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Abstract 

During the last four years, we have undertaken a major effort to resolve a serious, long-standing 
discrepancy between various experimental and theoretical determinations of the cross section 
for the Vo = 0 -> v = 1 vibrational excitation of H2. This effort has involved crossed 
electron-beam molecular-beam measurements of relative angular distributions, measurements 
of transport coefficients in mixtures of H2 and various rare gases, and ab initio theoretical 
calculations using a vibrational close-coupling formalism with an exact treatment of non-local 
exchange effects. The discrepancy remains unresolved-a fact with potentially wide-ranging 
consequences for beam experiments, theory, and the unfolding of inelastic electron-molecule 
cross sections from swarm data. New analyses of the transport data and the application of a 
new method of extrapolating angular distributions beyond the range of measurement sheds 
light on this disagreement and its implications. 

1. Introduction and Background 

Rotational and vibrational excitations of molecules play an important role in 
many gas discharge phenomena. Hence, cross sections for these processes are vital 
to developing and modelling devices which incorporate some such discharge (see, 
for example, Hunter and Christophorou 1984; Christophorou and Hunter 1984). 
These inelastic phenomena have therefore attracted considerable theoretical and 
experimental interest during the past several decades. (For a recent review 
see Morrison 1988.) Most of this work has emphasised resonant processes, for 
determining the structure of cross sections near a resonance energy (usually at 
a few e V) not only challenges experimentalists but also stimulates theorists to 
examine more closely the physical underpinnings of these phenomena (Domcke 
1991). But this emphasis has led to the neglect of direct excitations, in spite of 
their importance as energy-loss processes. 

Some reluctance to measure directly rotational and vibrational cross sections 
at very low energies is understandable. The threshold energies (and associated 
energy losses) for rotational excitation are typically a few meV at most, and 
for vibrational excitation, a few tenths of an eV. Such small thresholds pose 
~ormidable problems for direct measurements, e.g. in a crossed-beam apparatus. 
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Swarm experiments provide an alternative way to determine these cross sections: 
the analysis of data taken in these experiments leads indirectly to a set of inelastic 
and momentum-transfer cross sections that are consistent with the observed 
'transport properties', quantities which describe the behaviour of a swarm of 
electrons drifting and diffusing through a molecular gas of known density under 
the influence of an external electric field of known strength (Huxley and Crompton 
1974). But problems also confront this approach: in most electron~molecule 
systems so many inelastic processes are energetically accessible even at very 
low energies that the interpretation of transport data is difficult and sometimes 
ambiguous-and, apart from exceptional circumstances, the resulting set of cross 
sections may not be unique. 

Equally formidable difficulties attend ab initio theoretical calculations of 
low-energy cross sections, especially at near-threshold energies (Lane 1980; 
Morrison 1983). First, in representing the electron~target potential one must 
include important non-local interactions (short-range exchange and bound~free 
correlation) as well as induced second-order effects (long-range polarisation). 
Second, in formulating the collision dynamics one must cope with the non­
spherical nature of the electron~molecule Coulomb potential and the large number 
of diverse target states that may participate in the scattering. Finally, one must be 
sure that any simplifications one uses in solving the continuum Schrodinger equation 
accurately describe the effect of the nuclear motion on the scattering function. 

The most widely studied electron~molecule system is electron~hydrogen. From 
a theoretical standpoint, hydrogen-with its closed-shell structure, few electrons, 
lack of sharp low-energy resonances, and weak electron~nuclear attraction-is 
the simplest neutral molecule. From an experimental standpoint, the sparseness 
of its ro~vibrational spectrum makes this system ideal for the determination of 
near-threshold rotational and vibrational cross sections via transport analysis of 
swarm data (for details see Morrison et al. 1987a). Moreover, the comparatively 
large threshold energies (and energy losses) for vibrational excitation of H2 make 
feasible accurate direct measurements of vibrational cross sections in crossed-beam 
experiments. Nevertheless, experimental difficulties often limit the accuracy of, 
and confidence in, these cross sections, while very few ab initio theoretical 
studies have sought high accuracy at near-threshold energies. Consequently our 
knowledge of near-threshold inelastic cross sections for this simple system has 
remained fraught with questions and discrepancies. 

One of the most vexing of these discrepancies concerns the Va = 0 -+ V = 1 cross 
section. Many years ago Ehrhardt et al. (1968) and Linder and Schmidt (1971) 
reported crossed-beam measurements of this cross section. About the same time, 
Crompton et al. (1969, 1970a) reported a determination of (J'6~1 by comparing 
calculated transport coefficients with measured values whose uncertainties were 
at most a few percent. Over the energy range from threshold to about 1.5 eV, 
these beam- and swarm-derived cross sections disagreed by amounts greatly in 
excess of the errors and uncertainties claimed for each result. Moreover, until the 
last decade few theorists had focused on vibrational excitation at these energies. 
So by 1980 this large and unacceptable disparity remained a mystery. 

For these reasons, theorists at the University of Oklahoma and swarm 
experimentalists at the Australian National University undertook in the early 
1980s a joint program aimed at determining total, momentum-transfer, rotational, 
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and vibrational e-H2 cross sections of accuracy comparable to elastic cross sections 
for e-He scattering (Nesbet 1979). Essential to this program was the dovetailing 
of theory and experiment so as to effectively eliminate the uniqueness problem 
from transport analysis (Morrison et al. 1987 a). By 1987, our calculations of ab 
initio theoretical cross sections and study of their implications for the analysis 
of swarm data led to the following situation (described at length in Crompton 
and Morrison 1986): 

(1) Morrison et al. (1984a,b) had calculated elastic and ro-vibrational 
e-H2 cross sections using a composite dynamical theory consisting of 
converged close-coupling calculations (using a model exchange potential) 
for inelastic S-matrix elements and adiabatic-nuclei calculations (with an 
exact exchange potential) for elastic elements. The formulations used in 
these calculations were wholly independent of experimental cross sections. 

(2) The resulting theoretical rotational cross section (J"~~2 agreed with the 
swarm-derived result to within experimental error from threshold to 
0.8 eV. (As the energy increases above this value the uncertainty in the 
swarm result increases too rapidly to warrant such comparisons.) The 
theoretical momentum-transfer cross section (J"mom agreed equally well 
with the swarm result. And the 'grand total cross section' (J"tot (the 
sum of cross sections for elastic scattering and all energetically accessible 
excitations) agreed with data taken in time-of-flight experiments. 

(3) Based on this agreement, we determined a new vibrational cross section 
(J"~~l by using the shape of the theoretical rotational cross sections (J"~~2 
and (J"i~3 to extrapolate the swarm-derived rotational cross sections to 
energies above 0.3 eV, the upper limit of high accuracy for the swarm 
analysis. (Doing so amounts to only a minor renormalisation of the 
theoretical curve.) The uncertainty in the vibrational cross section 
obtained via this procedure was considerably smaller than that in the 
earlier cross section of Crompton et al. (1969, 1970a). 

(4) To our astonishment, the resulting (J"~~l was lower than the theoretical 
curve by as much as 40% (near 1 eV), a difference well outside the 
combined uncertainties of the scattering calculations and the unfolding 
of this cross section by transport analysis of swarm data. 

So although we had used theoretical results to reduce significantly the uncertainty 
in (J"~~2' we had not been able to resolve the long-standing disagreement between 
beam and swarm determinations of (J"~~l. The new theoretical result supported 
the older beam data of Ehrhardt et al. (1968) and Linder and Schmidt (1971). 

