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Abstract 

A discussion of the discrete ordinate method for solving differential equations is presented 
along with a number of examples that have application in various fields of physics. In 
particular, diffusion cooling, boundary layer meteorology and the diffusion of water in soils 
are studied. It is shown that the discrete ordinate method is considerably more accurate than 
finite difference methods of the same order. Results are presented for linear and nonlinear 
models, with a comprehensive analysis of the results and accuracies. 

1. Introduction 

The discrete ordinate (DO) method appears to have been originally suggested 
by Wick (1943), but more fully developed by Chandrasekhar (1960) to solve 
radiative transfer problems. In those early days integral equations were considered, 
with the integral operator being replaced by a Gaussian quadrature formula and 
the resulting equation solved at the different quadrature points, along the lines 
of Williams (1971, Section 11.3.3). Put loosely, the DO method is an analysis of 
an equation at discrete points in the space under consideration. More precisely, 
if these points are the roots of a member of a set of orthogonal polynomials, it 
is simply an orthogonal collocation method. To be consistent with modern-day 
terminology, we should call it a 'pseudo-spectral method', to which excellent 
introductions can be found in Gottlieb and Orszag (1977) and Boyd (1989). 
Whatever the terminology, however, it should be recognised that the method 
is subsumed by the method of weighted residuals (Finlayson 1972) as pointed 
out in the review by Robson et al. (1991). The approach yields solutions of 
differential equations to sometimes stunning accuracy, with far fewer grid points 
than would be required by comparable finite difference (FD) techniques. In 
spite of this, it does appear to us that many physicists may be unaware of the 
tremendous advances that have been made in numerical analysis in recent times. 
The aim of the present paper then is to wean our colleagues away from the 
conventional outlook and to illustrate just how powerful and readily accessible 
the DO/pseudo-spectral method is. (In order to avoid complications, we shall 
employ the terminology 'DO' in what follows, believing it to be historically 
correct, but the reader may substitute 'pseudo-spectral' if desired.) 
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Whereas finite element techniques divide the interval in question into a number 
of subintervals and approximate the function to be found through low-order, 
piecewise polynomials, the DO method uses global basis functions of high order, 
which extend over the entire computational domain. When more accuracy is 
needed, the finite element technique merely increases the number of subintervals, 
without varying the degree of the piecewise polynomials. The DO method on the 
other hand increases the order of the global polynomials, without any subdivision. 
These remarks apply to both linear and nonlinear systems. Both approaches 
convert differential or integral equations to algebraic systems: generally speaking, 
finite element techniques result in large, sparse matrices, whereas the DO method 
produces low-order, full matrices. 

Applications to fluids have been extensive (Canuto et ai. 1988) up to the scale 
of global weather phenomena (Haltiner and Williams 1980; Jarraud and Baeda 
1986) and the DO method has also been used extensively in kinetic theory by 
Shizgal and coworkers (Shizgal and Blackmore 1985; Shizgal and Nishigori 1990). 
Note that in these papers the terminology 'quadrature discretisation method' is 
used. More comprehensive surveys can be found in Boyd (1989) and Robson et 
ai. (1991). 

Our fields of study comprise kinetic theory, soil physics and meteorology and 
the examples we have chosen to illustrate the DO method reflect these interests. 
However, we have written the paper in a way that we hope will be readily 
accessible to physicists from all fields, by avoiding specialised jargon, and by 
presenting our work in a self-contained, practical fashion, rather than through 
axiomatic development. While we believe that the applications are new, we do 
not claim that all the discussion on numerical aspects is original or, if it is, then 
it may raise more questions than it answers! 

We briefly review the DO algorithm in Section 2, while Section 3 is devoted 
to linear eigenvalue problems, derived from pollution meteorology and the kinetic 
theory of electron swarms. In Section 4 we examine the nonlinear diffusion 
equation of soil physics. In most cases we confirm the credentials of the DO 
method by choosing benchmark models, for which analytic solutions are available 
to test the accuracy of the numerical results. In some cases the accuracy is 
phenomenal (to machine precision) while in other cases it is entirely unsatisfactory. 
We also make a number of comparisons with standard finite difference results, 
which point to the general superiority of the DO method. 

2. Discrete Ordinate/Pseudo-spectral Method 

Physicists are well aware, from quantum theory, of the importance of obtaining 
representations of certain operators with respect to some basis. In this section, 
we prepare the way for solution of differential equations by introducing suitable 
representations of differential operators in what we might call the DO basis. The 
algorithm is exact when the function at hand is a polynomial, and therefore it is 
important to bring to bear whatever physical information/intuition is available 
to transform the equation to a form where the solution somehow mimics a 
polynomial. 

The essence of the method of weighted residuals and the closely related 
spectral method is explained in Robson et al. (1991, Section 2) and Boyd (1989, 



Discrete Ordinate/Pseudo-spectral Method 467 

Chapter 1). If f(x) is the function to be found and Ti(x), i = 1, ... ,N is a set 
of N 'trial' or 'basis' functions, then we write 

N 

f(x) ~ L JiTi(X) (1) 
i=l 

for all x in the interval I under consideration. The expansion coefficients fi 
are determined by some criterion which minimises the error €(x) associated with 
substitution of (1) into the equation to be solved. The discrete ordinate, or 
pseudo-spectral, method involves choosing the Ti(X) as interpolating polynomials, 

(2) 

where cPN(X) is an Nth order polynomial with zeros at Xl, ... ,XN. 
In this case, the trial functions have the property 

(3) 

and the expansion coefficients are 

(4) 

The residual error is forced to vanish at each of the mesh points: €(Xi) = 0, 
i = 1, ... , N. This prescription casts the differential or integral equation into 
algebraic form, with matrices representing operators. In this paper, we consider 
only differential equations and therefore we need only the matrix Dij representing 
the differential operator 

Thus from (1) we have 

where 

d 
1)=.-. 

dx 

N 

1) flx=Xi ~ L Dijfj , 
j=l 

(5) 

(6) 

(7) 
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Substitution from (2) yields, for i =1= j, 

N 
1 II Xi - Xk = , 

X· - X· X· - Xk 
J • k=l J 

(8) 

k",i,j 

while the diagonal elements are given by 

(9) 

The matrix corresponding to nth-order differentiation is just the nth power 
of the D-matrix defined above, e.g. for n = 2 

(10) 

Explicit forms for the errors are well known (Robson et al. 1991) and we 
merely point out here that the above formulas are exact if f(x) is a polynomial of 
degree ~ N -1. Equations (8) and (9) allow for quick and efficient computation 
of the differentiation matrix. It (and any powers required) should be computed 
at the outset and stored for future use. 

We now digress for a moment with a few comments on finite difference 
representations of V. Perhaps the most commonly used numerical differentiation 
algorithms involve the equally spaced abscissae Xi, i.e. a mesh generated by 

Xi = Xi-I + h i=2, ... ,N. 

If fi denote the corresponding ordinates, then one has, for example, the central 
difference formula 

or, in general, 

(Vf)i = df I 
dx X=Xi 

= fHI - Ii-I + O(h2) 
2h ' 

N-I 

(Vf)i = L Dij/j + E1N), 
j=O 

(11) 

(12) 
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where Dij denotes the appropriate matrix representation and EiN ) is an error 
term. For the central differencing method, 

1 
D·· = -(8· ·+1 - 8· ·-1). Z] 2h ],Z ],Z 

(13) 

Forward and backward differencing methods have similar representations. There 
is, however, no need to restrict such an analysis to equally spaced abscissae and, 
in fact, in many problems in physics it may be highly undesirable to do so. 
Adaptive methods, for example, concentrate mesh points in regions of rapidly 
varying f(x). In contrast to (10), the second-order derivative corresponding to 
the finite difference representation (11) is not the square of the corresponding 
matrix (13); rather, we have 

where 

Table 1. Magnitude of extreme derivative operator elements D ij , with (i,j) 
indicated 

Scheme 

Uniform 
Chebychev 
Legendre 

Minimum 

(12,1) 
(14,1) 
(8,21) 

1·lxlO-5 

1·2x10-1 

6·0xlO- 2 

Maximum 

(21,12) 
(21,20) 
(1,2) 

3·7x1Q5 
2·7xl02 

2·6x102 

(14) 

(15) 

Note that, whereas the elements (8) and (10) are generally all nonzero, the 
matrices (13) and (15) are sparse, and special algorithms may be invoked when 
manipulating them. Another important point is that the matrices of (8) and (9) 
generally have elements with widely disparate values, as illustrated in Table l. 
This table presents the extreme values of Dij obtained for a mesh of N = 21 points 
in the interval [0,1] for nodes uniformly distributed in [0,1], nodes representing 
the roots of the Chebychev polynomial T19 (X) plus the end points, and nodes 
representing the roots of the Legendre polynomial P19(X) plus the end points, 
respectively. The disparity generally increases with order N and is a potential 
source of error when it comes to solving differential equations. 

