been 
shown that the 'a' parameters in (6) are related to the parameters which may 
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be referred to as 'w' parameters (Tagashira et al. 1977; Kondo and Tagashira 
1990) in (1) as follows: 

Wo - ao WI + (ao)2w2 - (ao)3 w3 + ... = 0, 

ao - Wo al + (wo)2a2 - (wO)3 a3 + ... = 0, 

wl l = al - 2wo a2 + 3(WO)2a3 - ... , 

all = WI - 2ao W2 + 3(aO)2w3 - ... , etc. , 

(7a) 

(7b) 

(8a) 

(8b) 

where Wo = Vb WI = Wr , W2 = D L, W3 = D3 , ... , and the a have already been 
given above. 

A salient feature of the new treatment is that W m is calculated directly 
from the Boltzmann equation, while the conventional treatment must calculate 
in principle an infinite number of parameters as equation (8b) shows. The new 
treatment is essentially based on the arrival time distribution of electrons and 
its moments at positions in the field direction (Kondo and Tagashira 1990), and 
therefore this type of treatment may be called the arrival time spectrum (ATS) 
analysis. In contrast, the conventional analysis based on equation (1) relies on 
the flight distance distribution of electrons and its moments, and may be called 
the flight distance spectrum (FDS) analysis. Kondo and Tagashira (1990) also 
treated eigenvalue problems associated with the ATS and FDS analyses. 

In closing this introduction to the ATS analysis, it should be mentioned that 
only the continuity equation (6) in the field direction has been deduced so far. 
The continuity equation in the perpendicular direction to the field has not been 
obtained. 

3. Swarm Parameters deduced from a Fourier-transformed Form of the Boltzmann 
Equation 

It has been shown that the Boltzmann equation for electron swarms under 
the action of a uniform electric field in gases has a solution in terms of a Fourier 
integral (Parker and Lowke 1969; Tagashira et al. 1977; Kumar et al. 1980): 

1 J . f(z, v, t) = - dk f(k, v) exp{l kz - w(k)t} , 
27f 

(9) 

where 

f(z, v, t) = J J f(x, y, z, v, t) dx dy 

is the electron velocity distribution, k is the Fourier parameter, v is the electron 
velocity and 

w(k) = - L wr(-ikt, 

f(k,v) = L fr(v)(-ikt· 

(lOa) 

(lOb) 

The physical interpretation of Wr (r = 0,1,2, ... ) was given in the previous section, 
while f(k, v) and w(k) are respectively the electron velocity distribution of the 
k component and its eigenvalue. 
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Putting equation (9) into the usual Boltzmann equation for electron swarms, 
the following equation for f(k, v) and w(k) is obtained (Date et al. 1992): 

(-W(k)+ivzk+ e:;: 8~z +J)f(k,v)=O. 

Here J is the collision operator for electron-gas molecule scattering. 
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Fig. 1. Plot of w(k) versus ik for krypton. 

(11) 

By solving equation (11), w(k) is obtained, and by a curve-fitting with ik as 
the parameter, the Wr (r = 0, 1,2, ... ) are obtained. A plot of w(k) for an actual 
krypton gas is shown in Fig. 1. As equation (lOa) shows, the intersection of 
w(k) with the vertical axis gives Wo = vi, the ionisation frequency, and the slope 
at the intersection equals W2 = Wr, the centre-of-mass drift velocity. In contrast, 
it can be shown (Kondo and Tagashira 1990) that the intersection of w(k) with 
the horizontal axis gives ao == aT, the ionisation coefficient, and the slope there 
represents all == Wm' the mean arrival time drift velocity. Robson (1990, 1991) 
has shown the w(k) versus ik relationship for a Fokker-Planck model collision 
operator and shown that the same conclusion as above is obtained. The plot 
of w(k) as a function of ik in Fig. 1 for krypton clearly shows that w(k) is 
downward convex and does not go through the origin. This fact demonstrates 
that the centre-of-mass drift velocity Wr is, in general, not equal to the mean 
arrival time drift velocity Wm when ionisation is present, in accordance with the 
prediction of a previous paper concerning the effects of ionisation on the electron 
swarm parameters (Tagashira et al. 1977). At the lower EjN value (=200 Td) 
shown in Fig. 1, the ionisation is less prominent and the w(k) versus ik curve 
runs closer to the origin, giving a smaller ionisation frequency and ionisation 
coefficient. If ionisation is negligible, the curve should go through the origin, 
giving Vi = aT = 0 and Wr = Wm' the latter being in agreement with the result 
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predicted by Tagashira et al. (1977) and confirmed by Kondo and Tagashira 
(1990). The works by Robson (1990, 1991) are also in qualitative agreement with 
these results. This seems to support the prediction of Tagashira et al. (1977) on 
the effect of the presence of ionisation and/or attachment on the electron swarm 
parameters, at least qualitatively. 