Since 1987 new initiatives have been undertaken on all three fronts: beam 
experiments, swarm experiments and their analysis, and ab initio theory. This 
paper reports a new analysis of the results of this effort and updates our earlier 
discussions of this conundrum (Crompton and Morrison 1986; Morrison et al. 
1987a). 

2. Synthesis of Recent Experimental and Theoretical Work 

2.1. New Beam and Swarm Measurements 

The major new component of this program was a complementary experiment 
in which Brunger et al. (1990, 1991) obtained absolute differential cross sections 
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using an electron-neutral beam apparatus specifically designed for this purpose. 
These authors measured angular distributions for both vibrationally elastic and 
inelastic (va = 0 -+ V = 1) scattering which they normalised using the relative flow 
technique with elastic e-He cross sections as the benchmark (see, for example, 
Trajmar et al. 1984). 

On the swarm front, experimentalists undertook new measurements involving 
dilute mixtures of H2 and rare gases and analyses of the resulting transport 
coefficients. Because the findings of these measurements bear directly on the 
vibrational discrepancy in hydrogen, we here summarise the philosophy of mixture 
experiments. 

The addition of small traces of a molecular gas to a monatomic (rare) 
gas drastically alters the energy distribution of electrons in the swarm and, 
consequently, the transport coefficients (Bowe 1960; Robertson 1977). For example, 
in Fig. 1 we compare electron distribution functions for pure Ne and for an 
H2-Ne mixture for a fixed ratio of electric field strength (E) to gas number 
density (N), i.e., for EIN = 0.3 Td (1 Td == 10-21 V 1m2 ). The addition of only 
1 % of H2 reduces the mean energy of the swarm by about 50%. Consequently, 
the drift velocity Vdr (i.e. the velocity of the centroid of an isolated swarm of 
electrons drifting under the influence of an electric field) increases by more than 
70%. These huge changes in the properties of the swarm do not arise from 
a change in the (aggregate) momentum-transfer cross section; although O"rnom 

does play a key role in determining these properties, in particular the transport 
coefficients, it changes in this instance by at most 10% due to the addition of so 
minute an amount of H2. Rather, the changes in the transport properties arise 
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Fig. 1. Electron energy distribution functions in Ne (curve A) and 
in a mixture of 1·16% H2 in Ne (curve B). 
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from alterations to the exchange of energy between electrons and the gas due to 
rotational and vibrational excitation. So when calculating the drift velocity for 
such a dilute mixture the influence of O"rnorn for H2 is quite small compared to 
that of the inelastic cross sections. It follows that any errors in this cross section 
(which was derived from transport data in pure H2) do not induce corresponding 
errors in the inelastic cross sections derived from an analysis of the mixture data. 

The second important point about this method is that it is, in effect, a 
difference method. [Petrovic and Crompton (1987), in fact, treated the problem 
explicitly in this way.] One first takes measurements in a pure carrier gas (e.g. 
He, Ne, or Ar), then in a dilute mixture of H2 with the gas, using the same 
apparatus under identical conditions. This procedure ensures that the major 
sources of systematic error (e.g. measurement of the pressure, the temperature, 
and the length of and voltage across the drift tube) are common to both sets of 
measurements. If, for example, the gas density N, as determined from the gas 
pressure and temperature, were in error, then the derived momentum transfer 
cross section for electron scattering from the carrier would reflect this fact. 
But since that cross section is used in the analysis of mixture data, which are 
themselves subject to the same systematic error, these errors cancel to first order. 

These new mixture measurements also eliminate a concern about one of the 
experiments in the original determination of 0"~~1 by Crompton et al. (1969, 
1970a). Those earlier analyses involved data for two transport coefficients: 
drift velocities, as measured in time-of-flight experiments, and the ratio of 
the transverse diffusion coefficient to the mobility, as measured in steady-state 
Townsend-Huxley experiments. The new studies, which do not incorporate 
the second measurement, do not involve the less-than-definitive interpretation of 
Townsend-Huxley experiments. Finally, the new measurements provide information 
about the vibrational cross section over a larger energy range, because one can 
now take data at higher swarm energies. In Section 3 we shall examine in detail 
one of the new data sets from the experiments of England et al. (1988) for a 
mixture of 1·16% H2 in Ne. 

2.2. New Theoretical Calculations 

Complementing these experimental efforts were new theoretical studies based 
on a more accurate treatment of the vibrational dynamics and a more accurate, 
model-free treatment of the non-local exchange potential, which plays a crucial 
role in vibrational excitation. 

In solving the continuum Schrodinger equation one must carefully and accurately 
allow for the effect of the nuclear motion on the scattering function (Morrison 
et al. 1984a,b). We now solve this equation using a body-frame vibrational 
close-coupling (BFVCC) theory (Morrison 1988 and references therein). This 
formulation includes the vibrational motion fully via an expansion of the scattering 
function in a (truncated) set of target vibrational states. It includes the rotational 
motion adiabatically, but we have demonstrated elsewhere (Morrison et al. 1984a) 
that this approximation to the rotational dynamics introduces errors of less than 
2% in 0"~~1. Moreover, it does not affect O"tot, which is dominated by the elastic 
cross section below a few eV. We solve the coupled integrodifferential scattering 
equations via an implementation of the linear-algebraic method (Collins and 
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Schneider 1981; Schneider and Collins 1982, 1984) which allows for full vibrational 
coupling and an exact treatment of the non-local exchange potential (Trail 1992; 
Trail and Morrison 1993), and we enforce stringent convergence criteria which 
guarantee numerical precision of all scattering quantities to better than 2%. 

The exchange potential appears in these coupled equations because the system 
wavefunction must be antisymmetric under pairwise electron interchange. Its 
presence makes their solution quite arduous: because exchange is non-local, the 
scattering equations are now integrodifferential in character, and their solution 
is computationally much more demanding than that of the differential equations 
which result if the potential is local. So in our earlier calculations, we approximated 
the effects of exchange with a local, energy-dependent model potential which 
has achieved great success for elastic and rotational excitation of a variety of 
electron-molecule systems (Morrison and Collins 1978, 1981). The successes of 
the free-elect ron-gas potential notwithstanding, its use in the present context 
seemed problematic, particularly in light of the acute sensitivity of vibrational 
cross sections to exchange. 

In our new theoretical calculations we discarded this model and instead now 
treat the exchange potential more rigorously as a non-local operator. This 
operator acts along with the (local) static and polarisation potentials to couple 
components of the radial scattering function. 

But exchange is only one of the three components of the interaction potential. 
We calculate the others, the static and correlation/polarisation terms, from a 
Hartree-Fock wavefunction for the ground electronic state of H2 (Morrison et 
al. 1984a). Our correlation/polarisation potential (Gibson and Morrison 1984; 
Morrison et al. 1987b), which represents long-range (adiabatic) polarisation of 
the H2 charge cloud and short-range bound-free correlation effects, is free of 
parameters but uses a non-penetrating approximation (Temkin 1957) in the 
near-target region. 

2.3. Direct Comparison of Theoretical and Experimental Results 

Buckman et al. (1990) have compared the new beam and theoretical cross sections 
and discussed the implications of this comparison for the current controversy. To 
some extent, the new experimental and theoretical results compound rather than 
resolve the problem. As shown in Fig. 2, the beam and theoretical Va = 0 -+ V = 1 
cross sections agree extremely well from 1· 0 e V (the lowest energy at which 
measurements were taken) to about 1·5 eV. Moreover, in this energy range these 
cross sections agree very well with those from earlier beam measurements by 
Ehrhardt et al. (1968) while at 1· 5 eV and above there is good agreement with 
the results of Linder and Schmidt (1971). Below 1· 5 eV, the swarm-derived cross 
section stands alone, differing by as much as 40% from the others. 

