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Abstract 

Properties of large amplitude waves in a relativistic magnetised plasma are studied using the 
method of reductive perturbation. The plasma under consideration consists of warm adiabatic 
ions and isothermal warm electrons, under the influence of a magnetic field. A consideration 
of large amplitude waves demands study of the relativistic situation. In the present case 
we consider both the electrons and ions to be relativistic. A KdV equation is derived from 
which a nonlinear Schrodinger equation is deduced by further scaling. Lastly we derive an 
expression for nonlinear wave number shift, critical angle of propagation and the condition 
for modulational instability. Our analysis is applicable to both laboratory and space plasmas. 

1. Introduction 

Amongst various nonlinear waves sustained in a plasma, ion-acoustic waves 
are a typical example, one which has been exhaustively studied by perturbation 
theory. The first such attempt was by Washimi and Taniuti (1966). Later, 
this formulation was extended to encompass situations with greater complexity 
(Tagare 1973). A completely different class of events occurs when the plasma 
is magnetised. Such an analysis for the hydromagnetic wave was initiated by 
Gardner and Morikawa (1960). On the other hand, it has been observed that it 
is impossible for an electromagnetic wave to penetrate a dense plasma unless the 
electrons become relativistic; that is, it becomes imperative to consider the mass 
variation of the electrons. Also, electromagnetic waves with frequency less than 
the electron plasma frequency cannot propagate in an unmagnetised plasma. The 
relativistic effect results in a downshift of the electron plasma frequency. Such a 
phenomenon is quite common in the radar-induced modification of the ionosphere 
(Shukla et al. 1986) so the mass variation of electrons must be considered. 

On the other hand, recently the study of large amplitude waves has gained 
momentum. This class of waves is important in the light of phenomena such as 
Wakefield excitation (Kruer 1990), the beat wave accelerator (Chen 1990) and 
laser-plasma interactions (Bingham et al. 1989). Understanding the behaviour of 
large amplitude plasma waves is important for such practical situations. These 
involve a rich interplay between nonlinear and dispersive effects which may limit 
the amplitude of the wave generated and also the frequency shift. Some work has 
already been done by Kaw and Dawson (1970) and Chakraborty et al. (1984). 
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In astrophysical situations it has been observed that particles are ejected at 
high velocities during solar bursts and pulsar radiation (Kaplan et al. 1973). 
Experimental evidence for the simultaneous acceleration of electrons and protons to 
relativistic energies (20 GeV for protons and 100 MeV for electrons) was obtained 
from the SMM and Hinotan spacecraft (Tanaka 1987). The hard X-ray and ')'-ray 
periodic bursts on 7 June 1980 (from a solar flare) presented the first evidence of 
simultaneous acceleration of protons and electrons within 2 s. After the impulsive 
phase the flare continued for at least 1000 s with extended emission. During this 
phase strong acceleration of ions takes place. In this respect we can mention the 
work of Tsytovich who considered both the electrons and ions to be relativistic. 
Very recently, it has been observed that both electrons and ions can attain very 
high velocity for a plasma having a high Alfven speed (V A ~ Cme /mi)1/2 (Stenflo 
et al. 1970). Furthermore, ion heating and acceleration has been studied through 
computer simulation by Lembege et al. (1983). 

Our discussion above gives sufficient motivation to study a magnetised plasma 
with both relativistic electrons and ions and for analysing the properties of large 
amplitude waves in the reductive perturbation framework. Already people have 
observed that relativistic effects influence the amplitude and width of the solitary wave in some simple systems. In this respect we can mention the work of Das 
and Paul (1985), Roy Chowdhury et al. (1988) and Nejoh (1987). 

2. Formulation 

We consider a plasma that has weakly relativistic ions and electrons. Some 
simplifying assumptions that we make will be spelled out in the course of our 
discussion. We also assume the plasma to be collisionless but, if the ions are 
adiabatic and the electrons are warm, the thermal speed of the electrons will be 
much greater than the wave speed of the hydromagnetic wave. Hence, the effect 
of resonance particles may be small and the variation of the electron distribution 
function in the velocity space will be quite small so that the effect of Landau 
damping may be neglected. Thus, we assume that we can formulate our problem 
using the two-fluid model following Kakutani et al. (1967). We denote by nil ne 
the ion and electron density and Vi, Ve the corresponding velocities, with Pi 
the ion pressure and (Bx, By, B z ) the components of the magnetic field in the (x, y, z) directions. Then, the equations describing the plasma are written as 

an· 
-' +'V.(n·V·) at ' , 

one ) at + 'V. (ne Ve 

aVia + (Vi' 'V) Via at 

aVea + (Ve • 'V) Vea 
at 

aPi - + (Vi. 'VPi) + 3Pi('V' Via) at 

0, 

0, 

u 
Ri(E + Vi X B) - M2 'VPi, 

ni 

1 Re(E+ Ve X B) - -2- 'Vne , M ne 

0, 
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'\1xB ( Uo)aE + MIRiRe(niVi_neVe), 
c at Ri+Re 