As against these apparent disadvantages, however, it is generally found that, 
for a given degree of accuracy in the final solution, the required order N associated 
with the DO method is much lower than the order associated with standard 
finite difference methods. The trade-off therefore lies between small but full 
matrices on the one hand and very large, but sparse, matrices on the other. 
Some quantitative investigations of comparative efficiencies are reported below. 
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3. Some Linear Eigenvalue Problems of Physics 

3.1 Sturm-Liouville Problems 

In this section we shall be concerned with linear second-order ordinary differential 
equations of the form 

d ( de!» - p(x)- + [Ar(x) + q(x)le!> = 0, 
dx dx 

(16) 

where p(x), q(x) and r(x) ;::: 0 are well behaved functions on the interval x E (a, b), 
while the allowed values of the constant A (the eigenvalue) are determined by 
application of the boundary conditions 

x=a; x = b, (17) 

where aa, ab, f3a and f3b are constants, and/or by requiring the solution e!>(x) 
to be well behaved in the interval. Equations (16) and (17) are said to define a 
Sturm-Liouville problem under certain conditions, and many theorems concerning 
the solutions are to be found in the literature (Birkhoff and Rota 1962). Many 
physical problems can be reduced to this form and we examine just two in detail 
in what follows. 

In discrete form on a mesh defined by Xl = a, X2, ... , XN-ll XN = b these 
equations are represented by 

where 

N 

aae!>l + f3a L Dlje!>j = 0, 
j=l 

N 

LLije!>j = 0 
j=l 

N 

abe!>N + f3b L DNje!>j = 0, 
j=l 

N 

i = 2, ... ,N -1, 

Lij == L DikPkDkj + (Ari + qi)8ij , 
k=l 

(18a) 

(18b) 

(18c) 

(19) 

and where e!>i == e!>(Xi), etc. Equations (18) comprise N homogeneous equations in 
the N unknowns e!>i (i = 1, ... ,N). Setting the determinant of coefficients equal 
to zero furnishes an Nth order polynomial in A with the N roots AI, A2, ... , AN, 
from which the N eigenfunctions e!>1 (x), e!>2 (x), ... , e!> N (x) follow. For the numerical 
calculations which follow, we have used a standard IMSL eigenvalue/eigenfunction 
package. 

Notice that when boundary conditions are prescribed, the differential equation 
is discretised only at points interior to the interval: any attempt to discretise 
(16) at the end points as well leads to redundant equations, inconsistent with 
the boundary conditions. 
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In what follows we choose Dij according to the DO representation (8) and 
(9), and solve the Sturm-Liouville problem for values of the coefficients p, q and 
r corresponding to certain physical problems. 

3.2 Boundary Layer Meteorology 

We wish to apply the DO method to numerically analyse a problem in 
boundary layer meteorology, namely turbulent dispersion of pollutants in the 
atmosphere. The usual picture is one where a point or line source emits pollutant 
into the atmosphere at a steady rate and this is advected horizontally by wind 
and dispersed vertically by turbulent action at a rate which is governed by the 
stability of the atmosphere. Vertical motion is limited by the ground at the 
lower level and, in the model which we examine here, by an elevated temperature 
inversion aloft at height l. A discussion of the elementary meteorological factors 
is given by Seinfeld (1986). 

The problem is then to calculate the pollutant concentration as a function of 
downstream distance and height above the ground. We take a line source and 
assume that a steady state has been reached. In that case, it is well known 
(Robson 1983) that the solution of the partial differential equation for turbulent 
diffusion can be reduced to analysis of the Sturm-Liouville problem 

- Ky - +>.u<p =0, d ( d<P) 
dz dz 

(20) 

where z E (0, l) is the vertical coordinate, Ky is the (vertical) turbulent diffusion 
coefficient and u is the (horizontal) wind speed. Boundary conditions are 
homogeneous (17), with Q being an absorption coefficient and j3 corresponding to 
the value of Kyat the boundary in question. Thus Q = 0, j3 =f 0 corresponds to 
an impenetrable boundary and Q =f 0, j3 = 0 correspond to a perfectly absorbing 
boundary. Generally speaking, u and K y are both functions of z. 

Let <PI (z ), <P2 (z ), . .. denote the eigenfunctions of (20) corresponding to the 
non-zero eigenvalues >'1, >'2' For impenetrable boundaries there is also a zero 
eigenvalue >'0 for which <Po = 1 and in this case the expression for the concentration 
involves a sum over all eigenfunctions <Pn(z), with the modes having n 2:: 1 being 
exponentially damped out at distances greater than >.;;1 downstream from the 
source (see Robson 1983, equation 15). The lowest nonzero eigenvalue is of special 
interest, as it determines the asymptotic behaviour of the plume downstream. A 
variational method has been developed (Robson 1983) explicitly for the purpose 
of calculating this fundamental eigenvalue. As we shall see, the DO method 
calculates this quantity extremely accurately. 

3.2.1 Constant Diffusivity and Wind Speed 

Near the earth's surface both K y and u generally vary markedly with height 
and any realistic model should reflect this behaviour. In the first instance, 
however, we choose them to be both constants, equal to unity, for the purposes 
of establishing the credentials of the DO method and to provide a benchmark 
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model. Thus setting J( v = 1 = u in (20) and taking l = 1 leads to a simple 
differential equation with eigenfunctions 

¢n = sin mf n = 1,2, ... , (21) 

in the case where the boundary conditions are 

¢n(O) = 0 = ¢n(I), (22) 

and eigenvalues 

(23) 

Table 2. Relative errors 6An, 6¢n in eigenvalues and eigenfunctions respectively, for N = 20 
nodes, distributed either uniformly in [0,1] or at the zeros of T1S(X) or P1S(X), plus the end 

points 

The t denotes a complex quantity 

Relative errors in eigenvalues Relative errors in eigenfunctions 
n Uniform Chebychev Legendre Uniform Chebychev Legendre 

1 -9·9 x 1O- 11 +5·9 X 10- 14 -9.2 X 10- 15 2·4 X 10-10 1·2 X 10- 15 1·5xlO-14 

2 +5·0 X 1O- 11 +7.9 X 10-14 -7.9 X 10-14 3·9 X 1O- 11 5·8 X 10-4 9· 6 X 10- 15 

3 +2·7 X 1O- 11 +4·3 X 10-14 _1·8xlO- 15 6·0 X 1O- 11 3.0 X 10-13 2·5xlO- 14 

4 +2·5 X 10-8 -7.7 X 10-13 -8.9 X 10- 15 1·9 X 10-8 8·2 X 10-4 5.6 X 10- 13 

5 +1·6xlO-6 -4·9 X 1O- 11 -2.4 X 10-15 1·2 X 10-6 5·9 X 1O- 11 7.2 X 10-15 

6 -2·9 X 10-4 +7·3 x 10-9 +1·6xlO- 12 1·3xlO-11 3·9 X 10-5 1·1 X 10-8 

7 -3·5 X 10-3 +8·2 X 10-8 -7.3 X 10- 10 3·2 X 10-3 6·3 X 10-6 2·8 X 10-6 

8 t -1·4 X 10-6 +1·1 X 10-7 t 1·8 X 10-3 7·6 X 10-6 

9 t -2·5 X 10-5 -5·9 X 10-6 t 1·5 X 10-3 8·7xlO-5 

10 t +3·9 X 10-4 +1·5 X 10-4 t 6·8 X 10-3 6·0 X 10-4 

We also define the relative errors 

(jAn == [An (computed) - An(analytic)]/An(analytic), (24) 

1 ! _ {10 [1n (X, computed) - 1n(x, analy,.ie) I' <Ix } 
(25) (j¢n = 1 1 [¢n(X, analytic)] 2 dx 

Table 2 shows the relative errors in the first 10 eigenvalues computed using 
the DO method with N = 20 nodes distributed uniformly in [0,1]' with nodes at 
the zeros of T18(X) plus end points, and with nodes at the zeros of P18(X) plus 
end points, respectively. Machine precision is 2·2 X 10-16 , corresponding to a 53 
bit mantissa. We note that the accuracy is extremely high for lower eigenvalues, 
but rapidly deteriorates for higher modes; there are complex values for uniformly 
spaced nodes, even though the exact analytic eigenvalues (23) are all real. Also 
shown in Table 2 are r.m.s. errors in the computed eigenfunctions, which also 
tend to increase with order n. We have not been able to ascertain why the errors 
for even n are so large, given that the corresponding eigenvalues are extremely 
accurate. However, the overall accuracy of Chebychev or Legendre nodes versus 
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Table 3. Errors in computed eigenvalues An as a function of N 

The t denotes a complex quantity 

N n=l n=2 n=3 n=4 n=5 

5 -9·8 X 10-3 +5·2 X 10- 1 +1·lxlO- 1 t t 
10 +3·4 x 10-11 -1·3xlO-6 +4·2 x 10-4 -1·2xlO-2 +1·2 x 10-1 

15 0·0 +8.4 x 10-15 -1·5xlO-1O +1·5 X 10-7 -1·9xlO-5 

20 -3.2 X 10-15 +8.9 x 10-16 +5.9 x 10-16 -1.9 X 10- 14 +3·3 x 10-11 

25 -2.3 x 10-14 -5.7 X 10-15 _1·6xlO- 15 -2.0 X 10-15 -4.3 X 10-16 

30 -4.2 X 10-14 -5.6 X 10-15 -3.9 X 10- 15 -3·1 X 10-15 +1.3 X 10- 15 

35 -4.5 x 10-14 -1·8xlO- 15 -6.1 X 10-15 +2.2 X 10-16 +1.4 X 10-15 

40 +2.8 X 10-14 -2.3 X 10-14 -3.2 X 10-15 -3.6 X 10- 15 -8.5 X 10-16 

45 -2.3 x 10-15 +2.2 X 10-16 +5.9 X 10-16 +3.3 X 10-15 +5.7 X 10-16 

50 +6.9 X 10-14 -8.9 X 10-16 +9.3 X 10-15 +4.0 X 10-15 +1.4 X 10-16 

uniform nodes is understandable in terms of the discussion given by Robson et 
aZ. (1991, Section 4). 