Between 1· 5 and 2·5 e V the beam and theoretical cross sections diverge; they 
converge again at higher energies. At 2·0 e V, the cross section of Brunger et al. 
lies roughly half-way between the theoretical and swarm-derived results, while at 
higher energies both sets of beam data tend to favour the latter. At and above 
2 . 0 e V both the swarm and theoretical cross sections lie wi thin (or at worst just 
outside) the ±20% error bars of the cross section of Brunger et al. (1991). 
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On the other hand, the new vibrational cross section derived from mixture 
data essentially confirms the earlier values of Crompton et al. (1969,1970a). This 
cross section, together with the rotational cross sections determined by England 
et al. (1988) from drift velocity data for two H2-Ne mixtures, fit three distinct 
sets of drift and diffusion data in para- and normal hydrogen, and three additional 
sets of drift velocity data in H2-rare gas mixtures (Haddad and Crompton 1980; 
Petrovic and Crompton 1987). 
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Fig. 2. Experimental and theoretical data for the vo = 0 --> v = 1 
excitation of H2 by electron impact:x(with error bars), Brunger et 
at. (1991); 0, Ehrhardt et at. (1968); ., Linder and Schmidt (1971); 
---, England et al. (1988) (swarm-derived); --- Trail (1992) (BFVCC 
theory). Interpolation of the data of Brunger et al. provided input 
for the transport calculations described in Section 3.3. 

The direct comparison in Fig. 2 does not, therefore, illuminate the disagreement 
over 0"~~1 except to emphasise that it has not gone away. To gain insight into 
the remaining disagreements, both at low energies and in the interesting region 
below and above 1·5 e V, we have undertaken several studies based on transport 
analysis. These are the subject of the next section. 

3. Transport Analysis of Experimental and Theoretical Cross Sections 

The differences between the vibrational cross sections in Fig. 2 raise questions 
about their accuracy, particularly about the swarm result, which is significantly 
below both the theoretical and beam results for energies less than 2 e V. Furthermore, 
since all the experimental results lie below theory around 2·5 eV, one needs to 
know whether the experimental transport data from which the swarm cross section 



210 R. W. Crompton and M. A. Morrison 

is derived are sensitive to the vibrational cross sections in this energy range, and 
therefore whether the swarm results are truly in significant conflict with theory. 
But to date no one has systematically studied the sensitivity of the transport 
coefficients to the magnitude of this cross section. Unfortunately, one cannot 
simply tack error bars onto cross sections obtained from swarm experiments by 
matching calculated to measured transport coefficients. Indeed, quantifying the 
uncertainty in swarm-derived cross sections is conceptually quite different from 
determining error bars for cross sections measured directly in beam experiments. 

Swarm data typically consist of two kinds of transport coefficients (Huxley 
and Crompton 1974; Morrison et al. 1987a): the drift velocity Vdr and the 
ratio of the transverse diffusion coefficient to mobility DT / p, where the mobility 
is related to the drift velocity by p = Vdr/ E. (Only the drift velocity is of 
concern in this paper.) One can certainly estimate the errors in these measured 
coefficients at various values of E/N, the fundamental independent variable in 
the experiments. But placing credible bounds on the resulting cross sections is 
much more difficult-especially for molecular gases, where the electron energy 
distribution and hence the transport coefficients are influenced, in general, by 
elastic and several inelastic processes. Using the new transport data for H2-rare 
gas mixtures we can investigate two related questions: 

Question 1: Over what energy range can one extract significant information 
about (J~~1 from available transport data? 

Question 2: At what energies does (J~~1 most affect transport coefficients for 
a given E/N? 

Furthermore, we can examine quantitatively the compatibility of cross sections 
from theoretical calculations or other experiments with measured transport data. 
In particular, by artificially modifying selected cross sections in selected energy 
ranges, we can address a third question: 

Question 3: Could one compensate for any differences between experimental 
transport data and values calculated using a particular (J~~1 
by making reasonable modifications to other cross sections that 
influence the electron energy distribution function, such as the 
rotational cross sections? 

Study of this question sheds li~ht on the significance of the differences in Fig. 2 
between the swarm-derived (J6"-+1 and those from other sources. 

Beyond these questions is another which concerns the accuracy of the integral 
cross sections derived from the differential cross section (DCS) data. Because such 
data are necessarily restricted in their angular range, comparisons of theoretical 
results and those obtained from crossed-beam experiments are best made via 
differential rather than integral (total or momentum-transfer) cross section data; 
this approach avoids the additional errors which arise from extrapolation outside 
the range of measurement. On the other hand, swarm experiments yield only 
integral cross sections, so the only comparisons that can be made with them 
must be at this level. While this presents no problem when comparing theoretical 
and swarm-derived results, it unfortunately makes comparisons between beam 
and swarm results less than definitive. 
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Integral (grand total) cross sections obtained from time-of-flight absorption-cell 
experiments (Ferch et al. 1980; Jones 1985) and momentum-transfer cross sections 
derived from swarm experiments are intrinsically, more accurate than those 
obtained by integrating DCS data, even were additional errors not introduced by 
extrapolation in that procedure. * Neither of the former require normalisation, the 
essential advantage in this respect of both swarm and absorption-cell experiments 
being that the number density of the target gas can be accurately determined 
from measurements of the pressure and temperature of the static (or quasi-static) 
gas sample in the drift tube or absorption cell. Therefore it has been possible 
to determine O"tot with uncertainties of less than 2 or 3% (Ferch et al. 1980; 
Jones 1985) while uncertainties of less than 2% have been achieved for the 
swarm-derived O"mom for He and 5% for H2. At low energies (i.e. less than a few 
e V) this estimated uncertainty for H2 is probably conservative. t 

With these caveats, we compare theoretical and experimental total and 
momentum-transfer cross sections in Fig. 3. Over the whole energy range from 
1·0 to 6·0 eV, the total e-H2 cross sections of Brunger et al. (1991) are lower 
than the theoretical or time-of-flight results. Similarly, their momentum-transfer 
cross sections lie below theoretical and swarm-derived values. These observations 
pose a fourth and final question which we shall address: 

Question 4: What are the implications for the controversy over vibrational 
excitation in hydrogen of these differences in O"tot and O"mom? 

3.1. The Energy Range of Significance for the Swarm-derived Vibrational 
Cross Section 

Analysis of electron transport data at different values of E/N yields information 
about 0"6~1 over different energy ranges. To understand this, we need first to 
demonstrate the connection between the distribution function for electrons in 
the swarm, f(c), and the transport coefficients (here only the drift velocity need 
concern us), and second, to show how the distribution function changes as E/N 
is varied. 

In the two-term approximation, the drift velocity is given by (Huxley and 
Crompton 1974) 

(1) 

where 0" mom is the aggregate (elastic and inelastic) momentum-transfer cross 
section and fo(c) is the (symmetric) leading term in a Legendre expansion of the 
electron velocity distribution function, written in terms of the electron energy 
c. Thus Vdr depends directly on E/N and in a more complicated way on O"mom 

and f(c) through the integral in equation (1). Note that the drift velocity does 

* At energies greater than 0·5 e V, the threshold for the Vo = 0 -> v = 1 excitation, (Ttot 

includes contributions from vibrational excitations; however these amount to less than 3% for 
energies below 5 eV. 
t At thermal energies, the electron energy distribution function is Maxwellian, and (Tmom 

alone determines the transport coefficients. 
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Fig. 3. Experimental and theoretical integrated e-H2 cross sections. 
(a) Total cross section (showing typical error bars only for a few 
experimental points): x, Ferch et al. (1980); +, Jones (1985); e, 
Brunger et al. (1991); -, theory (Trail 1992). (The data of Jones are 
grand total cross sections and at higher energies therefore include small 
contributions from vibrational excitation.) (b) Momentum-transfer 
cross sections: e, Brunger et al. (1991); - - - England et al. (1988) 
(swarm-derived); -, theory (Trail 1992). 
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not explicitly depend on the inelastic cross sections; their influence is indirect, 
through their effect on the distribution function f(E). 

