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Abstract 

Estimates of the ground state wavefunction of (2+ 1 )-dimensional non-compact U (1) Hamiltonian 
lattice gauge theory are found in terms of variational wavefunctions with up to four parameters. 
These wavefunctions are compared with the exact ground state as a test of the accuracy of 
the method. 

1. Introduction 

An interesting alternative to the standard Euclidean path integral techniques 
of lattice gauge theory is provided by the method of variational wavefunctions. In 
this method, one deals with the Hamiltonian formalism and realises the states of 
the system as functionals of lattice link variables. By minimising the expectation 
value of the lattice Hamiltonian with respect to a finite number of parameters in 
a trial wavefunction, an estimate of the true ground state is found. This method 
has been applied to both Abelian and non-Abelian gauge theories. Compact U(l) 
gauge theory in (2+1) dimensions has been studied by Heller (1981), Heys and 
Stump (1987) and Dabringhaus et al. (1991), while SU(2) gauge theory has been 
studied in (2+1) dimensions by Arisue et al. (1983) and in (3+1) dimensions by 
Heys and Stump (1984) and Horn and Karliner (1984). Of more relevance to 
QCD are the SU(N) results of Chin et al. (1986) and Long et al. (1988), which 
are summarised in Robson et al. (1988). Their calculations of glueball masses 
and the string tension show a reasonable consistency with Euclidean Monte Carlo 
results. 

In this paper we apply the method to a simple exactly solvable model, namely 
non-compact U(l) gauge theory in (2+1) dimensions (Drell et al. 1979). The 
model is equivalent to the lattice version of a free Klein-Gordon field, for which 
the full spectrum of energy eigenstates can easily be found. This enables us 
to compare not only the estimate of the ground state energy with the exact 
value, but also to test the accuracy of the variational wavefunction itself. In 
Section 2 we give the analytic solution for the ground state of (2+1)-dimensional 
non-compact U(l) lattice gauge theory and describe the trial wavefunctions used 
in our subsequent numerical calculations. Results of the numerical calculations 
are given in Section 3, and our conclusions summarised in Section 4. 
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2. Non-compact U(I) in (2+1) Dimensions 

We begin with the dimensionless lattice Hamiltonian 

(1) 

where the variables (Jz defined on the links of a two-dimensional square lattice 
take values in the range (-00,00) and the plaquette variables 

(2) 

are defined in terms of the links bounding the plaquette p. The naive continuum 
limit is obtained from 

by making the substitutions 

1 
x=42"' e a 

8 1 . 
i- -+ ae- E'(r), 

801 

where e is the (dimensionful) electric charge and a the lattice spacing. 

(3) 

(4) 

The compact version, obtained by replacing the magnetic term in equation (1) 
by 2x 2:p (1 - cos Op), has been studied extensively by Heys and Stump (1987) 
using variational wavefunctions. They report excellent agreement with an earlier 
Green function Monte Carlo calculation of the ground state energy (Heys and 
Stump 1983) by using up to six parameters in their trial wavefunction. However, 
they point out that the ground state energy, by itself, is not necessarily a good 
measure of how closely the variational wavefunction approximates the unknown 
true ground state. 

By contrast, the non-compact version of the theory is quadratic, and therefore 
exactly solvable. This allows us to compare the variational wavefunction itself, 
as well as the ground state energy, with an exact result. Using (2) to eliminate 
the link variables in terms of plaquette variables, the Hamiltonian (1) can be 
written as a lattice Klein-Gordon Hamiltonian on the dual lattice: 

82 2 
W = L ~mn 80 80 + x LOrn' 

m,n m n m 

(5) 

where (Dabringhaus et al. 1991) 

-4 if m = n, 

~mn = 1 if m and n are nearest neighbours, (6) 

o otherwise, 
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and m, n label the sites of the dual lattice, corresponding to the plaquettes of 
the original lattice. We also note that the inverse coupling x can be set to 1 
from this point by the rescaling Wnew = x-I / 2Wold, ()new = Xi()old in (5). 