Table 3 shows how the relative errors in the first five computed eigenvalues 
vary with N. Note the rapid convergence towards machine precision. Legendre 
nodes were employed in all cases. As explained before, one is often interested 
in only the first few eigenvalues. Even for N = 10, one obtains Al to a few 
parts in 1010 and A2 to about one part in 106 . By N = 20 these are effectively 
determined to machine precision! 

Similar remarks apply to the case where 

¢~(O) = 0 = ¢~(1), 

as reported by Prytz (1989). This model has also been investigated by Nokes 
et aZ. (1984), who adopted a series method of solution to (20). For a series of 
70 terms, the first seven eigenvalues were found to be correct to five decimal 
places. Higher eigenvalues, however, required more terms in the series for similar 
accuracy. Nokes et al. (1984) also found that a shooting method solution of the 
eigenvalue problem seemed to be less efficient than their power-series method. 
They also comment on attempts by others to bring to bear standard techniques 
on the dispersion problem. 

Nokes et aZ. (1984) estimated the time taken to generate the first seven 
eigenvalues to be approximately 3 seconds on a Burroughs 6900 computer. Our 
machine (an 8 MHz IBM/AT Cleveland 286 clone with 80287 math coprocessor) 
is quite different and direct comparison of times with Nokes et aZ. (1984) may 
not be meaningful. Instead, we have opted to compare the DO results with 
those obtained by applying the centred finite difference formula (15) directly. 
Table 4 shows the ratio of the computation time using the DO method to that 
of the FD method for a given order of nodes, N. Clearly, the DO method takes 
considerably longer than the FD method. 

Table 5 shows the relative increase in computational times for the DO and FD 
methods respectively, as the number of nodes is increased from N = 10 to N = 100. 
The scaling, as far as eigenvalues are concerned, is roughly N 2 for the FD method 
and N 3 for the DO method. A detailed breakdown of the times associated 
with various steps in the respective procedures was given by Prytz (1989). The 
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Table 4. Relative computational time (s) of DO 
method with respect to the FD method 

N Eigenvalues Eigenfunctions 

10 3·2 2·8 
20 8·5 2·5 
30 12 2·5 
40 16 2·7 
50 18 2·5 

100 36 2·6 

Table 5. Relative computational time to solve for N = 100 with 
respect to N = 10 

Method 

Discrete ordinate 
Finite difference 

Eigenvalues 

744 
66 

Eigenfunctions 

862 
935 

telling point in favour of the DO method, however, lies in the accuracy achieved 
for relatively low n. We have seen that for N = 20 nodes consisting of the roots 
of L 1S (x) plus end points, the lowest eigenvalue is calculated to around machine 
preclSlOn, 10-15 . For this N even the tenth eigenvalue was found to be good 
to 2 x 10-3 . The time taken to compute all the eigenvalues was 5·72 s. 

On the other hand, for N = 20, for which the FD computation time was 0·67 s, 
the accuracy of the lowest eigenvalue is just 2 X 10-3 , while for the tenth it is a 
poor 2 x 10-1 . Increasing N to 100 yields accuracies of 8 x 10-5 and 8 x 10-3 

respectively, with a computation time from Table 4 of 66 x 0·67 = 44 s. Accuracy 
improves as 1/N2 in the FD method, so that even at N = 1000 the accuracies 
are 8 x 10-7 and 8 x 10-5 respectively. Clearly, an extremely high value of N 
is needed to get accuracies comparable with the near-machine accuracy that the 
DO method furnishes using only N = 20 nodes. 

The above comparisons should be taken only as a guideline, given that the FD 
formulas can be refined considerably. However, we do believe that the phenomenal 
accuracy achievable for the lowest eigenvalues at low N places the DO method 
virtually in a class of its own, no matter what the level of sophistication of any 
competitor that might be proposed. The reader can interpret this as a challenge 
and can readily compare the efficiency of his/her own preferred routine with the 
DO method, given the simplicity of the formulas (8) and (9) and the ease of 
implementation of the latter. 

3.2.2 Constant Wind Speed, Parabolic Diffusivity 

The solutions of (20) with u = 1, Kv = z(l - z), which are well behaved 
throughout the interval (0,1), are the Legendre polynomials 

(26) 
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with corresponding eigenvalues 

An =n(n+l) n = 0,1,2, .... (27) 

For impenetrable boundaries, the boundary conditions 

Kv d<pn =0 
dz 

z = 0,1 (28) 

are automatically satisfied in this case. All we require is that the eigenfunctions 
be non-singular at z = 0, 1, and in this sense the boundary conditions are 'free'. 
This constraint is automatically guaranteed when implementing the DO method, 
which effectively fits a polynomial of degree N - 1 to the N grid points. 

Relative errors in the computed eigenvalues An are shown in Table 6 for 
N = 21, along with r.m.s. errors in the computed eigenfunctions <Pn(z), for various 
choices of nodes. The extremely high accuracy is not really astonishing in this 
case, as the analytic solutions are polynomials (26) and the DO algorithm (6) 
together with (8) and (9) is then supposed to be exact. Of course, one is limited 
by machine accuracy and round-off errors do propagate, so the entries in Table 6 
are not exactly zero, as they ideally should be. 

Note that Nokes et al. (1984) reported that their series method of solution for 
70 terms yielded the first seven eigenvalues accurate to five decimal places in this 
case, i.e. comparable to the constant wind speed-constant diffusivity case discussed 

Table 6. Relative errors in computed eigenvalues and corresponding r.m.s. values for 
eigenfunctions for the case of constant wind speed and parabolic diffusivity, using the 
DO method with N = 21 nodes corresponding to (i) uniform distribution; (il) roots of T19(X) 