One can compute the distribution function by solving the Boltzmann equation, 
using as input integral momentum-transfer and inelastic cross sections. In Fig. 4 
we show this function at three values of E/N for electrons in a mixture of 
1·16% H2 in Ne, one of the two mixtures studied by England et al. (1988). 
As E/N increases, the energy range that contains the majority of the electrons 
in the swarm broadens and moves to higher energies. At the lowest value, 
EIN = 0.4 Td, very few electrons in the swarm have energies greater than 1·5 eV; 
consequently we might· expect the distribution function, and hence the drift 
velocity, to be little affected by the magnitude of the cross sections above this 
energy. At E IN = 0.8 Td, a high proportion of electrons have energies above 
1·5 eV, but very few above 3·5 eV. For this case, therefore, we would expect 
the drift velocity to be most affected by the magnitude of the cross sections 
from 1· 5 to 3·5 eV, and to a lesser extent by its magnitude at lower energies. 
Finally, at EIN = 1.7Td, the highest value at which England et al. (1988) 
measured drift velocities, the distribution is sufficiently broad that the transport 
coefficients should exhibit some sensitivity to the cross sections at energies even 
above 4 eV, and considerable sensitivity to them near 3 eV. Fig. 4 also makes 
clear why one cannot define precisely the energy range over which swarm data 
provide significant information about these cross sections. 
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Fig. 4. Electron energy distribution functions in a mixture of 1·16% 
H2 in Ne at E/N = (A) 0·4, (B) O·S, and (C) 1·7 Td. 

With this background we now consider the accuracy of vibrational cross 
sections derived from measured drift velocities. The tests we report here are 
similar to ones Crompton et al. (1970b) used to explore the range of validity of 
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swarm-derived momentum transfer cross sections in monatomic gases. One way 
to determine the energy ranges where a given cross section most affects Vdr is to 
artificially alter that cross section over selected ranges and recompute the drift 
velocity. In the present instance, we increased aa~l and aa~2 by 20% above a 
chosen minimum energy. In particular, we consider three such modifications: 

Case A: We increase aa~l linearly from its swarm-derived value at 1·8 eV 
to 20% above that value at 2·2 eV. At higher energies we increase 
this cross section by a constant factor of 20%. Finally, we apply 
the same modifications to aa~2 but with the transition occurring 
between 1·78 eV and 2·0 eV. 

C B Hr . (v) d (v) . C A h h ase : vve Increase aO->l an aO->2 as In ase wit t e transitions 
occurring between 2·6 and 3·0 e V. 

C C Hr . (v) d (v) . CA· h h ase : vve Increase a O->l an aO->2 as In ase WIt t e transitions 
occurring between 3·5 and 4·0 e V. 

Case A exemplifies a class of modifications which produces a highly significant 
mismatch between calculated and measured drift velocities, while case C produces 
a much smaller but nevertheless significant mismatch. Case B is intermediate 
between these extremes. 

To analyse these cases we computed the fractional difference between measured 
values of Vdr and those calculated using our two-term Boltzmann code (Gibson 
1970), i.e., 
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In Fig. 5 we show these percent differences as functions of E/N for each of the 
three cases. 

The results for case A highlight energies where the vibrational cross sections 
in Fig. 2 disagree most severely. Increasing at!.l above 2 eV introduces errors 
in vdr(E/N) which at the three highest values of E/N are 4 to 6 times 
experimental error, showing that Vdr is quite sensitive to the magnitude of this 
cross section at these energies. Case C extends this inquiry to higher energies. 
Now only at the three highest values of E/N do the calculated Vdr disagree with 
measured coefficients by more than experimental error. Still, the drift velocity is 
demonstrably sensitive to a6'21 even above 3·5 e V. Finally, in case B, which is 
intermediate between cases A and C, we find as expected that calculated drift 
velocities at the four highest values of E/N are near or beyond the limits of 
experimental error. The calculated Vdr at E / N = 1· 7 Td, for example, lies above 
the measured value by more than 3·5 times the experimental uncertainty. 

Together, these tests place 'error bars' of a sort on the determination of 
a6'21 from measured drift velocities. Specifically, they show that analysis of 
this transport coefficient, measured to state-of-the-art precision, can determine 
this vibrational cross section to significantly better than 20% from threshold to 
between 3 and 4 eV. Clearly, then, one can extract significant information about 
a6'21 at energies up to a few eV, and the differences between the swarm result 
and those from beam experiments and theory up to 3 or 4 eV cannot be ignored. 
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Fig. 6. Percent differences between calculated drift velocities in a mixture of 1·16% H2 in 
Ne using the cross section set of England et al. (1988) and the modified sets described in 
Section 3.2. (a) When perturbations are applied to the vibrational cross sections between 
1·4 and 1·6 eV, the drift velocities are maximally affected around EIN = 0·8 Td. (b) When 
the perturbations are moved to the range 2·0 to 2·4 e V, the maximally affected range shifts 
to about EIN = 1· 5 Td. 
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3.2 Correlating the Energy Dependence of O'~~l with the E/N Dependence of Vdr 

Having demonstrated the sensitivity of Vdr to the vibrational cross section, 
we now refine this study in order to determine quantitatively the values of E/N 
at which this transport coefficient is most sensitive to the magnitude of O'~~l 
within specific energy ranges. The indirect character of the determination of 
cross sections via transport analysis precludes a precise correlation of electron 
energy with maximum sensitivity because differences in O'~~l influence the energy 
distribution function f(E), and hence the transport coefficients, in complicated 
ways. Nevertheless, we can obtain insight into the matter using a procedure akin 
to that of Section 3.l. 

In particular, we use the O'~~l and 0'~~2 cross sections of England et al. (1988) 
modified within a small energy range to calculate 'perturbed' drift velocities which 
we then compare to drift velocities calculated with unmodified cross sections. By 
using calculated rather than measured drift velocities as a standard we reduce 
the effect of 'noise' (scatter), inherent in the experimental data, which would 
otherwise mask the effect of such small perturbations to the cross sections. 

Figure 6 shows percent differences calculated as in equation (2) for two such 
studies. In Fig. 6a we increased O'~~l and 0'~~2 by 10% between 1·4 and 1·6 eV, 
and in Fig. 6b by the same amount between 2·0 and 2·4 eV. Fig. 6a shows 
that we can use the resulting percent difference to identify 0·7 ::; E / N ::; 0·9 Td 
as the range of E/N where Vdr is maximally sensitive to alterations in these 
cross sections from 1·4 to 1·6eV. Similarly, 1·2::; E/N::; 1·7Td is the region 
of maximum sensitivity for energies from 2·0 to 2·4 eV. 
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Fig. 7. Correlation between the value of E/N at which the drift velocity is most sensitive 
to perturbations of the vibrational cross sections and the mid-point of the energy range of 
the perturbations. 
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From several such studies at energies between 1·0 and 2· 5 e V we construct 
in Fig. 7 a correlation of the maximum sensitivity of Vdr and the mid-point 
of the energy range of the perturbation of the vibrational cross sections. The 
relationship between modifications to a cross section and changes in the calculated 
drift velocity are complex when the modifications are large. Still, this figure 
indicates which part of the cross section most influences Vdr at a given E/N, 
and therefore where one should modify this cross section to optimise a fit to the 
measured coefficients. 

