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Abstract 

This paper generalises an earlier result of Saffman (1960) to account for cross effects between 
turbulent and molecular diffusion for charged particle swarms in a gas in the presence of an 
electrostatic field. It is shown that turbulence enhances the anisotropic character of diffusion. 
The desirability of using a full kinetic theory analysis as against a limited hydrodynamic 
description of the swarm is discussed, and one possible tractable approach pointed out. 

1. Introduction 

Swarm experiments (Huxley and Crompton 1974; Mason and McDaniel 1988) 
are normally carried out in drift tubes containing quiescent nonturbulent gases 
whose properties are uniform and static. Thus a swarm of charged particles 
released into the gas from a source drifts under the influence of an applied 
electrostatic field E and simultaneously diffuses by virtue of collisions with gas 
molecules. In the so-called hydrodynamic regime (Kumar et al. 1980), the swarm 
has relaxed to a state where its density nCr, t) varies only slowly over distances 
of the order of the mean free path between collisions and in times of the order of 
the mean free time between collisions. Under these circumstances, Fick's law of 
diffusion [see equation (7) below] holds and, in the language of fluid mechanics 
(Monin and Yaglom 1971), the swarm is said to be a 'passive additive', which is 
characterised by 'molecular' transport coefficients K (mobility) and D (diffusion 
tensor) respectively. If the gas is turbulent, however, the behaviour of the swarm 
is quite different, as particles are now advected with the bulk motion of the 
gas and generally diffuse by turbulent action at a much greater rate. In the 
case of molecular diffusion, particulate properties (e.g. collision cross sections) 
control the swarm behaviour, while for turbulent diffusion the fluid properties 
of the gas are evident. It is usual to think of the two processes as operating 
on quite different length and time scales, allowing for separate treatment of the 
effects. If, however, the distinction is not clear cut, as it could well be for light 
swarm particles (electrons, positrons, muons, etc.) where the mean free path for 
energy transfer is the relevant microscopic scale length and may be comparable 
with macroscopic dimensions (Robson 1976), the possibility of significant 'cross 
effects' arises. The present investigation is along these lines. The problem for 
an uncharged passive additive has been considered by Townsend (1954) and 
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by Saffman (1960). In this paper we consider charged particle swarms, where 
diffusion is anisotropic in the presence of an electric field. 

Section 2 outlines the theory, starting from a prescription of the turbulent 
properties of the gas and proceeding through the solution of the diffusion equation, 
from which dispersion in directions along and· transverse to the applied field 
respectively is calculated. It is found that the presence of turbulence enhances 
the anisotropic character of the diffusion. 

In Section 3 the results are discussed and a procedure outlined for a more 
rigorous analysis of cross effects, starting from the kinetic Boltzmann equation 
for the swarm particle phase space distribution function, and avoiding the density 
gradient expansion implicit in the hydrodynamic theory of Section 2. 

2. Theory 

(aJ Turbulent Gas 

Properties of the gas, including the statistical properties of the turbulence, are 
assumed known. The swarm behaves as a passive additive, i.e. it does not affect 
gas properties in any significant way. The aim is to express swarm characteristics 
in terms of this given information. 

Let the gas have a turbulently fluctuating velocity field u(r, t) with zero mean, 
i.e. 

(u(r,t))=O, (1) 

where ( ... ) denotes an average over fluctuations. If the turbulence is homogeneous 
and stationary, then the autocorrelation function has the property 

(i,j=1,2,3), (2) 

for any two points r, r' and times t, t'. The tensor B(p, t) and/or its Fourier 
transform, 

q;(k, r) = J exp( -ik. p) B(p, r) dp, (3) 

are assumed given, although it is not necessary to know the explicit form in the 
following analysis. We also assume that the gas behaves like an incompressible 
fluid, i.e. 

\7.u=O, (4) 

and that the turbulence is isotropic. The latter assumption implies the following 
tensor structure for the transformed autocorrelation function: 

q;(k, r) = E(k, r) (1 - kk), (5) 

where E(k, r) is the spectral energy density in k-space, k is a unit vector and 
1 is the unit tensor. These results are well known (Monin and Yaglom 1971; 
Tatarski 1967). Fluctuations in the gas density N are assumed negligible. 
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(b) Swarm Particles 

It is assumed that swarm particles are very sparse, with density n ~ N, 
and that mutual interaction between them is negligible. Initially, a pulse of no 
particles is released from the origin, i.e. 

n(r, 0) =no8(r). (6) 