and 0,1; and (iii) roots of P19(X) and 0,1 

n Relative errors in eigenvalues 
Uniform Chebychev Legendre 

o +8·1 X 10-11 +3·4 X 10-14 -3·2 X 10-14 

1 +1·2 X 10-11 -7·3 X 10-14 +1·3 X 10-14 

2 -3·2 X 10-11 -4·0 X 10-14 -5·8 X 10-15 

3 -5·9 X 10-12 +7·3 X 10-15 -7·4 X 10-16 

4 +1·2 X 10-11 +1·9 X 10-14 +1·8 X 10-15 

5 +3·4 X 10-12 +1·2 X 10-14 -2·4 X 10-16 

6 -4·9 X 10-12 -1·5 X 10-15 -5·1 X 10-16 

7 -1·6 X 10-12 -4·6 X 10-15 -2·5 X 10-16 

8 +1·2 X 10-12 +3·9 X 10-16 +2·8 X 10-15 

9 +2·7 X 10-13 +3·2 X 10-15 -7·9 X 10-16 

10 +4·1 X 10-13 +5·2 X 10-15 -1·3 X 10-15 

11 +3·8 X 10-13 +3·4 X 10-15 +4·3 X 10-16 

12 -6·6 x 10-13 0·0 -5·5 X 10-16 

13 -4·5 x 10-13 -1·1 X 10-15 +6·2 X 10-16 

14 +3·8 x 10-13 +2·2 X 10-15 -5.4 X 10-16 

15 +3·0 x 10-13 +2·7 X 10-15 +2·4 X 10-16 

16 -1·3 x 10-13 +1·7 X 10-15 +1·7 X 10-15 

17 -1·3 x 10-13 -1·5 X 10-14 -5·6 X 10-16 

18 +3·0 x 10-14 -1·2 X 10-14 +1·7 X 10-16 

19 +2·8 x 10-14 +1·0 X 10-14 -1·0 X 10-15 

20 -1·2 X 10-14 +6·4xlO-15 -4.1 X 10-16 

Relative errors in eigenfunctions 
Uniform Chebychev Legendre 

4·9 X 10-11 1·2 X 10-14 1·8 X 10-14 

7·5 X 10-12 1·7 X 10-14 8·1 X 10-15 

9·8 X 10-11 1·5 X 10-14 6·2 X 10-15 

9·9 X 10-12 2·5 X 10-14 2·5 X 10-15 

2.9 X 10-11 4·2 X 10-14 4·8 X 10-15 

1·5 X 10-11 1·1 X 1O~14 9.6 X 10-15 

1.4xlO-11 2.0xlO- 14 1·7xlO-15 

1.1 X 10-11 2.7xlO-14 3.2 X 10-15 

2·0 X 10-11 2·0 X 10-14 9·3 X 10-14 

5.1 X 10-12 3.3xlO-13 6.6xlO- 15 

2·6xlO-12 1·3xlO-14 5.1 X 10-15 

1·4 X 10-12 1·2 X 10-14 2·6 X 10-15 

6.5xlO-12 1.2xlO-14 1·7xlO-14 

5·2x10-12 1·7xlO-14 6·0x10-15 

3.7xlO-12 4.2xlO- 14 2.1 X 10-14 

4.2 X 10-12 2·5 X 10-14 8·4 X 10-15 

1·8 X 10-12 7·7 X 10-14 1·0 X 10-14 

4·5 X 10-13 3·8 X 10-14 4·0 X 10-15 

4·6 X 10-13 2·6 X 10-14 8·4 X 10-15 

3·0 X 10-12 5·9 X 10-14 6·7 X 10-15 

4.4 X 10-14 4·0 X 10-14 3·7 X 10-15 
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at length in Section 3.2.1. There is an obvious vast improvement when the DO 
method is used. We feel that the credentials of the DO method are by now well 
established through this and the previous model analysis, and we now move on 
to applications to real problems. 

3.2.3 Realistic Cases 

Meteorological factors control u(z) and Kv(z) (Seinfeld 1986; Hoffert 1972) 
which would normally be given as input data in tabulated or parametrised form 
for the purpose of solving the eigenvalue problem. Such data would, of course, be 
subject to experimental error, and the question naturally arises as to how much 
the errors in the coefficients affect the accuracy of the computed eigenvalues and 
eigenfunctions. We shall address this important aspect of the problem later in 
Section 3.3 below. 

For the present, we shall focus on ways in which one might estimate the 
error in computed eigenvalues for realistic cases given that we have, of course, 
no analytical solutions to compare with, in contrast to the previous two simple 
cases. We take as our example a model based on that of Eschenroeder and 
Martinez (1970) for the Los Angeles basin: 

U(z) = 2z 

{ 
0·16+2·016z 

Kv(z) = 1·0 
0·16-3·78(z-l) 

0:::; z :::; 1, 

0:::; z < 0·417 
0·417 < z < 0·777 
o· 777 < z :::; 1. 

(29) 

The eigenvalue problem was solved for various N with nodes at the roots of 
Legendre polynomials and impenetrable boundaries q)~(O) = 0 = q)~(I). Table 7 
shows the first four eigenvalues as calculated by Chappel (1989). Computed 
eigenvalues converge to the true value in a damped oscillatory fashion (cf. Table 3). 
The amplitude of the oscillation allows us to put error bars on our estimates 
of eigenvalues. Thus, for example, from Table 7 we have ),1 = 11· 63 ± 0·02, 
),2 = 36·9 ± 0 ·1, and so on. 

Table 7. Eigenvalues for the model (29) for various values of N, as calculated by Chappel 
(1989) 

N 10 12 14 18 22 26 

A1 11·76 11·60 11·66 11·60 11·62 11·65 
A2 37·20 36·94 36·97 37·07 36·82 36·88 
A3 79·92 75·81 75·44 76·21 75·59 75·63 
A4 97·39 131·80 131·17 130·09 130·36 130·64 

Other realistic cases, including the famous logarithmic wind profile, are dealt 
with in the thesis of Chappel (1989) using the DO method. In accordance 
with our experience of the model calculations in Sections 3.2.1 and 3.2.2, it 
is our opinion that the DO method algorithm offers the most efficient way to 
produce accurate values of the lowest few eigenvalues and, in situations where 
only asymptotic estimates are needed, that will often suffice. Of course, when 
the complete concentration profile is needed, summation over many modes n may 
be required, and then the DO method may lose its distinct advantage. 
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3.3 Kinetic Theory of Gases 

We now consider a quite different problem. Here the physical situation 
corresponds to Cavallieri's experiment (Huxley and Crompton 1974; Rhymes and 
Crompton 1975) in which electrons created by photoionisation in a cylindrical 
chamber a few centimetres in dimension diffuse through a gas to conducting walls 
where they are absorbed. Electron number is determined as a function of time 
and, asymptotically at long times, is usually observed to decay exponentially with 
some time constant TO, which can be interpreted in terms of an effective diffusion 
coefficient of electrons in the gas occupying the container. Theory shows that 
this fundamental time constant is inversely proportional to the lowest eigenvalue 
Ao of the equation 

d (2 _ d¢) 2 ( 1 u)_ - U Qme u_ + '" AU2 - - e u¢ = 0, 
du du Qm 

(30) 

which arises in solution of Boltzmann's equation by separation of variables (Leemon 
and Kumar 1975; Robson 1976). The electron energy distribution consists of 
a sum over all eigenfunctions ¢n(U) (n = 0,1,2 ... ), each term being weighted 
by an exponential damping factor with time constant A;-;:l. At long times, the 
fundamental mode dominates. The mathematical parallels between this problem 
and the turbulent dispersion analysed in Section 3.2 above are obvious. In (30), 
u E (0,00) denotes the electron energy (scaled to the thermal energy kBT of the 
gas atoms), Qm is the electron-atom momentum-transfer cross section, and '" is 
a constant geometrical factor determined by the size and shape of the containing 
vessel. Further details can be found in Robson (1976) and Leemon and Kumar 
(1975). Equation (30) is to be solved with free boundary conditions, the only 
constraint put on the solutions being that they are well behaved throughout 
(0,00). 

There are several interesting physical sidelines to this problem, notably the 
phenomenon of 'diffusion cooling', whereby the energy dependence of Qm(u) may 
provide a 'window' for high-energy electrons to escape to the walls. This is 
reflected through the existence of an effective diffusion coefficient, which depends 
upon geometry and gas pressure, and approaches the classical thermal equilibrium 
coefficient only in the limit of high pressure and/or infinite geometry ['" -T 0 
in (30)]. 

Analytic solution of (30) is possible for Qm oc u±! but in general we must seek 
numerical solutions. Leemon and Kumar (1975) used a polynomial expansion 
technique, while Robson (1976) developed a variational method, valid also for 
the case where inelastic collisions occur, to obtain Ao. It is surprising that no 
solution of (30) through FD methods has yet been published. 

3.3.1 A Model Calculation 

For a cross section of the form Qm = uf3, where (3 is an arbitrary constant, 
(30) becomes 

(31) 
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If {3 = -~, the analytic eigenvalues are (Parker 1965) 

(32) 

for n = 0,1,2 .... A typical value of the geometrical constant corresponding to 
experiment is '" = 2, and in that case 

An = 0·58558 + 1 . 03078n . (33) 

This provides a benchmark against which we can test the accuracy of computed 
eigenvalues using the DO algorithm. To do this we take N = 20 nodes 
corresponding to the zeros of the Laguerre polynomial L20(X). 

If (31) is solved numerically as it stands, the computed eigenvalues deviate by 
an unacceptably large factor (>10%) from the exact values (33). (N.B. We must 
compute Ao to at least the same level of accuracy as obtained in experiment, 
namely 1% or better.) It was found that it is important to extract the factor 
u 1e-u from (31), which may then be written in the form 

~(U~+,6dCP) +(1_u)u1+,6dcp +",2(A-u1-,6)cp=0. (34) 
du du 2 du 

The errors DAn in the computed eigenvalues of (34) are shown in Table 8 for 
{3 = -~. Accuracy of the low-n eigenvalues lies within acceptable limits, but is 

n 

0 
1 
2 
3 
4 

Table 8. Relative errors in eigenvalnes of (34) for f3 = -~ 
compared with N = 20 and nodes chosen at the zeros of the 

Lagnerre polynomial nsing the DO algorithm 

n {jAn n {jAn 

0 -2·4xlO-5 5 3·5xlO-2 

1 -2·5 X 10-4 6 1·lxlO-1 

2 -2·0 X 10-3 7 2·0 X 10-1 

3 -8·0 X 10-3 8 3·1xlO- 1 

4 -4·9 X 10-3 9 4·3 X 10-1 

Table 9. Deviation of computed eigenvalues of (38) from exact analytic values (33) 

{jAn n {jAn n {jAn n {jAn 

-2.4 X 10-14 5 -2.9 X 10-12 10 -1·2 X 10-9 15 +4·1 X 10-9 

+2·5 X 10-15 6 +1·5 X 10-11 11 +3·1 X 10-9 16 -2·0 X 10-9 

+5.4 X 10-15 7 -4·6 X 10-11 12 -5·4xlO-9 17 +6·6 X 10-10 

-8·8 X 10-14 8 +5·1 X 10-11 13 +6·8 X 10-9 18 -1·4 X 10-10 

+5·2 X 10-13 9 +2·0 X 10-10 14 -6·2 X 10-9 19 +1·6 X 10-11 
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still poor when compared with that reported in Sections 3.2.1 and 3.2.2 above, 
and warrants further investigation. 