'\1xE= 
aB 
at ' '\1.B=O, 

R;e ) '\1.E Re (ni -ne , (1) 

where Via = V d (1 - u2 / C2 ) 1/2. In writing these equations we have neglected 
the contribution of the displacement current since uo/ c « 1 or Rpe :» 1. Some 
specific constants used above are: Re , the ratio of the electron cyclotron frequency 
Oe to the characteristic frequency wo; R i , the ratio of the ion cyclotron frequency 
Oi to wo; uo, the characteristic speed along the corresponding magnetic field; 
R pe , the ratio of electron plasma frequency wpe to wo; V Ao the Alfven speed; 
M A , Alfven Mach number; M, the usual Mach number; and no, the characteristic 
number density. Further, we write 

B* o _ eBo 
°i 

_0_ , e-
miC mec 

2 47rno e2 u* 
Wpe MA=~' 

me VA 

VA Bo{47rn'O(mi + me)}1/2, 

Eo = u'OBo, 

Via ~ Vi(l + V;2/2c2) . (2) 

Actually we have used the same units as those of Kakutani et al. (1967). The char­
acteristic ion pressure is of the form no kT {J" , (j being the ratio ofion temperature T i to 
electron temperature T e. We now assume the condition for a quasi-neutral plasma, 
that is ni ~ ne ~ n, and eliminate Ve in terms of the variables n, Vi, B, Pi to get 

an - + '\1 . (n V i) = 0, at 
aVia 1 ( 1 [(1 ( )) - = - '\1 x B) x B + - - '\1 x B . '\1 Vi at n Re n 

d {( V;2) 1 )}] 1 ( me) + - 1 + ~ - ('\1 X B - 2 1 + -
dt 2c n MAR;. Re mi 

X (~('\1 X B). '\1) (~ ('\1 X B)) (1 + ~:) 

+ C~; r { ~ '\1Pi + ~ '\1n} , 

api - + (Vi' '\1Pi) + 3Pi('\1. Via) = 0, at 

- = '\1 X V· X B) - - '\1 X -- . aB -( 1 { (dVia)} at I Ri dt 

(3) 

(4) 

(5) 

(6) 
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In each of the above equations oj at stands for oj at +( Vi. \7). 
We now consider one-dimensional plane waves, and the magnetic field is 

assumed to have the components Bo(cosO, sin 0, 0). Our further assumption is 
that the relativistic effect is important only in the x-direction, parallel to that 
of the ion pressure gradient. We denote the components of velocity as (u, v, w); 
so we have 

an a 
- +-(nu) =0 at ax ' 

(7) 

Ml du", + (MA)2 (<!.. OPi + ~ an) +.! ~ 
dt f..£ n ax n ax 2 ax 

x H(By2 +B;)} = 0, (8) 

Ml dv", _ Bx oBy + ~ i. [(1 + ~) ~ OBz] = 0, 
dt n ax Re dt 2c2 n ax 

(9) 

Ml dw", = Bx oBz + _1_ ~ i. [~(1 + ~) OBy] 
dt n ax Ml Re dt n 2c2 ax ' 

(10) 

OPi OPi 3 au", 0 at + u ax + Pi ax = , (11) 

dBy _ B OV + B au _ ~ ~ (dW",) - 0 
dt x ax y ax Ri ax dt -, 

(12) 

dBz -Bx ow +Bz au + ~~(dV"') =0, 
dt ax ax Ri ax dt 

(13) 

d a a 
- = - +u-
dt at ax' 

v'" 
v w 

w'" = (1 _ u2jc2)1/2 . (1 - u2jc2)1/2 ' 
(14) 