Thus, in the first stage of development (the 'kinetic regime') the swarm particle 
density gradient is large and time evolution is rapid. If the gas were quiescent, the 
pulse would smooth out rapidly in a few collision times and in the 'hydrodynamic 
regime' Fick's law would hold: 

n(v-u) =KE-D."Vn. (7) 

Here vCr, t) is the velocity of the swarm fluid, K is the mobility coefficient and 

(8) 

denotes the diffusion tensor. The usual supposition (implicit rather than explicit) 
is that even if the gas is turbulent, the hydrodynamic representation (7) holds. 
This is correct as long as the turbulent length and time scales are large compared 
with their microscopic counterparts. If not, the swarm is perpetually constrained 
to remain in the kinetic regime and an alternative analysis must be sought. This 
question is addressed further in Section 3. 

The equation of continuity for the swarm is 

an 
at +"V.(nv) =0 (9) 

and, together with (7), this yields the diffusion equation, 

-an - + u. "Vn = -Vdr. "Vn + D : "V"Vn, 
at 

(10) 

where 
Vdr = KE (11) 

is the drift velocity. Our task is to solve (10), given the velocity field u(r, t), the 
initial condition (6) and appropriate boundary conditions. In this work we take 
an infinite medium, with n and its derivatives all vanishing at large distances 
from the origin. 

(c) Solution of Diffusion Equation 

The Fourier-Laplace transform of nCr, t) is 

n(k,w) = 100 
dt J drexp[-i(k.r-wt)]n(r,t), (12) 
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the r-integration being over all space and the Laplace transform coordinate w 
differing by a factor i from more common representations, following the convention 
of wave propagation theory (Sessler 1967). Application of this dual transformation 
to the diffusion equation (10) and using the initial condition (6) yields 

n(k,w) = 1im(k,w) + g(k,w) k .r(k,w), (13) 

where 

(14) 

is the density transform that would arise if only molecular transport were operative, 

g(k,w) == (w - WlO»)-l, (15) 

r(k,w)== 100 
dt J drexp[-i(k.r-wt)]n(r,t)u(r,t), (16) 

and 
(0) - k ·D ·kk wk - .Vdr - ~ • (17) 

is the hydrodynamic 'dispersion relation'. 
The Fourier transform of density is found by inverting the Laplace transform, 

n(k,t) == J dr exp(-ik.r)n(r,t) (18a) 

= (21r)-1 fc dwexp(-iwt)n(k,w), (18b) 

where the contour C lies above the singularities of n(k,w) in the complex w-plane. 
From (13)-(17) it thus follows that 

where 

and 

n(k, t) = nm(k, t) + lt dtl g(k, t - tl) k. r(k, td , (19) 

nm(k, t) = no exp[-(ik. Vdr + kk: D)t] , 

g(k, t) = - i exp[-(ik. Vdr + kk: D)tJ, 

r(k,t) = J dr exp(-ik. r)n(r, t)u(r,t) 

= (21r)-3 J dk1 n(k - kl' t) U(klo t) 

u(k, t) == J dr exp( -ik. r) u(r, t). 

(20) 

(21) 

(22a) 

(22b) 

(23) 

Equation (19) constitutes an integral equation for n(k, t) and cannot be solved 
analytically for a general turbulent velocity field u(r, t). However, for weak 
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turbulence an iterative solution can be effected. To first order we find, after 
averaging and making use of (1), (2) and (3), 

(n(k, t) ) = nm(k, t) + (27r)-3 lot dt1 lotI dt2 g(k, t - tl) g(k - kI, tl - t2) 

x nm(k, t2) kk: CP(kl' tl - t2). (24) 

Note that the density distribution due to molecular transport alone, lim(r, t), is 
nonrandom, i.e. (nm ) == n m . We also observe that the form of equation (19) 
and its solution (24) actually have a generality extending beyond the present 
discussion, and arise in the full kinetic theory treatment, albeit with different 
g(k,w) and lim(k,w) (see Section 3). Substitution of (20) and (21) into (24) 
yields 

(n(k, t)) = nm(k, t) (1 - (27r)-3lo
t 

dtl fo tl dt2 j dk1 

x exp[(ik. Vdr - (k1k1 - 2kk1): D)(h - t2)] kk: CP(kl' tl - t2)) 

= nm(k, t) (1 - (27r)-3fo
t 

dT (t - T) j dk1 

x exp[(ik1 • Vdr - (2kkl - k1kI) : D)T] kk: cp(kI, T)) . (25) 