It is helpful to note that the exact eigenfunctions for this special case are 

where An is a normalisation constant and 

= - 1· 56155281281 .... 

Thus, if we make the substitution 

in (34), we find 

(35) 

(36a) 

(36b) 

(37) 

(38) 

The errors associated with eigenvalues computed from this equation are very 
small, as shown in Table 9. In extracting the exponential term from the solution 
as in (37), we have in effect reduced the unknown function to a polynomial. 
Since the DO method implicitly assumes that the function that we are seeking 
is in fact a polynomial (see first paragraph of Section 2), it is hardly surprising 
that the substitution (37) produces the best results! (In fact, one may wonder 
why the errors shown in Table 9 are not even smaller still, comparable with 
machine accuracy; the answer probably lies in propagation of round-off error, 
but we have not investigated this.) 

We have applied fairly stringent tests on the accuracy of our model calculation, 
requiring that all eigenvalues be accurate to many figures. This is necessary to 
gain confidence in our technique. In practice, one has neither analytic solutions 
available for comparison nor the exact value of a at hand for the important 
substitution (37). In any case, one is rarely interested in more than the first two 
or three eigenvalues, which are generally furnished to sufficiently high precision 
for practical purposes without the substitution (37) (see Table 8). 

3.3.2 Errors in Input Data 

For the model calculations in the previous sections we have had access to the 
full machine precision in solving the differential equation. However, what is the 
situation when the coefficients p, q and/or r of equation (16) are themselves not 
known exactly? What effect does this have on the solution? For example, in 
equation (30), the momentum transfer cross section Qrn is typically known to 
an accuracy of 1% at best, so is there any point in developing a highly refined 
algorithm to compute eigenvalues to machine precision? Another factor that 
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must be carefully considered is that calculating the derivatives of a function that 
contains small but random errors using the DO algorithm can produce enormous 
errors. Thus, for example, when formulating the DO representation of (30), the 
derivatives of any empirical Qm must not be calculated explicitly; rather, the 
Qm should be combined with other functions under the differentiation operation. 

In order to illustrate these points, we choose an empirical model cross section 

Qm(U) = Q;;'(u)[l + A8(u)] , (39) 

where 8(u) is random function of u, fluctuating between ±1, and A is an 
amplitude. The exact cross section is Q;;'. 

We seek to compute eigenvalues of the equation 

d ( dh) 1 dh d - uv- + [- - u(l + a)]v- + a-(uvh) 
du du 2 du du 

where we have made the substitution (37) in (30) and have defined 

v = u~Qm(u). (41) 

With the model Q;;' = u-~ and Ii = 2, as in the previous section, we have 
computed the first few eigenvalues for a range of error amplitudes A. (The 'error' 
referred to here arises solely from the error in cross section Qm, and has nothing 
to do with the numerical error associated with the numerical algorithm.) The 
deviations ~An from the exact values (A = 0) in equation (33) are shown in 
Table 10. 

Table 10. Effect of statistical errors on eigenvalue accuracy for the same model as Table 9 

The t denotes a complex quantity 

A 

1·0 X 10-4 

2·0 X 10-4 

5·0 X 10-4 

1·0 X 10-3 

2·0 X 10-3 

5·0 X 10-3 

1·0 X 10-2 

2·0 X 10-2 

5·0xlO-2 

n=O 

+9·2 X 10-5 

-4·9 X 10-6 

-2·5 X 10-5 

-4·1 X 10-5 

-1·9 X 10-4 

-3·7 X 10-4 

+1·7 X 10-3 

-g·O X 10-3 

-1·9 X 10-2 

n=l 

-3·9 X 10-4 

-3·3 X 10-4 

-3·S X 10-4 

+1·7 X 10-3 

+6·5 X 10-3 

+g·O x 10-3 

+2·S X 10-2 

+3·6 X 10-2 

-2·5 X 10-2 

n=2 

+1·4 X 10-3 

+3·4 X 10-3 

+3·0 X 10-3 

+7·0 X 10-3 

-3·6 X 10-2 

-3·7 X 10-2 

-S·O X 10-2 

-9·5 X 10-2 

-1·2 x 1O-2 t 

Note that the error in A is less than the error A in Qm. The situation is 
shown perhaps more clearly in diagrammatic form in Fig. 1. Note also that 
the errors in An for n ~ 1 exceed A and increase with n. As a final point 
about experimental errors, we note that experimental error estimates also include 
sources of systematic errors. In that case we should choose a more conservative 
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10-1 
* * 

* 0 
0 

~ 
10-2 

* 
0 • 

* * 0 • 10-3 

1~.An/.An I 0 0 • 
10-4 

• • n=O • 10-5 
0 n=l • 
* n=2 

10-6 
10-4 10-3 10-2 10-1 

Introduced error A 

Fig. 1. Errors ~.An == .An (computed) - '\(A=O) in the first 
three eigenvalues as a function of the amplitude of the statistical 
error in cross section. The solid line has slope 1 and represents 
an eigenvalue error equal in magnitude to the statistical error 
in cross section. 
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value for A, with a corresponding improvement in the confidence of the results 
obtained from the DO method. 

3.3.3 Noble Gases 

We now present calculations of the effective diffusion coefficient Deff of electrons 
in Ne, Xe, Kr and Ar gases in the finite enclosure arrangement of the Cavallieri 
experiment (Huxley and Crompton 1974; Rhymes and Crompton 1975). We 
solve the Sturm-Liouville problem (30), given cross sections Qm in tabulated 
form, obtained from inversion of various electron swarm experiments (Huxley and 
Crompton 1974). We obtain the eigenvalues AD, AI, A2, ... using the DO algorithm 
and identify the effective diffusion coefficient in terms of the lowest of these: 

(42) 

where Ngas is the number density of gas atoms and the constant of proportionality 
is easily calculated (Robson 1976). We can also find the effective electron 
temperature from 

( 43) 

where Tgas is the gas temperature and cPo the eigenfunction corresponding to the 
lowest eigenvalue. The above expressions apply in an asymptotic sense if and 
only if there is good separation between AD and the next highest eigenvalue AI, 
so that the fundamental mode really does become distinct at long times. 

Thus we present results below for Deff, Teff and AI/AD, calculated by applying 
the DO algorithm to (30). It was found that three- or four-figure accuracy was 



482 R. E. Robson and A. Prytz 

Table 11. Calculations for neon, showing the effective diffusion coefficient computed via the 
DO algorithm and the polynomial expansion method of Leemon and Kumar {LK} {1975} 

Gas pressure NgasDeff (1024 m- 1 S-I) >'1/ >'0 Tcff (K) 
(kPa) LK DO 

6·67 6·6 6·87 1·62 235·7 
8·00 6·9 7·00 1·88 253·7 

10·67 7·1 7·11 2·60 271·3 
13·33 7·1 7·16 3·53. 279·1 
16·00 7·2 7·19 4·68 283·3 
20·00 7·2 7·21 6·81 286·7 
26·66 7·2 7·22 11·4 289·3 

100·00 7·24 149 292·4 

readily achievable by taking N = 20 nodes in most cases. In all cases we have 
taken Tgas = 293 K. 

3.3.4 Neon 

Leemon and Kumar (1975) applied a polynomial expansion method of solution 
to (30) and used the cross section data set of Robertson (1972). We have used 
the same cross section (see the tabulation of Qm versus energy in the Appendix), 
and extrapolated where necessary at low energies. We chose the nodes to be 

1 

the zeros of the associated Laguerre polynomial Lio(x). Results are shown in 
Table 11. There is significant diffusion cooling (Teff < Tgas) at lower pressures. 
At low pressures there is some disagreement with Leemon and Kumar (1975). 
Moreover, the separation between Al and Ao is not really sufficient to permit the 
use of asymptotic formulas, based upon the dominance of a single, fundamental 
exponentially decaying mode. 

