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Abstract 

Wave function collapse has been a contentious concept in quantum mechanics for a considerable 
time. Here we show examples of how the concept can be used to advantage in predicting 
the statistical results of three experiments in atomic physics and quantum optics: photon 
antibunching, single-photon phase difference states and interrupted single-atom fluorescence. 
We examine the question of whether or not collapse is 'really' a physical process, and discuss 
the consequences of simply omitting it but including the observer as a part of the overall 
system governed by the laws of quantum mechanics. The resulting entangled world does not 
appear to be inconsistent with experience. 

1. Introduction 

The concept of wave function collapse, or state vector reduction, has been a 
contentious subject of debate since the very early days of quantum mechanics. It 
is not the purpose of this paper to review the various points of view, but we refer 
to a recent, and in parts acrimonious, debate initiated by Bell (Bell 1990; van 
Kampen 1990, 1991; Gottfried 1991; Peierls 1991; Squires 1992). In this paper 
we describe briefly the essent!~ nature of the collapse and give three examples 
of ways in which the concept can be used to advantage in atomic physics to 
predict the statistical results of experiments. This leads on to the question-is 
the collapse postulate merely a convenient mathematical recipe for obtaining the 
results we seem to observe, or does it relate to a physical process, that is, is it 
an essential part of the description of the physical world? We attempt to answer 
this question in the simplest way possible by examining the effect of removing the 
collapse· entirely, that is by allowing only unitary time evolution, but including 
the observer and everything else of relevance as part of the total physical system. 

2. Reduction as Disentanglement 

In the standard interpretation of quantum mechanics (von Neumann 1955) 
the state vector of a system evolves in two ways: causally and continuously in 
accord with the time-dependent Schrodinger equation and discontinuously if a 
measurement is carried out on the system. The latter change in state is the 

* Paper presented at the Tenth AIP Congress, University of Melbourne, February 1992. 

0004-9506/93/010077$05.00 



78 D. T. Pegg 

reduction of the state vector. We usually assume that, at the intial time to, 
the system comprising the object A and measuring apparatus B with which A 
is to interact can be considered as two separate identifiable subsystems, whose 
possible states are independent of each other, and represent the state of the 
system as IAi) IBk). (For a discussion of the validity of representing the state of a 
very complicated quantum mechanical system, such as a 'macroscopic' measuring 
apparatus, by a state vector, see Leggett 1984.) To illustrate the nature of the 
process in the simplest possible way, let us assume that i takes two values 1,2 
corresponding to two orthogonal states. For B to be a useful measuring device, 
the system should be set up such that if A is in state IAl ) then B will evolve at 
time t to some state IBl)' and if A is in state IA2 ), B will evolve to a different, 
distinguishable state IB2). For example, IBl) and IB2) might be orthogonal states 
of the macroscopic apparatus with very different readings of a pointer. An ideal 
measurement would also not change the state of A, though this is not essential 
for our discussion. We have then 

(1) 

(2) 

where U(t, to) is the time displacement operator. If A is initially in a superposition 
state Cl I A l ) + c21 A2 ), then from (1) and (2) it follows that the final state will 
be the superposition 

(3) 

This is a direct consequence of the linearity of quantum mechanics. 
The state (3) is entangled, or correlated, that is, it is not expressible as a 