Taking the lattice to be square periodic of size N x N, the Hamiltonian (5) 
is diagonalised by the finite Fourier transform 

Ok = ~ L e(27ri/N) (klnl+k2n2)()n ' (7) 
nl,n2 

where we have labelled the sites of the coordinate and momentum space lattices 
n = (nl' n2) and k = (kb k2) respectively, and where ni, k i = 0, ... , N - 1. The 
diagonalised Hamiltonian is then 

(8) 

where 

A 4 ( . 2 7rkl . 2 7rk2) 
k= sm N+ sm N . (9) 

This is clearly a sum of uncoupled harmonic oscillators, corresponding to the 
photon excitations of the lattice. The ground state energy per plaquette of the 
original lattice is then 

(10) 

and the ground state wavefunctional 

(11) 

where 

and N is an uninteresting normalisation factor. The delta function in (11) arises 
from the k = 0 mode in the diagonalised Hamiltonian (8). This solution has 
been used by Drell et al. (1979) as a starting point for estimating the ground 
state of the compact version of the theory. 

Because of translation and reflection symmetry of the ground state, it is clear 
that not all of the matrix elements Mmn specifying the state are independent. 
Setting 

{3exact _ ~". 
n - lV.LOn (13) 
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(so that Mmn = ,B;~:;), we see that the ground state is completely specified by 
the ~([N/2] + 1)([N/2] + 2) numbers ,8(~:~~2)' where [N/2] 2: nl 2: n2 2: o. 

We wish to estimate this ground state by a variational wavefunction with only 
a small number of free parameters. Keeping within the spirit of the wavefunctions 
based on Wilson loops used by Heys and Stump (1987), an obvious gauge invariant 
choice of trial wavefunction is 

(14) 

where the sum is over a restricted set of loops L in the original lattice and «I> L 

is the oriented sum of link variables around each loop L: 

(15) 

In (15) the plus (minus) sign is taken if the link is traversed in the positive 
(negative) direction when going round the loop in an anticlockwise direction. 
The set of loops will typically contain all loops up to a given size, for example, 
all loops bounding up to three connected plaquettes. 

Obviously the trial wavefunction (14) can only give rise to quadratic terms 
in plaquette variables in the exponent. An equivalent specification of trial 
wavefunctions is therefore given in terms of sites on the dual lattice by 

WT[O] = exp ( - ~ LOm,8n-mOn) , 
mn 

(16) 

where the ,8 are only nonzero for a small set of site separations m - n. For example, 
a three-parameter WT may be restricted to include only self interactions ,8(0,0), 
nearest neighbour interactions ,8(1,0) and nearest diagonal neighbour interactions 
,8(1,1). The,8 values are fixed by minimising the expectation value of the 
Hamiltonian (5): 

(WT IWIWT) 
(wTlwT) 

J II dOn [ - L ,8n-m6.mn + L Or,8m-r6.mn,8s-nOs + L O~] 
n m,n m,n,T,S n 

x J II dOne- 'EfJ".(3n -""fJn 

n 

(17) 

Provided the nonzero,8 only include a small number of short-range interactions, 
the integral is readily done in the computer by a Monte Carlo simulation. In 
the following numerical calculations, Monte Carlo ensembles were generated for 
wavefunctions containing the full set of nonzero ,8 values in the trial wavefunction. 
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This contrasts with the non-compact U(I) calculations of Heys and Stump 
(1987), who simplified their numerical calculations by drawing their Monte Carlo 
ensembles from a one-parameter subset of parameter space. 