(d) Evaluation of Moments 

There are two moments of the density distribution that are of physical interest, 
namely the position of the centroid, 

rc = ~ j drr(n(r,t)), 
no 

(26) 

and the dispersion about the centroid, 

(T = ~ j dr (r - rc)(r - rc) (n(r, t)). 
no 

(27) 

These can be evaluated directly from the Fourier transform (25), using the 
following identities, 

j dr r ( n( r, t) ) = i 0 ( n) I ' 
ok k=O 

(28a) 

j drrr(n(r,t))=i o2 (n) I ' 
okok k=O 

(28b) 

which follow from differentiation of (18a) with respect to k. Evidently we need 
evaluate n(k, t) only up to second order in k to obtain these moments. 
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Since the integral term on the right-hand side of (25) is 0(k2), it makes no 
contribution to the centroid position and it therefore follows from (26), (28a) 
and (20) that 

i onm I Tc=--- =Vdrt. 
no ok k=O 

(29) 

Thus the position of the swarm centroid is unaffected by turbulent fluctuations 
in the background gas. On the other hand, the second-order moment (28b), and 
hence the dispersion (27), is obviously affected by the turbulent term in (25), 
and we find 

From (20) it can be shown that 

and hence 

u = 2Dt + 2(271")-31
t 

dr (t - r) J dk1 exp[(ik1 . Vdr - klkl : D)r] ~(kl' r) . 

(30) 

The first term on the right-hand side corresponds to molecular diffusion, while the 
integral includes both a turbulent diffusion term and cross effects. Equation (30) 
is actually the complete specification of dispersion in a turbulent gas, for given 
molecular transport coefficients Vdr and D and specified turbulent autocorrelation 
function ~(k, r). We now consider explicit, but approximate, evaluation of the 
integral. 

(e) Dispersion Tensor 

We now evaluate the integral (30) for times short on the turbulent scale but 
long on the molecular scale, assuming such a separation to exist. Firstly, we 
assume that the argument of the exponential is small for all times r over which 
~(k, r) is appreciable, so that 

u = 2Dt + 2(271")-3 (It dr (t - r) J dk1 ~(kb r) 

x [1 + (ik1 . Vdr - k1k1: D)r + 0(r2 )]) • (31) 
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For isotropic turbulence, with ~(k, T) given by (5), all integrals of odd functions 
of k with the autocorrelation function must vanish identically and, in particular, 

(32) 

Moreover, as can readily be shown from the definitions (2) and (3), for isotropic 
turbulence 

(33) 

Thus (31) simplifies to 

oo=2Dt+i1 lot dT(t-T)(u(r,O).u(r,T)}-oo*, (34) 

where the second term is the familiar turbulent dispersion integral (Taylor 1921), 

00* == 2 lot dT (t - T)T .6..(T) (35) 

accounts for cross effects, and 

(36) 

At short times [t < (-1, where ( is defined in (40) below] the cross term (35) is 

oo*(t) = 2 lot dT (t - T)T [.6..(0) + T.6..'(O) + ... ] 

= it3 .6..(0) + O(t4) . 

Using (5) and (8), it can be shown that 

where 

.6..(0) = Ll-Ll + (Llil - Ll-L) EE , 

Llil = 11S (4D -L + DII)(2 , 

Ll-L = 1~ (3D -L + 2DII)(2 , 

and ( is the vorticity of the turbulent motion, 

Thus (34), (37) and (39) together yield 

00* =U-L1+(ulI-U-L)EE, 

(37) 

(38) 

(39a) 

(39b) 

(40) 

(41) 
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where 

CT.L =2D.Lt+i lot dr(t-r) (u(r,O).u(r,r)) 

-15 (3D.L + 2DII)(2t 3 + O(t4 ) , 

CTII =2Dllt+i lot dr(t-r) (u(r,O).u(r,r)) 

-15(4D.L + DII)(2t3 + O(t4 ). 

(42a) 

(42b) 

For zero field, or when diffusion is otherwise isotropic, D.L = DII == D and 
CT.L = CTII == CT, where 

A similar expression was first obtained by Saffman (1960), who corrected an 
error in both the sign and the magnitude of the cross term derived by Townsend 
(1954). Note that this term acts to reduce the overall dispersion of the swarm. 
Equations (42) are the more general results allowing for anisotropic diffusion. 
Moffatt (1983) has given a lucid physical explanation of the origin of the cross 
effect in the case of strong turbulence, but the same qualitative considerations 
could be expected to apply to the present case. Note that the difference, 

(44) 

between the dispersions along and transverse to the field is enhanced by turbulent 
fluctuations in the medium. 