Together, the results of the analyses shown in Figs 4-7 support several 
conclusions. First, as anticipated from the distribution functions feE) in Fig. 4, 
at higher values of E/N the distribution of electrons in the swarm makes possible 
the determination of (]"~~l to within 20% or better at energies as high as 3 eV. 
This statement rests first on the fact that although the stated uncertainty in Vdr 

from the mixture experiments is ±O· 5%, the relative accuracy of these values 
is much higher, as is evident in the smooth variation of the difference between 
calculated and experimental quantities with E/N. It also rests on the requirement 
that the swarm-derived cross sections (]"~~l and (]"~~2 vary smoothly with energy 
and qualitatively resemble the theoretical cross section curves. 

The second conclusion implicit in Figs 4-7 is that the experimental data for 
this mixture of 1·16% H2 in Ne are most sensitive to the vibrational cross 
sections in the range of greatest divergence between the cross sections shown in 
Fig. 2. As E/N increases from 0·4 to 1· 7 Td, the most probable energy of the 
electrons in the swarm increases from 0·5 to about 1·5 eV (see Fig. 4), while 
the energy of electrons that most strongly influence the drift velocity (through 
vibrational excitation) increases from about 1· 0 to 2·5 eV. Moreover, we note 
that at E / N = 1· 7 Td a high proportion of electrons have energies greater than 
3·0 eV. It is therefore not surprising that Vdr remains sensitive to the magnitude 
of (]"a~l at energies above this value. 

3.3 The Significance of Differences between Swarm-derived, Beam, and Theoretical 
Cross Sections 

We can now assess the significance of the differences between the vibrational 
cross sections shown in Fig. 2 in relation to the transport data from which the 
swarm cross section was derived. We can do so definitively for the theoretical 
cross sections because the BFVCC calculations produce a complete set of pure 
rotational and ro-vibrational cross sections. Using this set we can calculate drift 
velocities and compare them unambiguously to measured values. Unfortunately, so 
straightforward a comparison is not possible for cross sections derived from relative 
angular distributions measured in beam experiments. To calculate drift velocities 
from the (]"~~l of Brunger et al. (1991) we must interpolate their results (at the 
seven energies reported) to produce a cross section from threshold to 5·0 eV. 
Moreover, since beam experiments cannot resolve rotational excitations, we must 
determine the branching ratios required for this analysis, i.e. the ro-vibrational 
breakdown of the Vo = 0 --t V = 1 cross section, from the theoretical results, 
and we must assume a set of pure rotational cross sections. With these caveats 
in mind, we can come to some meaningful conclusions about the differences in 
Fig. 2. 
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In Fig. 8 we compare measured and calculated drift velocities for three sets 
of cross sections: those determined by England et al. (1988) from their analysis 
of transport data (curve A), those calculated from BFVCC theory (curve B), 
and those derived by Brunger et al. (1991) from measured angular distributions 
(curve C). At first glance, curve A seems to indicate flawless consistency between 
swarm-derived cross sections and measured values of Vdr. But in terms of our 
earlier discussion, the smooth increase of the percent difference between 0·8 and 
1 ·7 Td is significant, even though it exceeds experimental uncertainty only at the 
largest value of E/N, and there by very little. Although this variation could have 
been eliminated had England et al. chosen to fit only their data for the H2-Ne 
mixture, it should be noted that in fact they determined these cross sections by 
fitting their own data and nine other sets of transport data (including DT / f.L) 
for para-hydrogen, normal hydrogen, and mixtures of H2 with He, Ne, and Ar. 
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Fig. 8. Percent differences between measured and calculated drift 
velocities in a mixture of 1·16% H2 in Ne for the cross section set of 
England et al. (curve A), for cross sections calculated using BFVCC 
theory (curve B), and for a set based on those of England et al. with 
the vibrational cross sections replaced by those derived by Brunger 
et al. from their measured angular distributions (curve C). 

Curve B in Fig. 8 shows that when we substitute theoretical pure rotational 
and ro-vibrational cross sections for the swarm-derived values, the resulting drift 
velocities exceed 10 times experimental error over a large range of E/N.* This 
indicates either incompatibility of theory and experiment or an invalid assumption 
in the theory used to analyse the swarm experiments. 

* Because of the small fraction of H2 (1·16%) in the mixture and the close agreement between 
the swarm-derived and theoretical momentum-transfer cross sections, we need not replace this 
cross section with its theoretical counterpart. 
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Finally, curve C shows that a similar serious disagreement arises when we 
replace the swarm-derived cross sections by the results of Brunger et al. (1991). 
We have used the theoretical ratios of the pure vibrational (0'~~'"21O) to ro­
vibrational (0'~~'"212) cross sections to separate the latter vibrational cross sections 
into ra-vibrational components. Overall, the difference between calculated and 
measured drift velocities is smaller than in case B, particularly at values of 
E/N above 0·8 Td. This reflects the smaller difference between the beam- and 
swarm-derived cross sections between 2 and 3 eV, and the compensating effect of 
the crossover above 3·0eV (see Fig. 2). Still, for E/N between 0·3 and 1·7Td, 
this difference exceeds 5 times experimental uncertainty, and at its maximum 
reaches 9 times the quoted error. 

Two other features of this comparison are significant. First, although the 
theoretical and beam cross sections are in excellent agreement from threshold to 
1 ·5 e V, the differences between calculated and experimental drift velocities of 
curve B, which is based on the theoretical cross sections, exceed those of curve C, 
which is based on the beam cross section, even at the lowest values of E/N. This 
reflects the influence of 0'~~1 over a range of energies on Vdr at a given value 
of E/N, which underscores why it is difficult to specify a precise uncertainty on 
the swarm-derived cross sections at any particular energy. 

Similarly, the energy dependence of 0'~~1 clearly influences the percent differences 
in Fig. 8 at higher values of E/N. The beam cross section above 3 eV which we 
used to calculate Vdr for this comparison is at best a reasonable guess in that it 
passes through the values reported by Brunger et al. at 3 and 5 eV. Still, the 
comparison at E/N = 1·7Td, for example, illustrates that 0'~~1 above 3·5 eV, 
which is only about 10% below the swarm-derived value, cannot compensate fully 
for the more substantial differences at lower energies. 

One might reasonably ask how the comparison in curve C is affected by the 
particular pure rotational cross sections used in calculating Vdr. That is, one 
could use either theoretical BFVCC cross sections or those derived from transport 
analysis. As shown in Fig. 9, the rotational cross section that best fits measured 
transport data agrees very well with the theoretical curve from threshold up to 
1 eV, but at higher energies diverges from it by about 10%. For H2 , however, 
the influence of rotations is relatively small: since the rotational and vibrational 
energy spacings differ by about a factor of 10, replacing the swarm-derived 
rotational cross sections with theoretical values changes the difference curves in 
Fig. 8 by less than 2%. Moreover, since the theoretical cross section is larger 
than the swarm-derived cross section between 0·5 and 2·0 eV, where rotation is 
a more significant energy-loss process than at higher energies, this replacement 
increases rather than decreases the differences. 