In the study of ordinary ion-acoustic waves the transformation of the coordinate 
variables pertaining to reductive perturbation was derived from a simple physical 
condition. In the present case the number of equations and dependent variables 
is large. To reduce the system we follow the same procedure as Kakutani (1974) 
by introducing stretched variables in the case of a magnetised plasma. The 
chief motivation is to derive a single nonlinear dispersive equation from the set 
(7)-(14). That is, if we go to a frame of reference moving with the solitary wave 
and assume the amplitude to be a small quantity of order E, then the dispersion 
relation obtained from the linearised form of the equation of motion dictates that 
the required new coordinates are to be defined via the equations (Kakutani 1974) 

~ = El/2(X - At), T = E3/2t. (15) 

To write the expansion formulae for the other physical quantities we consider 
the asymptotic conditions 
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. ~ 1 f 1 

\ 
~x /-----4 \ !?SO/ 
By smO 
Bz 0 

asx-+oo. (16) 

Hence we set 

n 1 + €nl + €2n2 + ... , U = Uo + €UI + €2U2 + ... , 

V V; 2TT W - 3/2 5/2w: € I + € V2 + ... , - € WI + € 2 + ... , 

Pi 1 + €Ph + €2Pi2 + ... , 

Bx = cosO, By = sinO + €B Y1 + €2 BY2 + ... , 

B 3/2B 5/2B 
z € Zl+€ Z2+···· (17) 

Equating first powers of € we get 

anI aUI 
-(A-UO)- + - = 0 

a~ a~ , (18) 

_(A _ ) (1 3U~) aUI sinO aBY1 
Uo + 2c2 a~ + Mi a~ 

~ aph anI _ 0 
+ 1-£2 a a~ + a~ - , (19) 

_(A _ U ) (1 u~ ) aVi _ cosO aBY1 = 0 
o + 2c2 a~ Mi a~ , (20) 

_(A _ ) (}Ph 3(1 3U~) aUI = 0 
Uo a~ + + 2c2 a~ , (21) 

( ) aBYl . aUI aUI 
- A-UO -- + smO- -cosO- = 0 

a~ a~ a~ , 
(22) 

from which we get 

sinO cosO 
UI = 2 By1 , VI = - 2 BYl , 

XIMA X 2MA 

nl 
sinO B 

Xl Mi(A - uo) yp 

X 2 = (A - uo) ( 1 + ;c~) , 
Xl ( 3U~) 1 {I 3a ( 3U~)} (A-UO) 1+ - -- --+ -- 1+ - . 2c M2 A - Uo A - Uo 2c (23) 
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The expression for the phase velocity is also found to be 

,\ ± - Uo = (-B ± J B2 - 4AC) 1/2 /2A , (24) 

where 

B _ [Ml (1 + u~) {I + 30" (1 + 3U~)} 
M2 2c2 2c2 

+ 1 + -.!L + cos2(} ~ , ( u2
) u2

] 
2c2 c2 

(25) 

A M2 (1 u~ ) (1 3u~ ) 
A + 2c2 + 2c2 ' (26) 

C= cos2(}{I 3 (1 3U~)} 
M2 + 0" + 2c2 ' (27) 

. 2(} 
M 2 -1 ~ A - + 2 • M -1 

From terms of higher order in € we obtain 

OBYl Q B OBYl P ff' BYl - 0 
aT + A Yl o~ + A O~3 - , (28) 

whence other dependent variables have been eliminated. Equation (28) is the 
KdV equation governing the propagation of nonlinear waves within the plasma. 
Here P, Q and A are given by 

( U~)( Ri-Re 1) 
P = (,\ - uo) 1 + 2c2 X3 Ri Re + R~ Ml ' (29) 

( cos2() )-l( 1 
X3 = 1 - 2 2 2 2 -2-

MA(,\-uo) (1 +uo/2c) MARi 

cos2 (} ) 

Mi Re(>: .... uo)2(1 + uU2c2) , 
(30) 

_ sin3 (} [-.!...{1 3u~ _1 ( 90" (1 3U~)2 I)} 
Q - Tr Tr • r? Xl + 2c2 + M2 (,\ _ Uo)2 + 2c2 + (,\ - UO)2 

1] sin() [ (. 3U~) 1 - -- + 2 2 (,\ - uo) 1 + -2 + Xl - -. 2 
'\-uo XIMA 2c X 2 MA 