3. Numerical Results 

Our numerical simulations were done on 8 x 8 and 16 x 16 lattices with 
variational wavefunctions containing up to 4 parameters in the 8 x 8 case and 
3 parameters in the 16 x 16 case. Calculations were also done using a 3 x 3 
lattice, for which the exact ground state contains only three parameters, in order 
to test the computer code. Using a Metropolis algorithm, the ()n were chosen 
from the range -8 to 8. Given that fewer than 1 in 100 accepted values were 
outside the range - 2·5 to 2·5, we considered this to be a very safe domain 
which would still see a reasonable turnover of values. Beginning from a random 
initial configuration, each site was updated 5 times per sweep and the first 500 
sweeps discarded. The sample was then taken from every third sweep for the 
larger lattices, and every sixth sweep for the 3 x 3 lattice. To locate the miminum 
of the ground state energy (W) in parameter space, first a broad scan of the 
expected region was made to locate the approximate minimum, and then a more 
careful scan using far higher statistics was performed in the immediate vicinity. 
The final values quoted below are obtained by minimising a quadratic fit to (W) 
as a function of the f3 values. 

Comparing the exact ground state wavefunction (11) with the trial wavefunction 
(16), it is clear that the variational parameters f3 would be directly analogous to 
the parameters pexact defined by (13), were it not for the 8-function occurring 
in (11). The effect of the 8-function can be thought of as adding an infinite 
constant to each of the f3~~~. To illustrate this, consider the 3 x 3 lattice, for 
which the exact ground state is given by (11) and (13) with 

aexact 4 + 2.../2 
,v(0,0) = 9.../3 ~ 0·438044 , 

f3exact = 1- .../2 ~ -0.026572 
(1,0) 9.../3 ' 

aexact .../2 - 4 
,v((1 1) = . / ~ -0·082939 , , 18y 3 

and ground state energy per plaquette 

Eg X3 = 4(1 + .../2) ~ 1.858462. 
3.../3 

(18) 

(19) 

Searching the parameter space for the minimum energy of the three-parameter 
trial wavefunction 'liT using the Monte Carlo procedure outlined above, we were 
not able to locate a minimum at finite f3. Instead we found a long, downward 
sloping valley approximately following the line 

(f3(0,0) , f3(1,0), f3(1,1)) = (f3'(O,O)t + >., f3(f$)t + >., f3(f,~)t + >.) . (20) 
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Table 1. Estimates of the ground state energy (W) of the 3 X 3 lattice calculated from 
equation (17) using the {3 parameters given by (20) 

The numbers in parentheses in this and the subsequent tables are the numerical uncertainty 
in the last digits 

>. 

1·0 
2·0 
3·0 
4·0 

(W) >. 

1·861548(9) 5·0 
1·860009(5) 6·0 
1· 8594957(35) 7·0 
1· 8592322(26) 10·0 

Table 2. Estimates of the ground state energy (W) of the 
3 X 3 lattice calculated from equation (17) with {3 = {3exact 

and a cutoff l2:n Onl ::; K 
The percentage of generated sweeps satisfying the cutoff criterion 

is also given 

K Acceptance rate (W) 

0·08 1·23% 1·86060(3) 
0·04 0·61% 1·858997(7) 
0·02 0·31% 1· 8585976(17) 
0·01 0·16% 1·8584960(4) 

(W) 

1·8590797(18) 
1·85889772(15) 
1· 8589037(12) 
1·85877 

Table 3. Minimum energy (W) and {3-parameters for the variational wavefunctions (16) on 
an 8 X 8 lattice 

The I-parameter results are from an analytic calculation and the 2-, 3- and 4-parameter results 
from Monte Carlo simulations. Also given are the results of imposing a cutoff l2:n Onl ::; K 
to model the 8-function in (10) and the exact results for 8 X 8 and infinite lattices from (11) 

and (13) 

(W) (% above Eo) /3(0,0) /3(1,0) /3(1,1) /3(2,0) /3(2,1) 

1 param 2 (+4·5%) 0·50 
2 param 1·93739(10) (+1·26%) 0·5476(30) 0·0628(10) 
3 param 1·9270(8) (+0·71%) 0·5728(50) 0·0862(20) 0·0314(10) 
4 param 1· 92367(30) (+0·54%) 0·5752(40) 0·0934(20) o· 0338(20) 0·0148(20) 
3 param 
(K = 0·01) 1· 91929(20) (+0.31%) 0·5630(30) 0·0816(30) o· 0274(20) 