Another exigent question concerns the lack of uniqueness of swarm-derived 
inelastic cross sections. As noted earlier, in mixtures, electron scattering from 
H2 influences Vdr almost entirely through energy exchange in rotational and 
vibrational collisions, rather than through momentum transfer. So any set of 
cross sections derived from drift velocity data is to some extent not unique. One 
could, for example, compensate for adjustments to a vibrational cross section 
largely (though not exactly) by appropriately modifying the rotational cross 
sections, although the required modifications may be drastic. This feature of 
transport analysis raises yet another question: could the differences between 
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swarm-derived vibrational cross sections and the others in Fig. 2 be due to errors 
in the rotational cross section? 

For the theoretical cross sections, we can answer this question unequivocally 
without undertaking time-consuming repeated solution of the Boltzmann equation 
to find the set of rotational cross sections that best matches the transport data. 
Since the theoretical a~~l is larger than the swarm result, we would have to 
reduce the rotational cross sections to maintain the same energy losses due to 
inelastic scattering. Curve A of Fig. 10 shows percent differences of measured 
drift velocities with values calculated with the most extreme such modification: 
zero rotational cross sections. 
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Fig. 9. Rotational excitation cross sections (jo = 0 ---> j = 2) from 
BFVCC theory (curve A), from the analysis of swarm data by 
England et al. (1988) (curve B), and from a modified set of rotational 
cross sections that gives reasonable agreement between calculated and 
measured drift velocities (for the H2-Ne mixture) when determined 
using the interpolated vibrational cross sections of Brunger et al. 
(curve C; see Section 3.3). 

We see that for 0·7 ::; E / N ::; 1· 5 Td the resulting drift velocities are larger 
than the experimental values. But since inelastic scattering reduces the average 
energy of the swarm and hence the collision frequency of the electrons in it, such 
collisions can only increase Vdr. We conclude that if the experimental data are 
as accurate as claimed and if the Boltzmann analysis is correct, then the energy 
losses predicted by the theoretical vibrational cross section are too large, even 
in the hypothetical limiting case that no additional loss occurs due to rotational 
excitation. 

Eliminating this energy-loss process from calculations of Vdr based on 
(interpolated) beam vibrational cross section produces curve B of Fig. 10. 
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These drift velocities never exceed the experimental values, so in this case one 
can find compensating rotational cross sections that yield agreement to first 
order. But since the calculated and experimental drift velocities approach one 
another at certain values of E/N, the modified rotational cross sections must be 
quite small. Curve C in Fig. 9 shows the (J"6~2 from a modified set that gives 
calculated drift velocities within ±1 % of the experimental data for the mixture. 
Although one might be able to obtain by further modifications an even better 
fit, this cross section is indicative and conforms to what one would expect from 
general physical arguments. Obviously, at energies above 0·5 eV, it in no way 
resembles either the theoretical or swarm-derived rotational cross section. * 
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Fig. 10. Percent differences between drift velocities measured in 
the H2-Ne mixture and those calculated using zero rotational cross 
sections along with the BFVCC theory cross sections (curve A), and 
the interpolated vibrational cross sections of Brunger et al. (curve B). 

4. Remarks on the Total and Momentum-transfer e-H2 Cross Sections 

The problems involved in converting raw angular distributions from a crossed­
beam experiment to absolute DCS are well known (see, for example, Trajmar et al. 
1984). One can normalise the angular distribution in various ways. Brunger et al. 
(1991) chose the relative flow technique, using as a benchmark Nesbet's theoretical 
e-He DCS (Nesbet 1979). One can usefully check the normalisation-and, 
indeed, the DCS themselves-by comparing the total and momentum-transfer 

• Development of a rotational cross section for use with a vibrational cross section that 
conforms to the lower bounds of the beam-derived data would require less drastic modifications. 
But the 20% difference between beam- and swarm-derived vibrational cross sections at 1· 5 e V 
would result in rotational cross sections that differ substantially from the theoretical values. 
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cross sections calculated by numerically integrating the (normalised) experimental 
DCS against results from time-of-flight experiments and transport analysis of 
swarm data. 

Each of these latter experiments yields integral cross sections that are intrinsically 
more accurate than those based on relative angular distributions from beam 
experiments. At moderately low energies, the total cross section for systems such 
as e-He and e-H2 vary slowly with energy, so their measurement in time-of-flight 
experiments suffers mainly from uncertainty in the target number density in the 
flight tube. State-of-the-art techniques for the mTorr region can reduce these 
uncertainties to between 1 and 2% (Ferchet al. 1980; Jones 1985; Buckman and 
Lohmann 1986). Thus Jones (1985) claims an uncertainty of ±2·5% in his total 
e-H2 cross sections between 1 and 4 eV. The slow variation of O"mom with energy 
also contributes to the confidence that can be claimed for this cross section as 
derived from an analysis of transport data, and at energies up to 1 or 2 e V the 
±5% uncertainty limits that have been placed on it are likely to be conservative. 
This view is strengthened by the agreement between theory and experiment in 
this energy range (Morrison et al. 1987a). 

A second uncertainty that arises when one compares integral cross sections 
derived from DCS data and those from time-of-flight and swarm experiments is 
the need to extrapolate the angular distributions from the experimental limits 
(typically 20° to 130°) to 0° and 180°. Thus Brunger et al. (1990, 1991) estimate 
the error in their vibrationally elastic differential cross sections to be ±8%, a 
combination of systematic and random error as well as uncertainties due to 
normalisation, but conservatively estimate the error in O"tot to be ±20%, the 
major additional contributor being extrapolation to small and large angles. 

Using a new technique based on known physical properties of the S matrix 
(Trail and Morrison 1991; Morrison et al. 1993) we have virtually eliminated 
this additional uncertainty. This method for extrapolation of normalised angular 
distributions to small and large angles entails fitting measured data to an equation 
that incorporates physical constraints so as to reduce to less than 1% additional 
error (in all cases studied so far) and eliminate some of the 'noise' typically found 
in experimental distributions. Conceptually, this method resembles the 'phase 
shift analysis' that has been used to circumvent the extrapolation problem for 
electron-atom scattering (Taylor 1972; Bransden 1976; Williams 1979; Steph et 
al. 1979; Allen 1986; Allen and McCarthy 1987). 

Electron-atom phase-shift analysis is based on the usual expression for the 
elastic differential cross section for scattering from a spherically symmetric local 
potential, written in terms of partial-wave phase shifts De(k). The analysis 
detaches these phase shifts from their usual physical significance, using them 
instead as parameters in a numerical fit to the measured DCS. With the fitted 
phase shifts one can easily calculate integral (total and momentum transfer) cross 
sections via well-known formulae (Joachain 1975). 

But this method is not applicable to electron-molecule scattering, because 
its underlying assumptions do not hold. Most important, electron-molecule 
potentials are not spherically symmetric, so partial-wave phase shifts cannot 
even be defined for these systems. Morrison et al. (1993) treat the molecule as 
properly non-spherical, using a non-linear least-squares fitting algorithm (Press et 
al. 1986) and incorporating known aspects of the collision physics to minimise the 
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number of parameters. Since the experiments of interest measure total, elastic, 
or vibrational DCS, the method need not deal explicitly with rotational dynamics 
and so is formulated in the body frame (BF), using the fixed-nuclear-orientation 
(FNO) approximation (Lane 1980; Morrison 1988). 

