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Abstract 

New electromagnetic Bianchi type I solutious with nonzero cosmological constant, which 
satisfy the field equations of a nonsymmetric gravitational theory, are obtained from static 
solutions. This is achieved by taking a limit of the nonsymmetric static solutions. 

1. Introduction 

It has been observed by Geroch (1969), in the context of General Relativity 
(GR) , that the procedure of taking limits of a family of solutions is coordinate 
dependent. As an example, Geroch considered the Schwarzschild solution and 
showed that both fiat and nonfiat spacetimes can be obtained as limiting 
cases. The idea is to redefine an existing parameter and introduce a coordinate 
transformation which depends on this parameter. The original metric is then 
transformed and the parameter is allowed to vanish. Such procedures have 
also been applied by Plebaiiski and Demianski (1976) to obtain the Tauh-NUT, 
Robinson-Bertotti and other GR solutions from their type D solution. 

The above limiting procedures will also work in other theories of gravity. We 
can take advantage of this to obtain new solutions from old ones without having 
to solve the field equations. This is very useful in the context of nonsymmetric 
theories of gravity where the field equations are very complicated even in the 
case of simple fundamental tensors. 

The theory of gravity considered in this paper is a member of the Algebraically 
Extended class of graVitational theories. The simplest of these theories, in which 
tensors on the spacetime manifold 4 M take their values in the algebra A of 
real numbers, is GR. The other theories in this class arise when one allows 
geometrical objects defined on the (real) spacetime, 4M, to take their values in 
an arbitrary algebra A. It has been shown by Mann (1984) that, apart from real 
numbers, only four algebras are acceptable. These are the complex, hypercomplex, 
quaternion and hyperquaternion numbers. The complex theory was first proposed 
as a possible theory of gravity by Moffat (1979). It has the interesting property 
that its solutions are, unlike those of GR, singularity free. This phenomenon 
occurs because the fundamental metric tensor has unphysical signature in a region 
surrounding the singularity. Thus, for example, the perfect fiuid cosmological 
solution derived by Kunstatter et al. (1980) displays finite spacetime curvature 
as well as finite density of matter at the beginning of expansion. 
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However, an analysis of the particle spectra by Kelly and Mann (1986) revealed 
that the complex, quaternion and hyperquaternion versions contain ghost particles 
and must therefore be rejected on physical grounds. This leaves the hypercomplex 
theory as the only viable algebraic extension of GR. Consequently we confine 
ourselves to finding solutions of the hypercomplex nonsymmetric theory which is 
known in the literature as NGT. 

In the following section we shall write down the NGT field equations in the 
presence of a sourceless electromagnetic field. In Section 3 we shall illustrate 
the limiting procedure by obtaining a vacuum-plane symmetric NGT Bianchi 
type I solution from the NGT Schwarzschild solution. In Section 4 we solve the 
NGT field equations to get electromagnetic solutions with nonzero cosmological 
constant. These solutions are used in the final section to obtain an electromagnetic 
cosmological solution with nonzero cosmological constant. 

2. Field Equations 

The gravitational field is determined, in the hypercomplex theory, by a 
nonsymmetric pseudo-Hermitian tensor g/-,v which can be decomposed into 
symmetric and antisymmetric parts: 

g/-,V = gC/-'v) + g[/-,v] • (1) 

There is more than one way of constructing the contravariant tensor g/-'v. We 
shall define it by the relation 

g/-'V gAV = gV/-' gVA = 8A/-' • (2) 

In the case of the complex theory g[/-,v] is purely imaginary, whereas in the 
hypercomplex theory considered in this paper it is real. 

A nonsymmetric pseudo-Hermitian affine connection r /-'v A is obtained by solving 

Ow g/-,v - r /-'w a gay - r wv a g/-,a = O. (3) 

The order of indices is, as shown by Hlavaty (1957), of the utmost importance. 
This set of linear equations can be solved by elimination or an inversion formula 
derived by Tonnelat (1954) may be employed. The symmetric part of the 
connection can be written in terms of the antisymmetric part as 

rc/-'V/' = {tv} + ,f3P (r[/-,pt g[av] + r[vpt g[a/-,]) , (4) 

where 

{$J = ~,f3P (ov9C/-'p) + o/-,gcpv) - opgC/-'v)) , ,f3P gCap) = 8af3 • (5) 

The antisymmetric part of the connection is given by a very complicated expression 
(see Tonnelat 1954) which, even for simple metrics, is best evaluated using an 
algebraic manipulator. 