4 param 
(K = 0·01) 1· 91696(30) (+0·19%) O· 5784(60) O· 0940(40) 0·0332(50) 0·0146(60) 

Exact 8 X 8 1·913348 0·565348 0·087012 0·028898 0·007984 -0·004238 

Exact infinite 1·916183 0·642882 0·163836 0·105070 0·082510 0·069810 

Table 4. Minimum energy (W) and {3-parameters for the variational wavefunctions (16) on a 
16 X 16 lattice 

The I-parameter results are from an exact analytic calculation and the 2- and 3-parameter 
results from Monte Carlo simulations. Also given are the exact results for 16 x 16 and infinite 

lattices from Eqs.(l1) and (13) 

(W) (% above Eo) /3(0,0) /3(1,0) /3(1,1) /3(2,0) /3(2,1) 

1 param 2 (+4.4%) 0·50 
2 param 1· 93753(30) (+1·13%) 0·548(2) 0·0626(10) 
3 param 1· 92688(20) (+0·58%) 0·5686(30) 0·0862(20) 0·0306(12) 

Exact 16 X 16 1·915831 0·604092 0·125134 0·066454 0·044078 0·031458 
Exact infinite 1·916183 0·642882 0·163836 0·105070 0·082510 0·069810 
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The values of the energy obtained from (17) as A increases, given in Table 1, 
appear to be converging on the correct value given in (19). Alternatively, one 
might try implementing the effect of the o-function by the more obvious technique 
of including in the statistical ensemble only Monte Carlo updates for which 
I Ln Onl is less than some cutoff K. In Table 2 we show the results of calculating 
the ground state energy at f3exact as K is gradually decreased. Once again, the 
values obtained converge to the exact value (19). 

We now turn our attention to the results for the larger lattices. In Table 3 we 
give the results for the 8 x 8 lattice, using up to 4 parameters, and in Table 4 
the 16 x 16 lattice results using up to 3 parameters. Also listed are the values 
of f3exact for finite and infinite lattices. The variational and exact ground state 
wavefunctions are illustrated in Figs 1 and 2 by plotting the f3-parameters against 
the radial distance (ni + n§)~ between plaquettes. 

Immediately noticeable is that the variational parameters obtained by minimising 
the expectation value (17) do not differ significantly between the 8 x 8 and 
16 x 16 lattices, even though the exact values f3exact have clearly moved 
closer to the infinite lattice values. This is not surprising given that 
the trial wavefunctions considered are localised to within a range of two 
lattice spacings, so the lattices used for these simulations are seen by the 
wavefunctions as essentially infinite. This observation is consistent with the 
comment made in the conclusions of Robson et al. (1988), namely that 
finite-size effects caused by the smallness of their lattices was not a serious 
problem, probably because of the crudeness of the wavefunctions considered. 
The glueball mass calculations of Long et al. (1988), for example, used two
parameter wavefunctions involving six link loops and were done on a 43 

lattice. Were it possible to continue increasing the number of parameters 
in our 16 x 16 lattice simulations, we expect the f3 values obtained would 
continue to drift upwards and agree well with f3exact at around 9 or 10 
parameters, at which point (see Fig. 2) the next parameter, f3(~,~)t, is close to 
zero. 

Also given in Table 3 are the results obtained when a cutoff I Ln Onl ~ 0·01 
is imposed on the Monte Carlo ensemble to model the o-function in the exact 
ground state (11). Because of the extra computer time needed this was only 
done for the 8 x 8 lattice. As pointed out for the 3 x 3 case, the o-function can 
also be accounted for by adding a large constant to each f3n, though this would 
clearly defeat the purpose of the Monte Carlo method which requires that only 
short-range interactions be nonzero. We see that the estimate of the ground 
state energy is improved for both the 3- and 4-parameter trial wavefunctions. 
However, little change is noticed in the f3-parameters; the 3-parameter values 
show a general trend toward the exact values, whereas the 4-parameter values 
are unchanged. The situation seems to be similar to the 3 x 3 case in that 
there appears to be a downward sloping valley approximately following the line 
f3~xact + A through parameter space, so that f3exact can be well approximated 
by minimising (W) over a cross section running across the valley at A = O. 
We conclude from this that once enough parameters are included in the trial 
wavefunction to allow for the finite lattice size, there is little advantage to be 
gained by imposing the cutoff at the time-consuming stage of scanning parameter 
space to locate the ground state. 
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Fig. 1. Variational wavefunctions obtained by minimising equation (17) on an 8 x 8 lattice 
using 1 parameter (dotted line), 2 parameters (dashed line), 3 parameters (dash-dot line) and 
4 parameters (solid line). The exact ground state wavefunctions on an 8 x 8 (crosses) and 
infinite (triangles) lattice are also shown. 