For an elastic collision ko -i- kok, the BF-FNO amplitude for scattering into 
a (lab-frame) scattering angle () = k . ko can be written in terms of the elements 
of the corresponding T-matrices r..ATI as (Morrison 1988 and references therein) 

f(()) = !7r L L i£o-£+l Y/(k) T£10 Y£~*(ko), 
o A ££0 

(3) 

where A is the. projection of the electron's orbital angular momentum on the 
internuclear axis and 'fl is the parity. Using Wigner rotation matrices (Rose 1957) 
one can transform this expression into the lab frame and derive for the total 
DCS the expression 

1~ I = 4~2 L L L dL(ll£ofo; A1\.) Tleo Tle: PL(cos()) , (4) 
tot 0 L A££o Ateo 

where the coefficient dL is a simple product of numerical factors and Clebsch-Gordan 
coefficients. 

It would be impractical to use the T-matrix elements in (4) as fitting parameters. 
But one can develop a variant of this equation suitable for least-squares fitting 
with a minimum number of parameters by decoupling the partial waves and then 
unit arising the corresponding (approximate) S-matrix. To this end we introduce 
'phase parameters' o~TI defined as 

OATI = sin-1 (11m TA) £ - 2 U (5) 

and approximate the (vibrationally elastic) differential cross section by 

da I 1 " [" " - - - A A (A A)] dO = k2 L L LdL(££££;AA)sino£ sinol cos o£ -oz PL(cos()). 
tot 0 L Ai Ai 

(6) 

Unlike (4), this expression is ideally suited to fitting experimental data. Finally, 
one uses the phase parameters resulting from such a fit to calculate the integral 
(total and momentum-transfer) cross sections. 

In applications to recently measured e-H2 and e-N2 DCS, Morrison et al. (1992) 
found that while several phase parameters are required to converge the DCS, only 
a very few need be fitting parameters. That is, most of the high-order (large-£) 
parameters o~ are given to very high accuracy by the first Born approximation 
(Feldt and Morrison 1982; Morrison et al. 1984a) because of the influence of a 
strong centrifugal barrier at low energies, and so only a few low-order parameters 
need be varied in the fit. For example, to fit the elastic DCS of Brunger et al. 
(1991) at 2·0eV, only three of the 10 required phase parameters must be left 
'free' (to be determined by the least-squares fit): 

(7) 

first Born approximation 
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Convergence of the integral total cross sections (in A 2) with the number of free 
parameters Nf , is clean: 

O"tot = 15·07 -+ O"tot = 16·07 -+ O"tot = 14·64 -+ O"tot = 14·69. (8) 
'---"..----" '---"..----" '---"..----" '--- "..----" 

Nf=l N f =2 N f =3 Nf=4 

In Table 1 we compare O"tot from application of this technique to the (normalised) 
angular distributions of Brunger et al. (1991) at 1·0 and 2·0 eV. Because this 
procedure introduces negligible additional error, we believe that these integral cross 
sections suffer essentially only the error of ±8% quoted for those distributions. 
We also compare cross sections measured in time-of-flight experiments by Jones 
(1985) and calculated by Trail (1992). 

Table 1. Vibrationaliy elastic total cross sections from beam experiments (Brunger et al. 
1991), time-of-flight experiments (Jones 1985), and theoretical calculations (Trail 1992) 

Energy 
(eV) 

1·0 
2·0 

11·68 
14·56 

11·71 
14·64 

13·39 
15·78 

Time-of-flight 
(A2) 

13·21 
15·59 

Time-of-flight (adjusted)c 
(A2) 

13·1 
15·26 

A As quoted in Table 3 of Brunger et ai. (1991), these integral cross sections were calculated 
from extrapolations (based on the shape of the theoretical DCS) from the measured angular 
region [20°, 130°] to 0° and 180°, followed by numerical integration. 
B These integral cross sections were determined by Morrison et ai. (1993) by fitting the 
vibrationally elastic measured angular distributions of Brunger et al. (1991) to eliminate 
extrapolation error. 
C For purposes of this comparison we have subtracted the 0 --> 1 vibrational cross sections of 
Brunger et ai. (1991) from Jones's grand total cross sections to obtain these 'adjusted' results. 

Using the same phase parameters, we compute the momentum-transfer cross 
sections in Table 2. But in comparing these results to swarm-derived values, 
one must consider that the sources of error in swarm experiments are somewhat 
different from those in beam experiments. Because the gas pressures in drift 
and diffusion experiments range from a few torr to several atmospheres, errors in 
measuring this pressure contribute little to the overall uncertainty in the transport 
coefficients. Although this uncertainty is magnified in the unfolding of cross 
sections by solution of the Boltzmann equation, Crompton et al. (1970b) have 
claimed an overall uncertainty of ±2% in the most favourable case, elastic e-He 
scattering, and ±5% for the e-H2 momentum-transfer cross section (Crompton 
et al. 1969). 

In Table 2 we compare O"mom as calculated by Morrison et al. (1993) from the 
normalised angular distributions of Brunger et al. (1991) to the swarm-derived 
values of Crompton et al. (1970b) and theoretical cross sections of Trail (1992). 
The theoretical and fitted cross sections correspond to vibrationally elastic 
scattering. By contrast, the cross sections reported in Table 3 of Brunger et al. 
and the swarm-derived cross sections also include contributions from vibrational 
excitations. So we have subtracted from these results the contributions from 
(theoretical) inelastic vibrational cross sections, leaving the results shown in 
parentheses underneath the reported data. These vibration ally elastic cross 
sections can meaningfully be compared to the others in this table. 
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These comparisons suggest several conclusions. On theoretical grounds we 
believe one can reduce virtually to zero the additional uncertainty of 12% which 
Brunger et al. (1990, 1991) attributed to their extrapolation when assessing the 
error bounds for their total and momentum-transfer cross sections. We note that 
for both cross sections at 1· 0 and 2·0 e V, the differences between the integral 
cross sections reported by Brunger et al. (1991) and those obtained by the fitting 
procedure of Morrison et al. (1993) are less than 2%. The resulting reduction 
of experimental error bars increases the significance of comparisons with other 
integral cross sections. 

Table 2. Elastic momentum transfer cross sections for e-H2 scattering from beam experiments 
(Brunger et al. 1991), from transport analysis of swarm data, and from theoretical calculations 

(Trail 1992) 

Energy DCSA DCSB Theory Swarm 
(eV) (A2) (A2) (A2) (A2) 

1·0 14·59 14·57 17·36 17·3 
(14·49) (17·2) 

2·0 16·51 16·50 18·79 17·89 
(16·10) (17 ·48) 

A As in Table 1, these results from Table 3 of Brunger et al. (1991) were calculated from 
extrapolations (based on the shape of the theoretical DeS). They do include contributions 
from vibrational excitation. 
B As in Table 1, these vibrntionally elastic integral cross sections were determined by Morrison 
et al. (1993) by fitting the vibrationally elastic angular distributions of Brunger et al. (1991). 

In this context, we find that the theoretical and time-of-flight total cross 
sections agree to well within the quoted experimental uncertainty of the latter, 
±2·5%. At 1 eV, however, the total cross section from the beam experiment 
lies about 10% below the others. At 2 eV the agreement is much better, about 
4%. In any case, these differences are well within the uncertainties quoted by 
the respective authors. 

Turning now to the momentum-transfer cross sections of Table 2 we find that 
the theoretical and swarm-derived values agree at both energies to just outside 
the quoted uncertainty of 5%. But the values calculated from the normalised 
angular distributions show larger differences than those for O"tot: they lie 16% 
below the theoretical and swarm-derived cross sections at 1 eV, and 11 and 7% 
below at 2 eV. While these differences do fall within the combined uncertainties 
placed on these data by the authors, those at 1 e V are now on the limit or 
outside the combined uncertainties when the revised error limits for the cross 
sections of Brunger et al. (1991) are used. 