product of A and B states and so does not allow a description of the object 
A independent of the measuring apparatus. Such entangled states are the basis 
of the well-known Einstein-Podolsky-Rosen paradox. State (3) is interpreted 
in the conditional sense that if, for example, the apparatus is found in IBl), 
then A is in the state IAl). Often this interpretation is all that is needed to 
predict the statistics of experimental results. Expression (3) presents us with two 
outcomes of the measurement: the apparatus B being in state IBl), for example 
a pointer reading 17, and the apparatus being in state IB2 ), for example the 
pointer reading 10. Reduction of the state is necessary if I, the observer, insist 
that I can experience only one of these. We shall call such insistence assumption 
(a). After reduction, the state is IAl) IBl) or IA2) IB2). In either case the 
states of A and B have been disentangled, allowing once again a description 
of the object independent of the apparatus. If for example, ICll2 = IC212, then 
the standard interpretation is that reduction will produce one or other of the 
outcomes with a probability of !. We shall refer to the probabilities linked 
to Cl and C2 as quantum probabilities to distinguish them from 'classical', or 
statistical, probabilities. An example of the latter is the case of a coin on the 
table which we have not observed. Before observation, the probability of a head 
is !. Observation causes this to change to either 0 or 1. In (3), the values of Cl 
and C2 describe the state of the system. On the other hand, the value of ! for 
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the coin refers to our ignorance of the state of the system. Observation reduces 
this ignorance, not the state of the coin. It is not unusual for both these types 
of probabilities to be part of a particular problem. Both state reduction and 
ignorance reduction can contribute to the statistics of the experimental results. 

3. Photon Antibunching 

The simplest object-detector system is two interacting two-level systems. Let 
us consider a two-level atom interacting with a two-Ievel detector with the same 
energy gap. The excited and ground states of the atom are 1 e) and 1 g), and of 
the detector 1 de) and 1 dg ). To remove unnecessary complications, let us assume 
that the detector surrounds the atom and is completely absorbing, that is, any 
photon emitted by the atom must be absorbed by the detector. This allows us 
to eliminate the field variables and consider the atom as acting directly on the 
detector. IT initially the system is in the state 1 e)1 dg ), it evolves at a later time 
t to the entangled state . 

a(t) 1 e)1 dg ) + b(t) 1 g)1 de). (4) 

Suppose the detector is such that if it is excited to 1 de), then a photoelectron 
is released which, after amplification, produces a signal which tells us that a 
photon has been detected. IT we now say that we must observe either a photon 
detection event or no photon detection event, that is, we either detect a photon 
or we do not, then, if a photon has been detected, we reduce (4) to 1 g)1 de). 
This tells us that im~ediately after a photon has been detected, the atom is 
in the ground state. IT the atom is being weakly and continuously excited 
this leads to the phenomenon of photon antibunching (Carmichael and Walls 
1976; Cohen-Tannoudji 1977; Dagenais and Mandel 1978). In an antibunching 
experiment a photon can be detected at any time, but if a photon is detected at 
time t, then there is a w:~ting time necessary before there is a sizeable probability 
of detecting the next photon, because the atom has to be re-excited from the 
ground state. 

4. Phase-difference States by Collapse 

We consider now the field produced by two separated sources A and B and a 
two-level photon detector DI at a distance TAl and TEl from A and B respectively. 
IT A and B correspond to the signal and idler modes in a degenerate parametric 
down-conversion process, we can write the initial state of the field and detector 
as 11A)11B)1 dg), that is, one photon in each mode (Ghosh and Mandel 1987) 
with DI in the ground state. By use of the Hermitian phase operator formalism 
(Pegg and Barnett 1988, 1989; Barnett and Pegg 1989, 1990) it is not difficult 
to show that for such a field state the phase difference between the modes is 
random, that is, there is a uniform probability distribution of phase difference. 
Thus no classical type of optical interference is expected, that is, no periodic 
variation of detection probability as the position of DI is varied along a line 
parallel to the line joining A and B. Let us now suppose the field interacts with 
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DI for a time t. The essential term in the interaction Hamiltonian, in terms of 
photon annihilation operators, is proportional to 

(5) 

with the former factor representing the field at Db where kA and kB are wave 
vectors. From perturbation theory we can show reasonably straightforwardly that 
this interaction transforms the initial state to a superposition 