Once the pseudo-Hermitian connection coefficients have been calculated we 
can construct, following Moffat (1984), a nonsymmetric Ricci tensor 

R/-'v(r) = oa r /-'v a - Ov r /-,a a - r avf3 r /-'f3 a + r af3 f3 r /-'v a . (6) 
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The field equations to be solved are given by 

rr!-'v] 

R(!-'v)(r) + Ag(!-,v) 

R[!-'v,p] (r) + Ag[!-,v,p] 

0, 

87f S(!-'v) , 

87f S[!-'v,p] , 
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(7a) 

(7b) 

(7c) 

where A is the cosmological constant, S!-'v is constructed from the metric tensor 
and the matter energy-momentum tensor, 

S!-'v = T!-'v - ~ g!-'v gOlf! Taf!, (8) 

and R[!-'v,p] is defined by 

R[!-'V,A] = 8A R[!-'v] + 8!-, R[VA] + 8v R[A!-'] . (9) 

It should be noted that the NGT affine connection and the field equations 
reduce to those of GR whenever g[!-'v] = o. Consequently all solutions of the GR 
field equations are special solutions of the NGT field equations. 

3. A Simple Example 

As an example Geroch (1969) showed how to obtain the plane-symmetric 
Kasner and Minkowski spacetimes from the Schwarzschild metric. This limiting 
procedure can be generalised to the NGT theory in a straightforward manner, 
as shown by the following calculation. 

Consider the NGT generalisation of the Schwarzschild solution 

2' 2m 2 222m C1 2 ( )-1 () { 2} ds = - 1 - -;:- dr - r do' + 1 - -;:- 1 + r4 (1 + c~) dT , 

g[14] = r2 VI + c~ , 
C1 

g[23] = -C2 r2 sin () , (10) 

where m, C1, C2 are constants and d0,2 == d(P + sin2 () d¢2. Note that this solution 
reduces to the GR Schwarzschild solution if we set the NGT parameters C1 and 
C2 to zero. A parameter £ such that 

2m = £-3, -2 
C1 C£ , (11) 

is introduced, we apply the following coordinate transformation 

r £-1 T, T=£R, ()=£p, (12) 

to (10) and take the limit £ ---+ O. The result of these operations is 

ds2 = -- 1 + dR2 - T2 (dp2 + p2 dA.2) + T dT2 1 { c2
} 

T T4 (1 + c~) 'f" 

C 
g[23] = -C2 T2 p. (13) , 

g[14] = T2 VI + c~ 
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If we apply to this solution another coordinate transformation, defined by 

T (3/2?/3 t 2/ 3 , R = (3/2//3 x, 

p (3/2)-2/3 y'y2 + z2, <p = tan-l(z/y), 

and introduce a new constant Cl = (3/2)-4/3 C then 

ds2 = _C2/3 {I + ci } dx2 _ t4/3 (dy2 + dz2) + dt2 
t 8/ 3 (1 + c~) , 

Cl t-5/ 3 , 

g[14] = VI + c~ g[23] = -C2 t4/3 . 

(14) 

(15) 

It can be checked by direct calculation that the above solution satisfies the 
vacuum NGT field equations. In fact, it is a generalisation of the plane-symmetric 
NGT solution derived by Kunstatter et al. (1979). Thus we have obtained an 
NGT generalisation of the plane-symmetric Kasner solution by taking a limit of 
the NGT-Schwarzschild solution. 

4. Static Electromagnetic NGT Solutions with Nonzero Cosmological Constant 

We can take advantage of this method in order to derive the NGT version of 
the plane-symmetric Bianchi I solution with sourceless electromagnetic field and 
nonzero cosmological constant. As a first step we shall derive the appropriate 
spherically symmetric NGT solution. The static NGT metric can be expressed, 
in terms of coordinates (r, e, <p, T) and a parameter k, in the Papapetrou form 

_ (-a~(r) 
gJ-!l/ - 0 

-b14(r) 

o 
-a22(r) 

-b23 (r) h(e, k) 

o 

o b14(r)l 
b23 (X) h(e, k) 0 

2 ' -a22(r) h (e, k) 0 

o a44(r) 

(16a) 

and the corresponding electromagnetic field tensor (which inherits the symmetry 
properties of g(J-!l/)) is given by 

( 

0 

o 
fl-'l/ = 0 

-e14(r) 

o 
o 

-e23(r)h(e,k) 

o 

o 
e23(r) h(e, k) 

o 
o 

e'fl· (16b) 

The field equations to be satisfied are (3) and (7) together with Maxwell's 
equations. The field equation (3) can be solved by implementing Tonnelat's 
(1954) inversion formula. An algebraic manipulator such as REDUCE can be 
used for this purpose. The resulting nonzero connection coefficients are 
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where 

A 3 __ , 
r[12] - 2h r[13]2 = _ hA 

2 ' 
b14 B 1 ___ , 

r[14] - 2aU 

1 h 
r[23] = 2A (b23 C - a22 A), 

r 2 r 3 b C [24] = [34] 14 
2au ' 