From these comparisons we draw two conclusions. First, the integral cross 
sections derived from the angular distributions of Brunger et al. (1991) are 
consistently lower than the BFVCC theoretical, time-of-flight, and swarm-derived 
values. Therefore the normalisation factor used by Brunger et al. is probably 
too low at both energies, with the largest error at 1 eV. Second, the differences 
between the theoretical and swarm momentum-transfer cross sections and values 
determined from the measured angular distributions suggest that the beam 
experiments may be recording insufficient scattering in the backward direction. 
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5. Summary and Conclusions 

Our earlier paper (Morrison et al. 1987b) focused on energies below 1· 5 eV. 
At that time the swarm-derived vibrational cross section, which disagreed with 
both theory and the then-available results from beam experiments, was based 
solely on an analysis of transport data in pure hydrogen. The new results from 
crossed-beam experiments and from the analysis of new swarm experiments in 
H2-He and H2-Ne mixtures, which are summarised in Section 2, confirm that 
disagreement. But they also provide new evidence which, when subjected to the 
analysis in Section 3, makes it more difficult to reach conclusions as definitive as 
those obtained in earlier discussions of this conundrum (Buckman et al. 1990). 
For, while the new beam experiments gave vibrational cross sections in excellent 
agreement with those from theory up to 1·5 eV, the integral cross sections derived 
from these Des data are closer to the swarm-derived results at higher energies, 
and both lie below the theoretical cross section at energies around 2· 5 e V. These 
new results therefore pose the question: can we give the same weight to the 
cross section derived from the swarm experiments in mixtures above 1·5 e V as 
was given to the earlier swarm results below that energy, and, if so, to what 
energy can useful comparisons be made with the swarm results? 

To answer this question we have quantitatively correlated energy ranges of 
the vibrational cross section with values of E/N at which drift velocities in the 
mixture are most sensitive to changes in the cross section within these ranges 
(see Fig. 7). We have also determined the sensitivity of the drift velocities to 
changes in the cross section above specified energies (see Fig. 5). Taken together, 
the results of these tests probably provide as much information as possible about 
'error bars' for the swarm-derived cross section-in the absence of results from 
some kind of numerical optimisation algorithm technique such as that proposed 
by Morgan (1991). 

The most important conclusion revealed by our analysis is that a critical 
assessment of the beam-derived, theoretical, and swarm-derived cross sections 
should not be restricted to energies below 1·5 eV, but should be extended to 
at least 3·0 e V. Although that assessment muddies rather than clarifies the 
disagreement apparent in Fig. 2, one can state without qualification that the set 
of theoretical cross sections is incompatible with the swarm data from mixtures, 
using currently accepted transport theory, and that the same seems to be true 
of the integral cross sections derived from the DeS data (see Fig. 8). 

Because of the intransigence of this problem, it seemed worthwhile to further 
compare the vibrationally elastic total cross sections from theory and both types 
of experiment, as we have done in Section 4. In making such comparisons one 
can derive significant additional information from time-of-flight absorption-cell 
experiments. 

One problem in making such comparisons (as well as those for vibrational cross 
sections) is the additional uncertainty (12%) which was assigned to the integral 
cross sections derived from the DeS data due to extrapolation to small and large 
angles (Brunger et al. 1991). The analysis in Section 4 shows that we can reduce 
this uncertainty to a negligible level (less than 1%) using a physically motivated 
fitting procedure (see also Morrison et al. 1993). This brings the disagreement 
between variously determined total and momentum-transfer cross sections (see 
Fig. 3) near or beyond the combined uncertainties of the measurements. 
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Finally, Tables 1 and 2 show that below 2 e V both the total and momentum­
transfer cross sections derived from the DOS data are systematically lower than 
theory and the other experimental data. This suggests the possibility of an error in 
normalisation, although errors in the shapes of the DOS curves could also account 
for some of these differences. However, if there were an error in normalisation, 
correcting for it would increase the difference between the beam and swarm 
results for vibrational excitation in this energy range. We have not extended this 
analysis to higher energies in this paper because of the increasing uncertainties in 
the vibrationally elastic total and momentum-transfer cross sections derived from 
the absorbtion-cell and swarm experiments, respectively, due to the subtraction 
of contributions from the inelastic processes, and because the questions raised by 
such comparisons are somewhat secondary to the main issues discussed here. 

Prospects for future work on this problem are limited. On the theory front, our 
new implementation of an essentially exact treatment of exchange and inclusion 
of full vibrational dynamics in the solution of the scattering equations removed 
two major assumptions from our prior calculations but did not, alas, qualitatively 
change the cross sections. We have exhaustively checked these calculations 
using several distinct computer codes (some of which entail different numerical 
algorithms) and in all calculations have ensured. that the resulting scattering 
quantities are numerically accurate to 2% or better. 

There would therefore appear to remain one source of potential uncertainty: 
our (parameter-free) approximate treatment of short-range bound-free correlation 
effects in our polarisation potential (Gibson and Morrison 1984). This potential 
treats correctly all intermediate- and long-range polarisation effects (in the region 
outside the target charge cloud) and so is approximate only in the near-target 
region. But a recent examination of the role of the static, exchange, and 
polarisation interactions for vibrational excitation of H2 (Trail 1992) has shown 
that polarisation, although important for vibrational excitation, is not sufficiently 
important to resolve the experimental/theoretical discord in Fig. 2 (Morrison 
and Trail 1993). In fact, even were our polarisation model completely incorrect, 
replacing it (with, say, an accurate non-local optical potential) could not correct 
the 60% maximum discrepancy between theoretical and swarm-derived values for 
O"S~l.l. We consider so massive an error due to our treatment of polarisation 
highly unlikely: in fact, comparisons of various scattering quantities (at fixed 
internuclear geometries) with such optical-potential results as are available in the 
literature (Morrison et al. 1987 a) suggest that our model potential is considerably 
more accurate than one might infer from this discrepancy. 

On the beam front, the experiments of Brunger et al. (1991) are at the cutting 
edge of accuracy and minimum measurement energy. The non-spherical fitting 
procedure of Morrison et al. (1993) can eliminate essentially all error in integrated 
cross sections due to extrapolation and normalisation, and it is possible that the 
forthcoming extension of this procedure to inelastic scattering will clarify the 
situation for 0"~~1. But it is unlikely that near-future technological advances will 
enable significantly more accurate measurements of relative angular distributions 
at these or lower energies. 

Finally, it is worth emphasising that our conclusions concerning the vibrational 
controversy hinge on the quoted accuracy of the measured drift velocities for 
H2-rare gas mixtures, and on the viability of the Boltzmann analysis for rotational 
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and vibrational excitation of H2 • The possibility of experimental error larger 
than the quoted uncertainty can never be ruled out, but a significant increase 
in this uncertainty is unlikely, because the same apparatus and techniques were 
used for the mixture measurements as for earlier measurements on He and other 
monatomic gases for which there is no disagreement with theory. An additional 
potential source of experimental error is the preparation of the mixtures. But 
this, too, is unlikely, for the results from the H2-rare gas mixture measurements 
support those analyses of transport data in pure H2 • We are therefore left with 
the possibility of an error or inconsistency in the analysis of swarm data in 
molecular gases, noting, however, that no such problems appear in the analysis for 
atomic gases. This possibility must be considered along with the other possible 
explanations of the persistent discrepancy discussed in this paper, no matter how 
remote they may seem. 
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