A similar argument to that pertaining to expression (4) shows that a detection 
of a photon by DI reduces the state vector (6) to 

which disentangles the field and detector states. The field state has the interesting 
property of being the simplest field with a reasonably well-defined phase difference. 
The mean value of this phase difference is k A • r Al - k B • r B1, as can be found by 
using the approach to phase difference calculations of Barnett and Pegg (1990). 
The variance of the phase difference can also be calculated as 1f2/3-2 in a 21f 
range, compared with 1f2/3 for a uniform, that is, random distribution. Such a 
two-mode state can give an interference pattern, that is a periodic variation in 
the probability of detecting a photon as a second detector D2 is moved away 
from DI along a line parallel to that joining A and B. Indeed, the predicted 
pattern is similar to that which would be formed by two classical sources at A 
and B emitting light whose phase difference is such as to produce constructive 
interference at D I . This experiment has been performed by Ghosh and Mandel 
(1987). It is interesting to note that they simply calculated directly the joint 
probability of a photon being detected by each detector without explicitly invoking 
the collapse concept. The results are the same as discussed above. 

5. Collapse by Detecting Nothing 

The above examples involve the detection of a single photon, with subsequent 
amplification. We now examine a case where the wave function collapses following 
a negative result of an observation. Such a concept has been known for some 
time (see, for example, Dicke 1981, 1986), and has found application recently 
in interpreting single-atom interrupted fluorescence experiments proposed by 
Dehmelt (1974) and Cook and Kimble (1985) and investigated experimentally by 
Nagourney et al. (1986), Sauter et al. (1986), Bergquist et al. (1986) and others 
subsequently (see the review by Cook 1990). 
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Fig. 1. Energy levels of a three-level atom. State I e) decays 
quickly to I g) and the metastable state I m) decays slowly to 
I g). In the interrupted fluorescence experiment, the transition 
between I g) and I e) is driven strongly and the transition 
between I m) and I g) is driven weakly. 
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Consider a three-level atom, as shown in Fig. 1, whose excited state I e) decays 
rapidly to the ground state I g) with a characteristic time t e , and whose excited 
metastable state I m) decays very slowly to I g) with a characteristic time tm' Let 
us prepare the atom and field in the superposition state (v~ I e) + vi 1m)) I 0), 
where the latter factor is the field state with no photons. Suppose that after 
a time t such that te ~ t ~ tm no photons have been detected by a detector 
designed to detect any photon which is emitted. What then is the state of the 
atom? At first sight, it is tempting to say that, because no decay has occurred, 
the atom must still be in its original state. A more detailed analysis, however, 
reveals a different result. In time t the state will evolve to a superposition 

(8) 

where 11k) is a one-photon field state with a particular wave vector and polarisation 
and the summation is over all wave vectors and polarisations. Because t ~ t e , 

the modulus of a(t) will be very small, so the first term in the superposition can 
be neglected in comparison with both of the other terms. The detection of no 
photons then reduces the state to I m) I 0). Thus the atom has made a transition 
from a state which was predominantly I e) to the metastable state I m), which 
may be of higher energy, without the state of the field changing! This transition 
has been induced by the detection of no photons, and has been referred to as 
a 'knowledge-induced transition' (Cook 1990). It is an actual transition in the 
sense that if we accept that the atom is in I m), we then are led to the correct 
prediction of the statistics of subsequent experimental results. 

In the single-atom interrupted fluorescence experiments (Cook 1990) the 
transition between I e) and I g) is driven strongly by external radiation and 
the I m) to I g) transition is driven very weakly. The fluorescence from the 
strongly-driven transition is observed continuously, which can be done with the 
eye, without amplification. Although the fluorescence appears to be continuous, 
it is actually a succession of antibunched photons with an average time interval 
between each of td which is of the order of teo The atom state vector evolves to a 
superposition of all three states. The observation of no fluorescence for a period 
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significantly greater than te induces a transition to the metastable state I m). The 
atom must then remain in this state for a period of order tm before it returns to 
the ground state to be excited to I e) and begin fluorescing again. The result is a 
series of long bright fluorescing periods interrupted by dark periods of the order 
of the same length as the bright periods. Use of this concept allows the precise 
statistics of the bright and dark periods to be simply calculated, as well as the 
time taken for the wave function to collapse via a knowledge-induced transition. 
This time is approximately td In(TB/td)' where TB is the average length of the 
bright periods (Pegg and Knight 1988a, 1988b). 