A numerical subtlety for deduction of the time-of-flight and arrival-time
spectrum swarm parameters from equation (11), as touched earlier, is explained 
here. Although the w parameters wo, Wt, W2, ... and the a parameters ao, at, a2, ... 
can in principle be deduced from the intersections and the derivatives at the 
horizontal and vertical axes of the w( k) versus ik curve, as mentioned earlier, 
it would become increasingly difficult to deduce the parameters as the degree 
of the differentiation increases. A curve-fitting technique instead may be used 
for the purpose: the value of w(k) is calculated from equation (11) for various 
given values of ik and then the w(k) versus ik curve may be drawn for an actual 
gas as shown in Fig. 1, from which the w and a parameters are deduced by a 
curve-fitting technique. A salient feature of the technique is that only equation 
(11) needs to be solved and the higher order equations, which are more difficult to 
handle because of their numerical instability, are now unnecessary for deduction 
of the higher order parameters Wn and an, for n ~ 1. This method for deducing 
the parameters wand a has been demonstrated to work for actual gases in Date 
et al. (1992). 

The eigenvalue problem (11) and dispersion relation and the swarm parameter 
deduction and definition have been studied by many other authors; notably by 
Standish (1987, 1989), Phelps and Pitchford (1985), Yousfi et al. (1985) and 
Blevin and Fletcher (1984). 

4. Correspondence between Experimental and Theoretical Electron Drift Velocities 

Theoretical electron drift velocities may be defined either by the velocity Wr 
of the centre-of-mass motion, the reciprocal Wm of the derivative of the mean 
arrival time with respect to the observational position in the field direction, 
the simple mean Wv of the velocities of electrons in an isolated swarm, or 
the simple mean Vd of the velocities of electrons in a steady-state Townsend 
experiment (Tagashira et al. 1977). We note that in actual experiments, the 
electron drift velocity is sometimes measured in rather intuitive arrangements and 
analytical representation of the measurement is difficult. In this section, simple 
and well-known arrangements for the measurement of electron drift velocities are 
checked by a Monte Carlo simulation study. 

The experimental arrangements studied here are those by Schlumbohm (1965) 
and Frommhold (1959). In Schlumbohm's experiment the current flowing in a 
parallel plane gap due to the drift of an isolated electron swarm is measured and 
the transit time of an electron swarm is defined as the interval Tsc between the 
generation of the electron swarm at the cathode by a brief ultraviolet flash and 
the time at which the current reaches the peak. The Schlumbohm drift velocity 
is defined by 

Wsc = d/Tsc , (12) 

where d is the gap length. 
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Frommhold (1959) defined TFD as the interval between the generation of 
electrons at the cathode by a brief flash in a parallel plane gap and the eventual 
intersection of the logarithmic rise of the time-integrated gap current and the 
saturation value of the time-integrated current. The Frommhold drift velocity is 
then defined as 

WFD =d/TFD , 

where d is the electrode separation. 
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Fig. 2. Electron drift velocity as a function of E / N. 

(13) 

A calculation has been performed for CH4 (Satoh et al. 1991) and the results 
are shown in Fig. 2. In deducing Schlummbohm's Wsc and Frommhold's WFD, 
a differential form !:l.d/ !:l.Tsc or !:l.d/ !:l.TFD is used, rather than the original 
definition given in (12) and (13), to eliminate the gap length dependence of Wsc 
and WFD even at constant values of E/N, E and N being the electric field and 
the gas number density. 

Fig. 2 shows that none of the theoretical drift velocities agree with Wsc or 
WFD, and that Wsc and WFD are essentially different drift velocities. Though not 
shown in the figure, a comparison was made between WFD and W = (Wr + W m) /2 
which found that WFD closely agrees with W. The nature of W was discussed 
in Satoh et al. (1991) and Tagashira et al. (1977); see also Phelps and Pitchford 
(1985; their Reference 16). Fig. 2 also shows that Wsc is close to but slightly 
larger than Wm, the mean arrival time drift velocity. Similar calculations have 
been performed for a model gas with constant collision frequency, and for argon 
and SF6 to suggest that more or less similar results are obtained. 