Gas pressure 
(kPa) 

0·5 
1·0 
1·5 
2·0 
2·5 
3·0 
5·0 

10·0 
20·0 
50·0 

3.3.5 Xenon 

Table 12. Results for elecltrons in xenon gas 

NgasDcff (1022 m-1 S-I) >'1/>'0 
Ness DO 

7·802 7·818 8·818 
8·837 8·847 22·66 
9·158 9·166 43·35 
9·295 9·302 70·79 
9·366 9·373 104·7 
9·407 9·413 144·6 
9·470 9·476 342·3 
9·498 9·504 980·9 
9·506 9·512 3395 
9·508 9·514 20262 

Tcff (K) 

255·2 
279·2 
285·9 
288·6 
290·0 
290·8 
291·9 
292·4 
292·6 
292·6 

For xenon we can compare our results with those of Ness (1989) in an 
earlier, slightly different adaption of the DO algorithm. We have used the same 
momentum-transfer cross section data set (Ness 1989). This data set is extensive, 
covering the energy range 0::; E::; 100 eV, and is sufficient for our purposes as, 
with T = 293 K, a ::; u ::; 3000. There is therefore no need for any extrapolation, 
with an associated increase in uncertainty, as was required for neon. 
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In this case the cross section data set is shown in the Appendix and the nodes 
were chosen to coincide with the zeros of the Laguerre polynomial L20 (x). The 
results are presented in Table 12. There is good separation between Al and Ao 
over the entire range of pressures shown. However, significant diffusion cooling is 
evident only at the lowest pressures. Note that there is agreement between Ness 
and the current study, represented in Table 12, to about three significant figures. 

Table 13. Results for electrons in krypton gas 

Gas pressure NgasDcff >"1/>"0 Tcff (K) 
(kPa) (1023 m- l S-I) 

0·5 1·546 4·750 204·6 
1·0 2·024 8·869 249·1 
1·5 2·245 14·14 266·8 
2·0 2·366 20·70 275·7 
2·5 2·438 28·63 280·1 
3·0 2·484 37·89 283·8 
5·0 2·564 87·21 289·0 

10·0 2·615 275·4 291·6 
20·0 2·625 642·3 292·4 

100·0· 2·639 6974 292·9 

* Convergence at this pressure was achieved only by taking 50 nodes 
corresponding to the zeros of L50(X). 

3.3.6 Krypton 

The cross section data set is tabulated in the Appendix. Nodes correspond 
to the zeros of L20 (x). Results are shown in Table 13. The separation between 
Al and Ao is sufficient over the range of pressures shown to warrant the use 
of a single-exponential asymptotic formula, but it appears that diffusion cooling 
should be noticeable only at lower pressures. 

Table 14. Results for electrons in argon gas calculated nsing the DO algorithm and compared 
with earlier calculations of Leemon and Kumar (LK) (1975) 

Gas pressure NgasDeff (1023 m- I s-l) >"1/>"0 Teff (K) 
(kPa) LK DO 

1·33 9 8·421 2·974 135·7 
2·67 13 12·80 4·441 190·0 
4·00 16 15·62 6·132 217·8 
5·33 18 17·62 7·997 234·6 
6·67 19 19·15 10·02 245·9 
8·00 20 20·36 12·22 253·9 

10·67 22 22·15 17·09 264·5 
13·33 23 23·40 22·56 271·0 
16·00 24 24·31 28·51 275·4 
20·00 26 25·29 37·98 279·8 
26·66 27 26·33 52·72 284·1 

100 28·54 327·7 291·2 
200 28·76 1210 292·6 

1000· 29·26 29450 292·9 

• Convergence at this pressure was achieved using 50 nodes. 
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3.3. 'l Argon 

The cross section used here is tabulated in the Appendix. Leemon and Kumar 
(1975) used a different data set and this could be at least partly responsible for 
discrepancies with the present results, as presented in Table 14. At the very 
lowest pressures, the separation between A1 and Ao is sufficiently low to place a 
question mark over the use of the asymptotic formulas. Diffusion cooling persists 
right through to relatively high pressures. 

This completes our examples in kinetic theory and also marks the end of 
our applications of the DO method to linear differential equations. In the next 
section, we outline the application of the DO method to a nonlinear differential 
equation. 

4. Application to Soil Physics: 
Solutions of the Nonlinear Diffusion Equation 

Water movement in soils is frequently modelled by solutions of Richards' 
equation (Kirkham and Powers 1972), and computationally efficient algorithms 
based on FD techniques (Ross 1990) have recently appeared in the literature. 
Although these procedures are quite satisfactory, the question naturally arises 
as to whether or not the DO method offers enhanced efficiency and/or accuracy. 
This question is addressed here in the context of homogeneous soils, where 
Richards' equation takes the form of a nonlinear diffusion equation. 

This is the first time that the DO method has been applied to this problem. 
Although it is of somewhat greater complexity, one expects certain features of 
the experience with linear equations to be evident, e.g. the greater efficiency 
of the DO method for a given order of accuracy (Section 3.2.1). Indeed, the 
adaptability of the DO/pseudo-spectral method to nonlinear equations is well 
known (Boyd 1989). 

As the topic is not a familiar one to most physicists and, since the problem 
is quite a different one from the linear systems discussed in Section 3, we 
devote Section 4.1 below to some preliminary discussion before proceeding to the 
numerical analysis in Section 4.2. 

4.1 Diffusion Equation and its Transformation 

4.1.1 Diffusion Equation and Boundary Conditions 

We consider moisture transport in unsaturated, homogeneous soil of infinite 
depth, characterised by hydraulic conductivity K(e) and diffusion coefficient 
1)(e), both of which are generally strongly dependent upon the volumetric water 
content e, which in turn depends upon depth z and time t. (For simplicity, we 
restrict the discussion to situations where only one spatial coordinate, z, enters 
into the calculation.) We find e(z, t) from solution of the diffusion equation, 

(44) 
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for 0:::; Z < 00,0 :::; t < 00, together with the initial condition 

(}(z,O) = (}j 

and the boundary conditions 

(}(O, t) = (}s t > 0, 

()( 00, t) = (}r t ~ 0, 

[Voz(}]z->oo = 0 t ~ 0, 
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(45) 

(46a) 

(46b) 

(46c) 

where (}s and (}r are constants corresponding to the surface and initial water 
content respectively. The dependence of K and V upon () is assumed given, but 
is not needed for the present. 

4.1.2 Generalised Boltzmann Transformation 

We then make the so-called Boltzmann transformation to the new variable 
(Kirkham and Powers 1972) 

(47a) 

and also define 

r=d. (47b) 

Equation (44) then becomes 

(48) 

which is a generalisation of a well known equation (Kirkham and Powers 1972) 
for horizontal diffusion, to the extent that the l.h.s. is nonzero in the present 
situation. Now () = (}(>'" r) satisfies 

(}(oo, r) = (}r, 

(}(O, r) = (}s , 

[Vo,\(}l>..->oo = O. 

4.1.3 Change of Independent Variable 

(49a) 

(49b) 

(49c) 

For numerical purposes we follow tradition and consider >. as the dependent 
variable and (), r as the independent coordinates, i.e. we transform from 

() = (}(>', r) 

to 
>. = >.((), r) , (50) 
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and hence (48) becomes 

TaTA - 2TK'(8) + A + 2ae['D(8)jaeA] = o. 

This is to be solved subject to 

A(OS, T) = 0, 

A(Or, T) = 00, 

['D(8)jaeA]e=e, = o. 

(51) 

(52a) 

(52b) 

(52c) 

The final transformation consists of integration of (51) over 0 from Or to some 
arbitrary 0 :::; Os. Thus, if we define the new independent variable 

(53) 

then integration of (51) subject to (52 c) gives 

(54) 

Notice that, by virtue of the definition (53), it follows that 

(55a) 

and, by virtue of (52a) and (53), 

[aeu]o=os = A(Os, T) = o. (55b) 

Equation (54) is to be solved subject to the boundary conditions (55). The 
quantity 

(56) 

has a special significance, as explained below. 

4 .1·4 Horizontal Diffusion 

The diffusion equation for horizontal diffusion is obtained from (44) by omitting 
the first term on the r.h.s. and calling z the horizontal distance. The corresponding 
transformed equations can then be obtained from Sections 4.1.1 and 4.1.2 through 
the simple mathematical device of setting either T or K equal to zero and aT = O. 
In that case A, a and S are all independent of T, and have the values A(8,0), 
a(O,O) and 8(0) respectively. Much work has been done for this case (Philip 
1960; Kirkham and Powers 1972) and many analytic solutions are available, which 
we may use as benchmarks for our numerical calculations. 
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4.1.5 Infiltration, 80rptivity 

We define I(t) to be the cumulative volume of water infiltrated into unit 
horizontal area of soil after time t, and denote the infiltration rate by 

Thus we have 

dI 
i(t) = -. 

dt 

which, after integration by parts, becomes 

l Os 

1= zdO 
OJ 

and transforms according to (47) to 

where the last step follows from (56). 