( 3U~) X; Xl 1 { 1 x 1+- +-+ +---
2c2 X 2 X 2 Ml('\ - uo) M2,\ - Uo 

90"(1 + 3u~/2c2)2 _ 90"(1 + 3u~/2c2)2 }] 
+ )2 2 ,\-uo ('\-uo X 2MA 

+ Si~() (,\ - uo) - MlxJ ' (31) 
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A = 1+ __ ~i~~() _ [(1+ ~:g) + M2(A~UO)2{1+3eT(l+ ~:g)}] 
2() 1 + u~/2c2 (A - uo)(1 + 3u~/2c2) 1 

+ cos X~ Ml + Xl + -M-2-X-I 

( 3eT(1 + 3u~/2c2) 1 3eT 1 + 3uU2c2 
X + -- - ---,,,..---~~~-

A-Uo A-Uo Mlx2 (A-Uo)2 

_ 1 ) _ 1 + 3u~/2~ (32) 
Ml X~(A - UO)2 Xl X2 Ml . 

The solitary wave solution is given as 

By! = 4>0 sech2(~ - vr) ; 

4>0 12p/Q, v=4p/A. (33) 

3. Observations 

An important aspect of (28) is that even when () = 7r /2 the equation does not 
collapse. Actually, we get a simpler form of the equation. This may be due to 
the electron inertia taken into account by the term 1/ Re , and hence the solitary 
wave exists even when () = 7r /2. Now if we consider the propagation of a plane 
wave and make an approximate linearisation we get 

-~ ~ (A - uo)(1 + 1/k2 + ... ). (34) 

For non-dispersive waves 1/ should go to zero. In our case 1/ is given by 

1/ = (1 + U~2) X3 + cos:() _;_ ~ 1 2 -~ . (35) 
2c Ri X MA BeR;X2MA A-Uo 

Actually the solution of the equation 1/ = 0 yields the critical angle () = ()e, but 
in the present case the value of ()e is too complicated to be reproduced here. 
However, we can demonstrate that in the proper nonrelativistic limit we get back 
the same value as Kakutani et al. (1967). For the nonrelativistic cold plasma 
A = 1/ M A and A = 1, so the equation v = 0 reduces to 

1 [COS2() { 1 1 (1 COS2())} 1 
2Ml ~ Ri - sin2() Be -14" + Ri siit2() 

(~ _ C~())] = 0, (36) 

which entails 

cot2()e ( ~ _ ~) 2 _ 1 = 0, (37) 
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and this is the expression obtained by Kakutani et al. 

4. Structure of the Soliton 

We thus observe that the characteristics of the soliton in a magnetised 
relativistic plasma are very interesting and the soliton has an important role to 
play in various physical situations. We have therefore numerically estimated the 
width of the soliton in a plasma in the situations of a thermonuclear discharge 
and an atmosphere space plasma. 

rl-IO 
'cl ., 
u 

OJ 

0. 
E 
« 

10· 

Re =175·6. Rj=0·48 

o 
b 
co 
o 

15· 
g--

Fig. 1. Variation of the soliton amplitude in the case of a laboratory 
plasma for various values of U6/ c2 and (J. 

In the case of thermonuclear phenomena we used the data of Denise and 
Delcroix: ne = nj = 1015 cm-3 , Bo = 104 G, and the corresponding ions are D2 
(deuterium) with m = 3·3xlO-24 g. Moreover, we assume the Mach number 
M = o·g and Re = 175·6, R j = 0·48. Using these data we have plotted the 
amplitude of the soliton as a function of angle () for various values of u6/ c2 and 
(T. This actually corresponds to the situation observed in a laboratory. On the 
other hand, in the case of a space plasma corresponding to the ion N 2 we have 
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Re = 880, Ri = 0·016. In both these situations the behaviour of the amplitudes is 
depicted in Figs 1 and 2. While in the first case (i.e. laboratory plasma), the cold, 
nonrelativistic situation does not differ widely from the case with finite u5/ c2 or 
a, in the latter case of an atmospheric or space plasma the cold nonrelativistic 
situation differs considerably from the hot relativistic situation. Also, from the 
expressions for P, Q and A, one can ascertain some facts about the width of 
the soliton. 
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e 
Fig. 2. Variation of the soliton amplitude in the case of a space 
plasma for various values of u"6/c2 and u. 