In the calculation, a few simplifying assumptions are made: the effect of the 
duration of the initial ultraviolet flash is considered to be negligibly small, and 
the motion of ions generated by ionisation and/or attachment is neglected. The 
effect of secondary phenomena at the cathode is also neglected. The model has 
to be improved to evaluate these effects in the near future. 
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With all these assumptions, however, the present results strongly suggest that 
the correspondence between experimental and theoretical drift velocities can be 
complicated and comparison between them must be done with care. 

5. Deduction of the Momentum Transfer Cross Section from Electron Drift 
Velocity Data 

The electron-gas molecule collision cross section may be determined either by 
quantum mechanical calculations, by single beam experiments or by the swarm 
technique. The swarm technique relies on the use of high precision measurement 
data of swarm parameters, such as electron drift velocities, diffusion coefficients 
and the ionisation coefficient, and on a high precision technique for solving the 
Boltzmann equation. Here, an example of the swarm method in which the 
momentum transfer cross section in argon is deduced (Suzuki et al. 1990) is 
introduced. The experimental data on the electron drift velocity in argon as a 
function of E/N obtained by Robertson (1977) are used. 

An outline of the technique is as follows. A general property of the electron 
energy distribution is that its tail extends towards high energies as the reduced 
field E / N increases. The extended portion of the distribution may be used as 
'searcher' of the cross section at around the electron energies of the extended 
portion. An algorithm is set up so that this 'search' is performed automatically 
by consulting the drift velocity data through evaluation of the magnitude of the 
cross section at the 'searched' energy region by a Boltzmann equation technique. 
The deduction of the cross section then proceeds from low E / N to high E / N 
values, or vice versa, and is performed automatically. 

A technique of this kind has been developed by Suzuki et al. (1990) and applied 
to the momentum transfer cross section of argon. The result is shown in Fig. 3. 
We note that the result is obtained in principle without any prior knowledge 
of the momentum transfer cross section; that is to say, for the initial value of 
the cross section a constant value was assumed and the algorithm modified this 
value to deduce the cross section as in Fig. 3. Any shape for the initial cross 
section is found to give the same result. 

The deduced momentum transfer cross section in argon shows good agreement 
with the quantum mechanical calculation by Dasgupta and Bhatia (1985). Note 
that the two techniques are totally independent. Agreement with the results of 
other authors is also good, except for Yau et al. (1980). This result also presents 
a valuable and comprehensive check of previous cross sections from the swarm 
method point of view, since the electron swarm parameters calculated from the 
deduced cross section agree almost perfectly with the experimental values. 

6. Other Studies 

Four topics are briefly mentioned. One is the application of the gas mixture 
technique for the determination of electron-gas molecule collision cross sections 
in monosilane (Kurachi and Nakamura 1991). Since monosilane has a greater 
cross section for vibrational excitation than for momentum transfer, an analysis 
should be carried out with a multi-term Boltzmann equation technique rather 
than the so-called two-term expansion technique, if a pure gas is to be analysed. 
However, if monosilane is diluted with argon, say, the cross section of which is far 
less controversial, then the analysis becomes much simpler since the momentum 
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transfer cross section for elastic collisions of the mixture is much greater than 
the vibrational cross sections of the mixture and the two-term technique may 
be used to far higher accuracy. Also, the mixing ratio may be changed to 
make more precise analyses. For the determination of comprehensive sets of 
collision cross sections of, for example, etching gases, which in most cases have 
large vibrational excitation cross sections in comparison with elastic momentum 
transfer, the technique developed by Kurachi and Nakamura (1991) for the gas 
mixture becomes very important. 

An integral type of computational method for solution of the Boltzmann 
equation has been proposed by Ikuta and co-workers (Ikuta et al. 1991). Essential 
differences between this method and the path integral method (e.g. Skullerud 
and Kuhn 1983) have been discussed at past scientific meetings. Nevertheless, it 
is true that the method presents a useful and powerful means of deducing the 
electron energy distribution and swarm parameters under both dc and ac electric 
fields, in particular with excellent numerical stability. 

Penning ionisation is important in such applications of weakly ionised gases as 
discharge lamps and plasma displays. Sakai et al. (1989) have recently studied the 
effects of Penning ionisation on the properties of electron swarms in a variety of gases. 

Another topic is electron swarms in radio frequency (rf) fields. This is particularly 
inportant since rf fields are used in plasma processing of semiconductor devices 
and materials. Readers are referred to a recent review by Makabe (1991). 
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7. Concluding Remarks 

Some recent investigations into the properties of electron swarms and their 
applications in gases have been introduced. The study of electron swarms has 
a long history, yet it has been producing very interesting and useful results 
which enchant many scientific workers. The author believes that this well of 
enchantment will not run dry in the near future, despite vigorous investigations 
by keen researchers. 
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