3. Further Discussion: A Possible Kinetic Theory Treatment 

Non-hydrodynamic effects may be important at short times after emISSIon 
from the source, close to boundaries or wherever the density n(r, t) varies rapidly 
over distances of the order of a mean free path and/or times of the order of the 
mean free time between collisions (Kumar et al. 1980). We have already pointed 
out the strict inconsistency of using the diffusion equation (10) in the event that 
the swarm is maintained permanently in the 'kinetic' (non-hydrodynamic) regime 
by rapidly varying turbulent fluctuations in the gas. We outline below how one 
might proceed with a more general analysis of molecular-turbulent diffusion cross 
effects, based upon solution of the kinetic Boltzmann equation and avoiding the 
density gradient expansion implicit in (10). 

In keeping with the spirit of 'passive additive' transport theory, all properties 
of the gas are assumed to be prescribed. The phase space distribution function 
fo of the gas molecules with velocity Co is therefore assumed to be given, and 
for our purposes it can be taken to have the Maxwellian form 

( ) ( mo ) ~ { ~mo[co - u(r, t)]2} 
fo r, Co, t = N 27rkBTo exp - kBTo ' (45) 
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where To is the gas temperature, mo the mass of a gas molecule and kB 
Boltzmann's constant. 

On the other hand, the phase space distribution function f for the swarm 
particles must be found as the solution of Boltzmann's equation, 

(a eE a) at + c. Vi" + -;;;:-. ac f = -J(f'!o) , (46) 

where J is the well known linear swarm particle-neutral molecule collision operator 
(Kumar et al. 1980). Here e, m and c denote the charge, mass and velocity, 
respectively, of a swarm particle. Velocity moments of f yield quantities of 
physical interest, e.g. the number density, 

n(r, t) = J dcf(r, c, t). (47) 

The task then is to solve (46), find n(r, t) from (47) and hence evaluate 
the averages over density and turbulent fluctuations given in Section 2. All 
this must be done without any approximations involving assumptions about the 
smallness of terms on the left-hand side of (46): no density gradient expansion 
(Kumar et al. 1980) and certainly no Chapman-Enskog approximation (Chapman 
and Cowling 1970) can be made if one wishes to go beyond the level of the 
hydrodynamic theory presented in Section 2. This is indeed a formidable task if 
realistic representation of the collision term J(f, fa) is required, and there seems 
to be no alternative to numerical analysis from the outset in that case. However, 
if one is prepared to accept an approximate, qualitative analysis that sheds light 
on the physical nature of the cross effects operating in the kinetic regime, there 
is an alternative, which is currently under investigation. 

We propose in future work to follow an earlier analysis (Robson 1975) of the 
full space-time evolution of a swarm in quiescent gas using the so-called Krook 
model collision term, 

J(f, fa) = v(f - feq) , (48) 

where 

( m)~ { ~m[c-u(r,tW} feq = n(r, t) exp - -"---=----'--:...:..-
2~kBTo kBTo 

(49) 

is the distribution function the swarm would have if it were in equilibrium with 
the gas molecules, and v is a collision frequency. Laplace transformation in 
time and Fourier transformation in both configuration and velocity space will be 
employed. Viewed from the perspective of this model, a hydrodynamic description 
is possible, using equation (10), if the velocity field u varies only slowly during 
one collision time v-I. In that case the results of Section 2 are valid. Otherwise 
a kinetic theory analysis must be carried out. The details are lengthy and will 
be left to a subsequent paper. We merely observe here that an expression similar 
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in form to (24) arises for the density, in which, however, the functions nm(k, t) 
and g(k, t) are by no means as simple as in (20) and (21) respectively. 

In summary then, we have: 

(i) obtained expressions for the dispersion of a charged particle swarm 
in a turbulent gas in directions parallel and transverse to an applied 
electrostatic field; 

(ii) examined cross effects between molecular and turbulent diffusion and 
have shown that the result of Saffman (1960) is recovered in the limit 
of isotropic molecular diffusion; and 

(iii) pointed out possible deficiencies in the hydrodynamic treatment of the 
swarm, and outlined a more rigorous alternative procedure involving 
solution of the kinetic Boltzmann equation. 

Finally the reader is directed to another analysis of non-traditional swarm 
phenomena in an inhomogeneous time-varying gaseous medium subject to a sound 
wave (Robson and Paranjape 1992). As in that paper, we conclude that the 
experimental implications of the theory need further examination. 
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