I3n 

i" 
0.6 "" 

o 
I I 

1 2 
I I I 

3 4 5 6 
(n1+n~)1/2 

Fig. 2. Variational wavefunctions obtained by minimising equation (17) on a 16 x 16 lattice 
using 1 parameter (dotted line), 2 parameters (dashed line) and 3 parameters (dash-dot line). 
The exact ground state wavefunctions on a 16 x 16 (crosses) and infinite (triangles) lattice 
are also shown. 



Variational Wavefunctions 239 

4. Conclusions 

We have examined the accuracy of the method of variational wavefunctions in 
Hamiltonian lattice gauge theory for a case for which the exact ground state can be 
found analytically, namely non-compact U(l) gauge theory in (2+1) dimensions. 
The method was applied to moderate-sized lattices (8 x 8 and 16 x 16) using 
trial wavefunctions with up to 4 parameters. 

We found that estimates obtained for the ground state wavefunction were, to 
a good approximation, independent of the lattice size for lattices large compared 
to the plaquette correlations implicit in the trial wavefunctions. For instance, the 
3-parameter trial wavefunction incorporating self-correlation, nearest-neighbour 
plaquette correlations and diagonal-neighbour correlations, gave estimates of the 
ground state which were almost identical for both lattice sizes. Furthermore, 
the wavefunction obtained agreed very well with the exact result for the smaller 
lattice, but not for the larger lattice. As a rule of thumb, we would suggest 
that trial wavefunctions should include correlations up to at least one quarter 
the spatial extent of the lattice. For a 16 x 16 lattice this would require a trial 
wavefunction with 9 or 10 parameters. 

A notable peculiarity of the exact ground state of the model considered in 
this paper is the presence of a 8-function factor restricting the sum of plaquette 
variables to be zero. It is not clear if this factor is unique to non-compact free 
U(l) theory, or whether it is also relevant to less trivial theories such as compact 
U(l), non-Abelian theories or theories with fermions. In any case, our numerical 
calculations indicate that the ground state wavefunction is well approximated in 
the model considered if one ignores this factor in the trial wavefunction. Since 
the bulk of computing time is expended in scanning the parameter space to locate 
the point which minimises the expectation value of the Hamiltonian, ignoring 
the 8-function represents a significant saving. Once the point is located, we 
found that introducing a cutoff on the accepted Monte Carlo sweeps to model 
the 8-function further improved the estimate of the ground state energy. We 
suspect this may also be true of other expectation values. 

Finally, we remark that, although the method was able to estimate the exact 
8 x 8 lattice ground state very well with modest computing time and facilities, 
we expect the amount of computing time required in general to rise rapidly 
with lattice size. The problems associated with adding the extra parameters 
needed for trial wavefunctions on larger lattices are twofold. Firstly, the scanning 
process to locate the minimum energy in a higher-dimensional parameter space 
is more complicated, and secondly, each Monte Carlo update becomes more 
time-consuming as new plaquette correlations are included. Neither of these 
problems has a counterpart in the standard Euclidean path integral simulations, 
where the one-plaquette action suffices irrespective of lattice size. We therefore 
foresee disadvantages for this method, compared with Euclidean Monte Carlo 
lattice gauge theory, when applied to large lattices. 
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