(57a) 

(57b) 

One advantage of transforming the diffusion equation to (54) is now clear: 
the latter furnishes (7(0, T), from which we may obtain 8 from (56) and hence 
I from (57) directly, without further integration. Equation (54) also lends itself 
to a discussion of semi-empirical formulas for I (Philip 1962) but this aspect of 
the problem is not discussed here. 

Finally, we note that for horizontal diffusion the above formulas still apply, but 
simplify since 5 is a constant, 8(0), and I ex: T = d. The constant 5(0) (usually 
just given the symbol 5 elsewhere) is conventionally labelled the 'sorptivity' of 
the soil. For a recent discussion of this property see Bristow and Savage (1987). 

4.2 Results and Discussion 

4.2.1 Horizontal Diffusion 

The equation for horizontal water movement can be formally obtained from 
(54) by taking T = 0, as explained in Section 4.1.4 above. Thus we solve 

(78~(7 + 2D(0) = 0 (58) 

for (7(0), subject to the boundary conditions (55). These may be discretised on 
the mesh 01 , O2 , ••• , ON, where 01 = Or and ON = Os, according to the prescription 
of Section 2, i.e. we generate N nonlinear algebraic equations 

i=l, ... ,N (59) 
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in the N unknowns 0"1 = 0"(01 ), .•. , O"N = O"(ON), where 

N 

Ii = 2Vi + L O"i(D2)ijO"j 
j=l 

N 

iN = LDNjO"j. 
j=l 

i = 2, ... ,N -1, 

(60) 

These may be solved by the Newton-Raphson iteration technique which, when 
it converges, does so very rapidly. 

We have solved the above problem for OJ = 0, Os = 1 in several of the cases 
where analytic solutions are easily obtained; these are shown in Table 15. Philip 
(1960) has given many more. For a uniformly spaced mesh, the agreement of our 
computed values with the analytic solutions was excellent (seven figures, single 
precision) with N::; 20 and a small number of iterations (less than ten in most 
cases). In view of this high accuracy, we did not feel it necessary to perform 
a comprehensive set of computations using a non-uniform mesh, although in 
accordance with the observations in Section 3, some improvement was noticed as 
nodes were chosen to be the zeros of Chebychev polynomials (Boyd 1989). 

Table 15. Some analytic solutions of equation (58) for OI = 0, Os = 1 
The constant a is arbitrary, whereas K = 0·56714 ... 

D(O) 0"(0) ,\ + 0"' (0) 

0- Oa+l /(a + 1) 
(2/7r) sin(7rO/2) 

1 +0 _eKO 

1- oa 
cos(7rO/2) 
1_KeKO 

This remarkable precision stems from the intrinsic accuracy of the DO method 
itself, together with the choice of 0 as the independent variable. As Fig. 2 
demonstrates, a uniform spacing 0 automatically concentrates the A-values in 
regions where the gradient 8>..0 is largest. This is also the basic idea in the work 
of Mosher (1985), who gave ideas for other, more sophisticated, modifications 

1 

() 

Fig. 2. A qualitative demonstration 
of choosing equally spaced nodes on 
the O-axis and the corresponding 
concentration of nodes on the '\-axis 
in regions of largest 8>.0. 
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which could further improve the accuracy. On the other hand, the accuracy of 
the numerical solutions using the FD representations was found to be only a few 
per cent at best for the same number N of nodes. 

4.2.2 Vertical Diffusion 

In the case of vertical diffusion, we solve the partial differential equation (54) 
for O'((), T), with O'((), 0) specified as the solution of (58). We discretise on the mesh 
()ll ... , ()N as in Section 4.1.4 and employ the DO representation for derivatives 
in (). However, for the 'time' coordinate T, we use the standard backward finite 
difference formula 

(61) 

on a uniform mesh { Tn} defined by 

n = 1,2, ... , M - 1, 

where D..7 is a constant and 71 = o. If we write 

i=l, ... ,N n=l, ... ,M, 

then the discretised form of (54) is 

If boundary conditions (55) are also approximated in discrete form, then 
it follows that at the nth time step we must solve the N nonlinear algebraic 
equations 

for the N unknowns O'l,n, ... , O'N,n, where 

11 = O'l,n, 

N 

IN = LDNkO'k,N. 

k=l 

i=l, ... ,N (62) 

i = 2, ... ,N -1, 

(63) 

The implicit formulation in time through the use of (61) means that the time 
step D..7 need not be restricted to very small values. The Newton-Raphson 
method was again used to solve (62). Analytic solutions are generally not possible 
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Fig. 3. Moisture content as a function of depth in sand 30 minutes and 
90 minutes after beginning of penetration, as calculated from the nonlinear 
diffusion equation (54) using the DO method with N = 20 uniform nodes, 
as outlined in Section 4.2.2. 

in this case and the integrity of the code formulated from the equations above 
was tested by comparison with that of Ross (1990) for the model 

K(B) = Ks(BjBs)2b+3 , D(B) = Ds(BjBs)b+2. (64) 

Fig. 3 shows the moisture profile in sand (b = 0·65) for two different times. 
The agreement with Ross (1990) is excellent in this case, even though only a 
small number N ::s 20 of uniformly spaced nodes was employed. The initial 
moisture profile used for Fig. 3 was 

B(z,O) = 0·1 = constant, 

and the model hydraulic conductivity and diffusion coefficients (64) have been 
employed with the following parameters: 

b=0·65, Ks = 7·8 X 10-6 ms-1 , 

Bs = 0·3, 

Time stepping according to (61) with M = 11 and 21 steps respectively in 
the 1· 5 hour period yielded the same results to within 0·5%. A similar small 
change was noted when the number of space nodes was increased from N = 20 to 
30. On the other hand, FD techniques of this order proved quite unsatisfactory, 
particularly in the region of the wetting front, and around 150 nodes were needed 
to get results comparable with those of the DO method. In Fig. 3 FD results 
with 20 nodes are shown as stars and with 150 nodes as open circles; the DO 
results are shown as solid circles. 
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5. Conclusion 

We have applied the DO algorithm to linear differential equations arising in 
the kinetic theory of gases and boundary layer meteorology, and to the nonlinear 
diffusion equation describing moisture movement in soils. Numerical solutions 
have been compared with certain benchmark models, for which analytic solutions 
are available, in order to establish the credentials of the algorithm and the 
integrity of the code. In many cases involving the computation of eigenvalues, 
it was found that, while the lowest eigenvalues were computed to very high 
accuracy, higher members of the spectrum were subject to larger errors. 

For many types of physical problems, however, where only asymptotic regions 
of space or time are important, it is just the lowest eigenvalue which needs to be 
found, and hence the DO method is admirably suited to these cases. Comparison 
with standard FD methods showed that, while these were considerably faster, 
the solutions are not anywhere near as accurate as those provided by the DO 
method. Unless limited accuracy is acceptable and speed is paramount, our 
feeling is therefore that the DO algorithm should be a serious contender in any 
calculation. The other advantage offered by the DO algorithm lies in its flexibility 
regarding disposition of nodes, but we did not explore this aspect to any great 
extent in the present paper. 

Finally, as we remarked in the Introduction, the aim of the present paper 
has been to persuade physicists to consider implementing the DO algorithm to 
solve differential equations arising in their calculations. We have to report one 
'conversion' in the course of writing this paper, to the quantum close-coupling 
calculation of scattering of rare gas atoms (Leo 1992, personal communication), 
involving four linear coupled differential equations. 
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Appendix: Cross Section Tables 

Here we list tables of the momentum-transfer cross sections used to estimate 
the effect of diffusion cooling in the noble gases using the DO method. The 
tables are organised into pairs of columns; . the first column of a pair represents 
the electron energy (in eV) at which a cross section value is given, and the 
second column the cross section in units of Qo (= 10-20 m2). 