, 
r 1 _ au 

u - 2 ' au 

2 3 _ C 
r(12) = r(13) - 2 ' 

r 4 bI4B a44' 
(14) = + --

2au a44 2a44 

3 _ ~ 
r(23) - h' 

b14 A 3 ___ , 
r (24) - 2au h 

1 1 r 22 = - --(a22 C + b23 A), 
2au 

1 h2 
r33 = - -(a22 C + b23 A), 

2au 
, 

b2 B a44 1 ~ + __ , 
r 44 = a2 2au 

2 • 
r33 = -hh, 

hb14 A 2 ___ ._ , 
r(34) - 2au 

A _ a22 b23' - b23 a22' 
- 2 2 

a22 + b23 

C _ b23 b23' + a22 a22' 
- 2 b2 

a22 + 23 

u 

d ( au a44) B = -In 1 - -b-2- , 
dr 14 

da 
'--, a = dr 

da 
a == dB' 

The field equation (7a) and Maxwell's equations lead to 

r v b2 ( 2 b2
) [JLv] = 0, '* a44 =...1! 1 + a22 + 23 

au a?' 1 

aV fJLV = 0, '* e14 ex b14 , 

a[a JJLv] = 0, '* e23 = C¥3· 
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(17) 

(18) 

(19a) 

(19b) 

(19c) 

We expect, in order to get back to the Schwarz schild solution, that au -7 (a44)-1 
as b14 -7 O. This implies that 

C¥1 

b14 = VI +c~ a22 

and 
1 2 

a44 = - (1 + b14 ) . 
au 

(20) 

Assume, as in the vacuum static (spherically symmetric) case, that A = O. This 
assumption together with (l9a) leads to 

b23 = -C2a22 , B = 2a22' 
a22 

C = a22' 
a22 

(21) 

Finally, we shall assume, again by analogy with the vacuum case, that a22 = r2. 
As a result of the above assumptions we are left with only one unknown, au, 
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a44 1 (1 o:~) 
au + r4 (1 + ~) , a22 = r2 

b14 
0:1 

= r2J1+~' 
b23 = -C2r2 , 

e14 ?' 
0:2 

e23 = 0:3· (22) 

The construction of the generalised Blcci tensor, from the connection coefficients 
(subject to the above simplifying assumptions), followed by substitution into the 
field equation (7b) leads to two ordinary differential equations for au(r) and one 
for h(O, k): 

au" (au')2 2au' 87r ( 2 o:~) 2' 0 
-2- - --3- + --2- + 4"" 0:2 + -- - A. = , 
au au rau r 1 + ~ 

(23a) 

an' 1 47r ( 2 o:~) k 
-2- - -- - 3"" 0:2 + --2 - Ar + - = 0 , 
an rau r 1 + C2 r 

(23b) 

h - kh=O. (23c) 

In the last equation we can, without loss of generality, take k = 0, ±1 and hence 
obtain the following solutions: 

h(O, -1) = sinh ° , h(O, 0) = 0, h(O, +1) = sinO . (24) 

We note that solving (23b) for an' and substituting into (23a) reduces this 
equation identically to zero. Thus any solution an of (23b) is automatically a 
solution of (23a). The substitution an = u-1 reduces the equation (23b) to the 
following first-order linear ordinary differential equation 

, u k 47r ( 2 o:~) 
U + - - - + Ar + - 0:2 + -- = 0, 

r r r3 1 +~ 
(25) 

which can be integrated to give 

u = k - - + - o:~ + __ 3_ -- , 
2m 47r ( 0:2 ) Ar2 
r r2 l+c~ 3 

(26) 

where 2m is the constant of integration. Finally, we have to show that the 
remaining field equation (7c) is also satisfied. Now 

R[J.tv] == R[J.tv] + Ag[J.tv] - 87r T[J.tv] (27) 

is not identically zero only for 

R[14] = R[14]"(r) , the functional form is irrelevant, 

R[23] { an' 1 47r ( 2 o:~) } C2rh(O,k) - - -- - 3"" 0:2 + --2 - Ar. (28a) 
au ran r 1 + C2 
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Substituting from (23b) into the last equation we obtain 

R[23] = -c2k h((), k) . 
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(28b) 

It is now clear, since' R[14] and R[23] are only functions of rand () respectively, 
that the field equation (7c) is also satisfied. 