The width remains almost unchanged for any propagation angle () in a cold 
plasma (a ~ 0), even in the case when relativistic effects are taken into account. 
But in a warm plasma (a ~ 1) the width of the soliton increases as the propagation 
angle decreases. In the present case the width decreases sharply to zero for 
() ~ cos-1 (M) = 25.80° and that is why in Figs 1 and 2 the range of () is restricted 
to a maximum value of 25°. It may be noted that, according to Tanaka (1987), 
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though initially both electrons and ions are considered relativistic, subsequently 
the ions are treated as slow and nonrelativistic. 

5. Nonlinear Wave Number Shift 
To estimate the nonlinear frequency shift we first deduce a nonlinear Schrodinger 

equation from (28) via a second stage of reductive perturbation. We set 
<> <> 

BYl = L I-£n L B~n)(1], ~) exp{i£(K~ - 8T)}, (38) 
n=O 1=-<> 

where 

1] = I-£(~ - XT), ~ = 1-£2T • (39) 

Substituting in (28) and equating coefficients of various powers of 1-£ and different 
harmonics we get for n = 1 and £ = 1 

8 = _P'K3 • 

The coefficient of 1-£2 and £ = 1 yields 

X= -3P'K2 • 

The coefficient of 1-£2 and £ = 2 leads to 

B(2) = Q' (B(1))2 
2 6P'K2 1 , 

and the third-order term in 1-£ with £ = 0 requires 

B~2) = Q' ! I BP) 12 - G, 
X 

where C is a constant of integration. 
Lastly, we get 

aBp) + 3P' a2 Bp) + B~2) BF) ik = O. 
a~ a1]2 

Substituting the value of B~) we get 

(40) 

(41) 

(42) 

(43) 

(44) 

aBel) a2 B(l) Q,2 Q ,2 i_l_ +3P'K--l - + IB(l) 12B(l) + _-GB(l) =0. (45) a~ a1]2 12P'K 1 1 P'K 1 
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The solitary wave solution of (45) is 

Bi1) = Asechb(1]-V~)exp(ie), 

with A2 = 36 p12K2b2 K = ~ 
n, 6PK' 

e = K1]- (n+ ~~~)c 
n = 3P'K(b2 - K2), 

so that the amount of nonlinear wave number shift is Q,2 C /6P , K. 

6. Stability Analysis 

The nonlinear SchrOdinger equation deduced above can be written as 

(1) 2 (1) 
. OB1 + 0 B1 _ -f31 B(l) 12 B(l) _ B(l) 
lO~ a 01]2- 11 l' 

where 

771 

(46) 

(47) 

(48) 

a=3P'K, f3=Q,2/ 12P'K, r=Q,2C / 6P 'K, (49) 

which can be deduced from the Lagrangian 

a = -Hi (Bi~)* BP) -:- Bi~) BP)*) + a I Bi~ 12 + f31 BP) 14 + r I BP) 12}. (50) 

It is easily seen that the momentum and number of solitons are 

P = .1. (B(l)* B(l) _ B(l) B(l)*) 
21 17) 1 17) 1 , 

N IBP) 12. (51) 

If we now consider a variation of the corresponding Hamiltonian, subject to the 
condition that the total number and momentum of the solitons are fixed a priori, 
then we can demand that 

8 f (H - >"P - f.1.N) = 0, (52) 

in accordance with the constrained variational principle. For arbitrary variation, 
the Lagrange multipliers (A, jj,) are found to be 

A = aK, 

jj, = _ ~(b2 + K2) + f3A2 + 'J.. 
2 2' 

(53) 

and the stability is ascertained by the nature of the eigenvalues of the following 
linear differential operator: 



772 J. Mukhopadhyay et al. 

[ao;'1- (6~'~ +3P'Kb2) -6,BA2 seCh2b(1J- VT)]W = A'll, (54) 

or 
[ao;'1-6,BA2sech2b(1J-VT)]W = A'W, 

A' = A+ Q2C +3P'Kb2 . 
6P'K 

(55) 

The left-hand side of (55) is known to possess a single negative discrete eigenvalue, 
corresponding to the one soliton case, which immediately leads to a restriction 
on the admissible values for A' and yields the condition for stability. 

7. Discussion 

In our analysis we have investigated the formation and propagation of solitary 
waves in a plasma, in which both the electrons and ions have been considered 
relativistic. Our analysis encompasses cases of both laboratory and space plasmas. 
Conditions for the modulational stability of envelope solitons have been investigated 
by a variational procedure. Lastly, it is demonstrated that the expression for the 
critical angle reduces to that of Kakutani et al. (1967). 
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