Interrupted fluorescence, often referred to as 'quantum jumps', in a single 
atom is very important as an example of a genuinely random process. At a 
predetermined time there will be roughly equal probabilities that an observer 
will see light or darkness. This probability is of the quantum type discussed in 
Section 2, rather than the classical, coin-type, probability describing our lack of 
knowledge. 

6. Is Wave Function Collapse 'Real'? 

We have illustrated how the concept of wave function collapse, or state 
reduction, is a useful and efficient means of calculating and understanding the 
statistics of the results of some experiments in atomic physics. Further, we have 
given an expression for the time taken for a particular type of collapse. Possibly 
we should therefore not even ask the question-is wave function collapse really 
a physical process? If the purpose of physics is merely to predict the results of 
experiments, then we may as well accept collapse and not worry any further, at 
least until some experiment gives results which deviate from prediction. On the 
other hand, there is still something unsatisfying about a process seemingly brought 
about by observation by an external, and presumably of necessity conscious, 
observer. We cannot review the extensive literature for and against the concept, 
but here we wish to explore briefly the consequences of including the observer as 
part of the quantum mechanical system and of not assuming that any collapse 
occurs. That is, the only evolution we allow is that governed by the Schrodinger 
equation to which the observer is also subject. 

Let us return to the argument leading to expression (3), but now make the total 
system as complete as possible by including the observer C and everything else 
of relevance, which we call D. We assume that these are also separate identifiable 
subsystems, initially disentangled from the object A and the apparatus B. Again, 
let the experiment be set up such that the state I AI) leads to a state I BI ), 
but now also include the interaction of B with C and D such that state I B I ) 

leads to a state I CI ) IDI). Similarly I A2 ) now leads not just to I B2 ), but to 
I B2)1 C2)1 D2). It then follows, in the same way in which we obtained (3), that 
the superposition CI I AI) + C2 I A2 ) leads to 

(9) 

If, as before, I B I ) and I B 2 ) are states of a pointer reading 17 and 10, then I C I ) 

will be the state of the observer upon seeing the pointer read 17, that is a state 
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of being conscious of, or remembering, the pointer reading 17, with a simil'll' 
interpretation for 1 C2 ) as remembering a reading of 10. Again expression (9) 
follows from the linearity of quantum mechanics. We can now introduce state 
vector reduction at this later stage by postulating that the observer cannot exist 
in an entangled state such as (9), a postulate which we call assumption (b). 
Disentanglement means reducing (9) to either its first or last term, which gives 
effectively the same result as previously, which followed from assumption (a) of 
Section 2 that the ob~erver could only experience 1 B1 ) or 1 B2)' 

We thus have two assumptions which appear to give the right answer. Assumption 
(b) appears more fundamental and satisfying, in that the observer is treated as 
part of the total quantum mechanical system, whereas in the approach involving 
(a), the observer is treated as somehow external to the quantum mechanical 
system. Unfortunately, even with assumption (b), there is still something 
special about the observer, in that it is a quantum mechanical subsystem which 
cannot be entangled with other such subsystems. This requirement of observer 
disentanglement always allows a description of the observer independent of the 
rest of the physical world-which is not greatly different from the notion of an 
external observer. 