Neon 

Neon cross sections were obtained from Robertson (1972). However, since 
these data are only available for E ;::: 0·03 eV, we have extrapolated the cross 
sections below 0·03 e V, by fitting a straight line to the first four points, using a 
log-log transformation. Table 16 lists the momentum-transfer cross sections for 
neon. Those entries with a t represent the extrapolated values. (The mass of a 
neon atom is 20· 179 amu.) 
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Table 16. Neon: Momentum-transfer cross sections 

E q E q q 
(eV) (10- 20 m 2 ) (eV) (10- 20 m 2 ) (eV) (10- 20 m 2 ) 

0·001 O·l72t 0·025 0·450t 0·50 1·321 
0·002 0·211t 0·028 0·460t 0·60 1·402 
0·003 0·237t 0·03 0·469 0·70 1·472 
0·004 0·258t 0·04 0·504 0·80 1·528 
0·005 0·276t 0·05 0·536 0·90 1·580 
0·006 0·291t 0·06 0·566 1·00 1·619 
0·007 0·305t 0·07 0·601 1·20 1·685 
0·008 0·317t 0·08 0·636 1·50 1·753 
0·009 0·329t 0·09 0·669 1·80 1·793 
O·OlD 0·339t 0·10 0·701 2·00 1·815 
0·012 0·358t 0·12 0·754 2·50 1·860 
0·014 0·374t 0·15 0·828 3·00 1·906 
0·016 0·390t 0·18 0·893 4·00 1·984 
0·018 0·403t 0·20 0·930 5·00 2·070 
0·020 0·416t 0·25 1·018 6·00 2·144 
0·022 0·428t 0·30 1·091 7·00 2·213 
0·024 0·439t 0·40 1·225 

Table 17. Xenon: Momentum-transfer cross sections 

E q E q E q E q 
(eV) (10- 20 m 2 ) (eV) (10-20 m 2 ) (eV) (10- 20 m 2 ) (eV) (10- 20 m 2 ) 

0·000 130·5 0·240 5·453 0·840 1·175 3·40 19·70 
0·001 116·3 0·260 4·603 0·860 1·240 3·60 21·40 
0·002 110·0 0·280 3·908 0·880 1·300 3·80 22·90 
0·003 105·2 0·300 3·337 0·900 1·370 4·00 24·10 
0·005 97·64 0·320 2·866 0·920 1·440 4·20 25·20 
0·007 91·61 0·340 2·477 0·940 1·500 4·40 26·20 
0·010 84·25 0·360 2·154 0·960 1·570 4·60 27·00 
0·015 74·67 0·380 1·885 0·980 1·640 4·80 27·60 
0·020 67·14 0·400 1·661 1·00 1·720 5·00 28·20 
0·025 60·94 0·420 1·474 1·05 1·910 5·20 28·70 
0·030 55·71 0·440 1·318 1·10 2·120 5·40 29·00 
0·035 51·19 0·460 1·189 1·15 2·330 5·60 29·20 
0·040 47·24 0·480 1·081 1·20 2·550 5·80 29·40 
0·050 40·65 0·500 0·9928 1·25 2·780 6·00 29·50 
0·060 35·33 0·520 0·9208 1·30 3·030 6·20 29·60 
0·070 30·96 0·540 0·8634 1·35 3·270 6·60 29·50 
0·080 27·29 0·560 0·8191 1·40 3·530 7·00 29·20 
0·090 24·19 0·580 0·7866 1·50 4·080 7·50 28·60 
0·100 21·53 0·600 0·7652 1·60 4·680 8·00 27·70 
0·110 19·23 0·620 0·7541 1·70 5·320 8·50 26·50 
0·120 17·24 0·640 0·7530 1·80 5·980 9·00 25·00 
0·130 15·49 0·660 0·7615 1·90 6·770 9·50 23·50 
0·140 13·96 0·680 0·7795 2·00 7·390 10·0 21·80 
0·150 12·60 0·700 0·8069 2·20 8·950 11·0 18·50 
0·160 11·40 0·720 0·8437 2·40 10·60 12·0 15·50 
0·170 10·34 0·740 0·8899 2·60 12·40 14·0 10·70 
0·180 9·392 0·760 0·9456 2·80 14·30 16·0 8·800 
0·190 8·545 0·780 1·005 3·00 16·10 18·0 6·500 
0·200 7·787 0·800 1·055 3·20 18·00 20·0 5·000 
0·220 6·497 0·820 1·115 3·30 18·80 100 1·360 
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Table 18. Krypton: Momentum-transfer cross sections 

f q f q f q f q 
(eV) (10-20 m2) (eV) (l0-20 m2) (eV) (10-20 m2) (eV) (1O-2O m2) 

0·0 40·376 0·75 0·3099 1·80 2·58 8·00 20·00 
0·05 13·288 0·80 0·3649 1·90 2·84 9·00 21·00 
0·10 7·109 0·85 0·4202 2·00 3·11 10·00 21·00 
0·15 4·054 0·90 0·4737 2·20 3·68 11·00 21·00 
0·20 2·349 0·95 0·5539 2·50 4·56 12·00 20·9 
0·25 1·352 1·00 0·6665 2·80 5·66 13·00 19·4 
0·30 0·7637 1·10 0·8920 3·00 6·30 14·00 17·8 
0·35 0·4228 1·15 0·9960 3·30 7·37 15·00 15·2 
0·40 0·2364 1·20 1·111 3·60 8·48 16·00 14·8 
0·45 0·1468 1·25 1·215 4·00 9·92 17·00 13·6 
0·50 0·1182 1·30 1·330 4·40 11·10 18·00 12·5 
0·55 0·1273 1·40 1·570 4·80 12·60 19·00 11·7 
0·60 0·1589 1·50 1·810 5·00 13·20 20·00 11·0 
0·65 0·2038 1·60 2·060 6·00 16·40 25·00 8·0 
0·70 0·2551 1·70 2·320 7·00 18·40 

Table 19. Argon: Momentum-transfer cross sections 

f q € q € q € q 
(eV) (10-20 m2) (eV) (10-20 m2) (eV) (10-20 m2) (eV) (10-20 m2) 

0·0000 7·817 0·028 2·659 0·28 0·1169 0·88 1·230 
0·0001 7·421 0·030 2·538 0·30 0·1418 0·90 1·264 
0·0002 7·259 0·032 2·425 0·32 0·1715 0·92 1·299 
0·0003 7·136 0·035 2·268 0·34 0·2049 0·94 1·334 
0·0004 7·033 0·040 2·035 0·36 0·2410 0·96 1·370 
0·0005 6·942 0·045 1·831 0·38 0·2791 0·98 1·405 
0·0006 6·861 0·050 1·652 0·40 0·3187 1·00 1·441 
0·0007 6·787 0·055 1·493 0·42 0·3591 1·2 1·66 
0·0008 6·718 0·060 1·352 0·44 0·4002 1·35 1·86 
0·0009 6·654 0·065 1·225 0·46 0·4414 1·5 2·05 
0·0010 6·593 0·070 1·111 0·48 0·4828 1·6 2·19 
0·0012 6·481 0·075 1·009 0·50 0·5240 1·7 2·33 
0·0015 6·332 0·080 0·9157 0·52 0·5649 1·85 2·51 
0·0020 6·115 0·085 0·8317 0·54 0·6054 2·0 2·70 
0·0030 5·762 0·090 0·7555 0·56 0·6455 2·5 3·43 
0·0040 5·474 0·095 0·6863 0·58 0·6852 3·0 4·20 
0·0050 5·228 0·100 0·6233 0·60 0·7243 3·5 4·95 
0·0060 5·011 0·110 0·5140 0·62 0·7629 4·0 5·70 
0·0070 4·817 0·120 0·4236 0·64 0·8010 5·0 7·4 
0·0080 4·640 0·130 0·3488 0·66 0·8389 6·0 9·2 
0·0090 4·478 0·140 0·2872 0·68 0·8757 8·0 11·0 
0·0100 4·328 0·150 0·2368 0·70 0·9123 10·0 13·0 
0·0120 4·058 0·160 0·1959 0·72 0·9486 12·0 14·0 
0·0140 3·820 0·170 0·1633 0·74 0·9845 14·0 15·0 
0·0160 3·607 0·180 0·1377 0·76 1·0200 16·0 14·0 
0·0180 3·414 0·190 0·1183 0·78 1·0553 20·0 10·0 
0·0200 3·238 0·200 0·1041 0·80 1·0903 40·0 9·0 
0·220 3·076 0·220 0·08916 0·82 1·1252 60·0 8·0 
0·0240 2·926 0·240 0·08838 0·84 1·1600 80·0 7·0 
0·0260 2·788 0·260 0·0984Z 0·86 1·1958 100 6·0 
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Xenon 

Xenon cross sections were obtained from Ness (1989). These data are quite 
extensive, covering the energy range 0 :::; E :::; 100 eV, sufficient for our analysis as, 
with T = 293 K, 0 :::; u :::; 3000. There is therefore no need for any extrapolation, 
with a subsequent increase in uncertainty, as was required for neon. Table 17 
contains the momentum-transfer cross sections for xenon. (The mass of a xenon 
atom is 131· 30 amu.) 

Krypton 

Krypton cross sections were obtained from Elford (1989). These data are 
also very extensive, covering the energy range 0:::; E :::; 25 eV, sufficient for our 
analysis as, with T = 293 K, 0:::; u :::; 800. The estimated error is ±4% for the 
range 0·04 :::; E :::; 6·0 e V. (The mass of a krypton atom is 83·80 amu.) 

Argon 

Argon cross sections were obtained from the data file supplied by Crompton 
(1989, personal communication). These data are extremely detailed, with 
momentum-transfer cross sections supplied in the range 0:::; E:::; 107 eV. Below 
2x10-3 eV, cross sections are listed in 10-4 eV steps, to 1 eV in steps of 10-3 eV, 
with various intervals up to 107 eV. No estimated error range was supplied. 
(The mass of an argon atom is 39·948 amu.) Table 19 contains only a subset of 
the complete momentum-transfer cross section data set, as the original data set 
is too large to reproduce here. 
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