To summarise, we have derived three electrovac static NGT solutions with a 
nonzero cosmological constant: 

{ ( 2) \ 2 }-1 2 2m 41r 2 0!3 Ar 2 2 2 
ds = -:- k - - + - 0!2 + -- - - dr - r dOk 

r r2 1 + ~ 3 

{ 2m 41r ( 2 O!~) + k--+- 0!2+-- -
r r2 l+c~ 

Ar2} { O!t} 2 - 1 + 4( 2) dr, 
3 r 1+c2 

(29a) 

0!1 
9[14] 

r2J1+C§ , 

2 . () 9[23] = -C2r sm , 

h4 
0!2 

123 = 0!3 sin () , ~' 
(29b) 

where 

dO:" 1 = d()2 + sinh2 () dq}, dO~ = d()2 + ()2 dc/J2, dO~1 = d()2 + sin2 () dc/J2 . (30) 

In the case k = + 1 this solution corresponds to an NGT generalisation (containing 
two independent NGT parameters 0!1 and C2) of the exterior Reissner-Nordstrom 
GR solution (m, 0!2 and 0!3 are the mass, electric charge and magnetic charge 
respectively) with cosmological constant A. In the limit 0!2, 0!3 -+ 0 we obtain 
Tiwari's (1970) solution to the Einstein and Straus (1946) weak field equations. 
Note that Tiwari's field equations differ from those that we are using in the sign 
of A because his definition of the generalised Ricci tensor has opposite sign to (6). 

If we set the cosmological constant and the parameters O!t, 0!2, 0!3 and C2 
equal to zero then we recover class A degenerate static vacuum solutions of 
Einstein's equations (GR). These solutions were listed by Kramer et al. (1980). 
It turns out that there exist three class B degenerate static vacuum solutions 
which are connected to class A by the complex substitution r -+ ic/J, c/J -+ ir. We 
can use this substitution, together with 0!1 -+ -iO!I, 0!2 -+ -i0!2, 0!3 -+ -i0!3 and 
C2 -+ -ic2, to obtain the NGT generalisation of the class B Einstein solutions: 

{ ( 2) 2 }-1 2 2m 41r 2 0!3 Ar 2 2 2 
ds = - k - - - - 0!2 + -- - - dr - r d"iJ! k 

r r2 1-~ 3 

_ {k _ 2~ 41r ( 2 O!~) - 2"" 0!2 + ---2 
r 1- c2 

0!1 
9[13] = r2J1- c§ , 

0!2 
h3 = r2 ' 

Ar2} {I _ O!t } dc/J2 
3 r4 (1 - c~) , 

9[24] = -C2r2 sin () , 

124 = 0!3 sin() , 

(31a) 

(31b) 
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where 

dW:" l = d02 - sinh2 0 dr2, dW6 = d02 - 02 dr2, dW~l = d02 - sin2 0 dr2. (32) 

Note that for these NGT class B solutions, as opposed to the NGT class A 
solutions above, the two NGT parameters a1 and C2 are no longer arbitrary. In 
fact, -1 < C2 < 1 and a1 must satisfy the inequality r 4 (1- c~) - ai 2: 0 in order 
to preserve signature. 

5. NGT Plane-Symmetric Bianchi Type I Solution with EM Field 

In order to obtain the desired solution we start from the NGT generalisation 
of the class AI (Kramer et al. 1980) GR solution, i.e. (29) with k = +1. As in 
Section 3, we introduce a new parameter E such that 

2m = m1E-3, -2 a1 = -C1E , 

apply the coordinate transformation 

-2 a2 = -qeE 
-2 

a3 = -qmE (33) 

r = E-1T, r = EX, 0 = E ViJ2+ z2, <p = tan-1 (;) , (34) 

and take the limit E ~ O. The result of these operations is 

ds2 = -A(T) {I + 4 CI 2} dx2 - T2 (dy2 + dz2) + A(T) dT2 , . (35a) 
T (1 + C2) 

, 
9[14] = T2J1 + c~ 

C1 
9[23] = -c2T2 , 

Ce 
h4 = T2' 123 = -Cm , (35b) 

where 

A(T) == m1 _ 47f (c2 + c~ ) + )"T2 . 
. T T2 e 1 +~ 3 

(36) 

In order to interpret this as a plane-symmetric cosmological solution we require 
T to be the time coordinate. This implies that T can take only those values for 
which A> o. 

In terms of the comoving coordinate system (x, y, z, t) we can write our 
six-parameter plane-symmetric Bianchi type I solution as follows: 

ds2 = -A(T) {I + 4 ci 2} dx2 - T2 (dy2 + dz2) + dt2 , (37a) 
T (1 + c2 ) 

C1 

9[14] = T 2J A(T)(l +~) 9[23] = -C2T2 , 

Ce 

h4 = T2J A(T) , 
123 = -Cm , (37b) 
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with T(t) given, implicitly, by 

t = JT J A( u) du , (38) 

where A is defined in (36). Among the parameters .A is the cosmological constant 
and Ce and em are the electric and magnetic charges, respectively. There are two 
NGT parameters, Cl and C2, which distinguish this solution from the corresponding 
Einstein-Maxwell solution. If we set, for example, Cl = C2 = Ce = ml = .A = 0, in 
(35a,b) and (36), then we obtain a general relativistic Bianchi type I cosmological 
model with pure magnetic field discussed by De (1975) (case D, solution 1). 
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