Let us return to expression (9) and explore its consequences without introducing 
an extra assumption such as (b). The first question to examine is as follows. 
Because assumption (b) appears to be consistent with assumption (a), which 
seems to give the right answers, does removing (b) lead to a contradiction with 
(a)? Assumption (a) prevents, for example, the observer seeing SchrOdinger's 
cat as a superposition of being alive and dead, a situation often depicted in 
textbooks by a picture of a cat standing up superimposed on a cat lying dead. 
In our previous example, it prevents the observer seeing a pointer reading 10 
and at the same time reading 17. How do we prevent this without assumption 
(a)? The crucial point is that such a situation is not predicted by (9) in the first 
place. Indeed, for the observer to see, or be conscious of, the 10-17 superposition 
state he or she would have to be disentangled, that is, the state would be 

(10) 

where 1 C12) is a state of the observer remembering both 1 B1 ) and 1 B2)' Clearly 
this is not the same as (9), indeed it is the very entanglement of the observer with 
the pointer in (9) which prevents this from occurring. We can re-express (9) in 
a different basis, for example by using (I B1 ) + 1 B2))l/2 and (I Bl) -I B2))/..j2 
as a new basis for the pointer states, but we still cannot obtain a form such as 
(10). Thus, rather than predicting that an observer will be in a state of being 
conscious of a superposition of pointer readings 10 and 17, the linear nature 
of quantum mechanics, without reduction, predicts that the observer will be in 
a superposition of a state of being conscious that the pointer reads 10 and a 
state of being conscious that the pointer reads 17, correlating precisely with the 
states of the pointer. Being in a superposition of states of consciousness is not 
the same as being conscious of a superposition state. If we were to represent 
the superposition pictorially, the picture would not show an observer seeing a 
superposition of pointer positions. Rather there would be two pictures-one 
showing the pointer reading 17 and the observer thinking it is reading 17, and 
the other showing 10 and the observer thinking it is 10. 
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Since the quantum mechanical result (9) does not lead to a cat paradox 
of the type usually presented, perhaps it is sufficient to describe the actual 
situation. Before adding further assumptions such as reduction, we should study 
this possibility. The essential question is-can we devise an experiment to show 
that the world, including the observer, does not exist in an entangled state such 
as (9)? How do I put myself into an entangled state? Firstly, a way of not doing 
this is as follows: I decide in advance to look at a coin, if it is heads I shall 
go to the right side of the room, if tails, then I shall go to the left. Although 
there is equal probability of my being on one side of the room as the other, 
this is only ignorance-based probability and I shall be only on one side. To 
achieve my purpose of entangling myself, I require a quantum decider, based on a 
quantum mechanical superposition. Thus I could use the pointer reading device 
as described above where A is a spin-half particle, go left if I see the pointer 
read 10 and go right if I see 17. Alternatively, I could look at the fluorescing 
three-level atom at a predetermined time and if I see brightness I go right, if 
darkness then I go left. Would my state be detectable by either myself, or by 
another person, as being distinguishable from the state I would have been in 
had I used a coin decider? That is, will I appear strange to the second person, 
E, who is part of the subsystem D? If the initial state were I AI} this would 
lead to the pointer reading 17, myself being on the right, and E seeing me on 
the right. An initial state of I A2 } would lead to a reading of 10, myself left and 
E seeing me on the left. A superposition of I AI} and I A2 } therefore leads to a 
superposition of a reading of 10, me on the left, E seeing me on the left and of 
a reading of 17, me on the right, E seeing me on the right. It does not lead 
to E seeing me in a superposition of left and right. I would thus not appear 
strange to E, because of E's entanglement with me. Am I conscious of having 
a component on the left and another on the right? The answer is again no. 
If I look to see where I am, or ask myself what the pointer reading was, that 
is question my memory, I will not find that I become conscious of being in a 
superposition of position. I will be in a superposition of states of consciousness, 
each of which is self-consistent and indistinguishable to me from the situation in 
which I would be had I used a coin decider. The quantum decider allows me 
to have my cake and eat it, but unfortunately not to be conscious of doing so! 
We might ask-what does it mean for me to be in a superposition of states of 
consciousness if I am not aware of this and if, further, someone watching me is 
also not aware of this because he or she, and other observers in the chain, are 
similarly affected? It simply means that the actual entangled state of the world, 
with its macroscopic superpositions, is not readily perceived by observers who 
are part of it. 

How do we now interpret the antibunching experiment, involving a continuously 
excited atom, without invoking state reduction as before but, instead, including 
the observer as part of the system? After the experiment has been running for 
some time, the observer begins observation. After a time interval At, which is 
very much shorter than the characteristic excitation time, the state of the observer 
will have two components, one corresponding to observing a photon (1) and one 
corresponding to not observing a photon (0). Both of these components evolve 
according to the Schrodinger equation. After the next interval At, the component 
(0) will have become .two components, one corresponding to having observed no 
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photon in the first interval or second interval (0,0) and the other corresponding 
to having observed no photon and then one photon (0,1). At this time the 
component (1) will still only be one component (1,0), because (1,1) cannot evolve 
from (1) in this short time which, of course, is the antibunching effect. After the 
third time interval, there will be a total of four components to the state of the 
observer: (1,0,0); (010); (0,0,1); (0,0,0). All of these are consistent with the 
observation of antibunching. It is tempting at this stage to apply reduction and 
say that in the 'real' world, where the observer can have only one component, 
only one of the four possibilities is realised. In view of our previous discussion, 
however, there is no need to do this-at least until some experiment tells us 
that an observer cannot ever have more than one component. The consequences 
of the multiple components may flow on, depending on the circumstances. For 
example, if the observer intended to publish a single individual sequence, the 
journal would have four slightly different components, and so on. 

This 'splitting' of the observer's history, and thus the histories of things 
with which he or she interacts, into separate self-consistent components, each in 
agreement with our everyday experiences is very similar to the 'many-worlds' 
interpretation of quantum mechanics (Everett 1957). We wish to stress, however, 
that there are no additional postulates involved, and there is always only one 
world, which is essentially quantum mechanical in nature, and with which the 
observer becomes entangled by being part of it. Rather than many worlds, we 
have one single, but entangled universe. 

7. Conclusions 

The similarity of the entangled universe to the 'many-worlds' picture would 
most likely exclude it from consideration by any of the participants in the debate 
referred to in the Introduction, if only because it includes the observer as part 
of the physical system (see, for example, Peierls 1991). Another approach not 
included in the debate, which we should perhaps mention because of the recent 
attention it has received, is decoherence (see, for example, Zurek 1981, 1982). The 
decoherence method avoids macroscopic superpositions by a rapid diagonalisation 
of a reduced density matrix representing a statistical mixture of states of a 
selected part of the total system. A step in the procedure involves taking the 
partial trace of the total density matrix, a mathematical operation which can 
create an uncorrelated, or partially uncorrelated, statistical mixture from a pure 
entangled state. If the change in the density matrix caused by the partial tracing 
operation is not regarded to be a stage in the physical time evolution, then it is 
difficult to regard decoherence as a physical process. If the change is regarded 
as a physical change, then the evolution is not unitary. Either way, there is no 
relation between decoherence and the approach of this paper. 

To sum up, wave function collapse, or state reduction, seems to be a useful 
concept for calculating the statistics of results for some experiments in atomic 
physics. It is, however, an additional postulate to the laws of quantum mechanics. 
In its most basic form it is simply an instruction to deny the possibility of a 
'macroscopic' object such as a pointer being in an entangled state, that is a 
statement that macroscopic objects, including observers, should only be described 
by classical physics (Leggett 1984). When we question whether the collapse is 
a physical process, that is, a description of the physical world, then it seems 
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reasonable to include the observer as part of this world. In this case, without any 
reduction, we are left with macroscopic entanglements which, because they include 
the observer, are not recognisable by the observer as such. This entanglement 
of the observer prevents the usual paradoxes. If physics is merely a means of 
calculating results of laboratory experiments then the collapse concept is a useful 
part of quantum mechanics. If, on the other hand, physics is meant to be a 
description of the physical world, or at least of a part of the world much larger 
than, and including, the· individual observer, then the collapse concept would 
seem to preclude an accurate description and so should not be part of physics. 
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