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Abstract 

The Coulomb energy in a tunnel junction of very small capacitance, in which there are 
two or more kinds of quasi-particles, will involve coupling between pairs of quasi-particle 
species. The variation in the number of one of them will affect the motion of the others. 
This should be detectable in a current-biased experimental setup. Taking Josephson and 
single-electron tunnelling as an example, we calculate the Fourier coefficients of the voltage 
across the junction, which is a periodic function of time. We show that the interference 
effect is significant in that the frequency dependence of the Fourier coefficients is completely 
different from that associated with tunnelling of a single species. 

1. Introduction 

Tunnelling of charged quasi-particles through ultra-small junctions at low 
temperatures has received much attention lately (Averin and Likharev 1986; 
Ben-Jacob et al. 1988; Likharev 1988; Mullen et al. 1988). If there were more 
than one species of quasi-particle tunnelling through the ultra-small junction, 
they would be coupled through the Coulomb term (Q2 /2C) in the Hamiltonian 
of the system, Q being the sum of the quasi-particle charges, and C being the 
capacitance of the junction. The object of this note is to present an analysis of 
the interference effects arising out of the above coupling in a system consisting 
of two species of quasi-particles. A typical example of such a system would 
be a Josephson junction with a 'weak' link (Likharev 1979), in which single 
electrons and Cooper pairs can tunnel through. The analysis has obvious relevance 
to situations that involve the tunnelling of quasi-particles representing highly 
correlated states, such as those exhibiting fractional charges. 

2. The Model Hamiltonian 

We consider the situation in which there are two kinds of quasi-particles 
in the tunnel junction, carrying charges Qcr. = ae and Q{3 = f3e and with 
tunnelling coefficients Tcr. and T{3 respectively. The total charge in the junction is 
Q = Qcr. + Q{3. The Coulomb energy of the junction is equal to (Qcr. + Q(3)2/2C. 
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The canonical coordinates (Ben-Jacob and Gefen 1985) conjugate to the number 
operators of the quasi-particles a and f3 are ¢Ol and ¢(3 respectively. Thus, 

Q . 8 
01. = -lae 8¢0l ' 

Q(3 = -if3e ~. 
8¢(3 

The Hamiltonian has the form 

H = - ~ a -- + f3 - + TOi. cos ¢Ol + T(3 cos ¢(3 . 2 (8 8 )2 
2C 8¢0l 8¢(3 

To solve the problem we make the variable changes 

¢= ~(¢: + ~), 

¢ = ¢Ol ¢(3 
a - 73' 

so that 

(1) 

(2) 

(3) 

(4) 

(5) 

e2 82 _ _ 

H = - 2C 8¢2 + TOi. cos[a(¢ + ¢j2)] + T(3 cos[f3(¢ - ¢j2)]. (6) 

Clearly, ¢ is a constant of motion. It is now not difficult to solve for the 
eigenvalues. 

We consider a simple case where the quasi-particle of type a provides the larger 
tunnelling current. The term in the Hamiltonian (6) that involves tunnelling of 
the quasi-particle of type f3 can then be treated by perturbation theory. The 
unperturbed Schrodinger equation is a Mathieu equation whose eigenvalues form 
an energy band Ek, and the corresponding eigenfunctions are Bloch functions, 

'l/Jk (¢) = exp(ik¢) L Ck,n exp(ina¢) . (7) 
n 

The first Brillouin zone has the range -a/2 < k < a/2, because the 'potential', 
i.e. the tunnelling term has a period of 27f / a. The tunnelling of the type f3 
quasi-particle can be taken into account through perturbation theory. The term 
T(3cos[f3(¢ - ¢/2)] in (6) couples two Bloch states. Let the coupling matrix 
element be Wlk. Then 

Wik == J 'l/Ji(¢) T(3 cos [f3(¢ - ¢/2)] 'l/Jk(¢) d¢ 

T(3 '" - -= 2" L ci,m ck,n[exp( -if3¢)8k- I+(n-m)0l+(3 + exp(if3¢)8k_l+(n_m)0l-(3] , (8) 
m,n 
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where (7) has been used. Equation (8) is valid only when 0: and {3 are rational 
numbers. Hence 0: and {3 can be written in nonreducible form as ndn2 and 
n3/n4 respectively with nl, n2, n3 and n4 being integers. The resulting energy 
band has a period /-t/v, where /-t is the highest common factor of nl and n3, and 
v is the lowest common multiple of n2 and n4. The perturbed energy band can 
be found by diagonalising the matrix W, and the problem is thus solved. If, 
for simplicity, only one band is considered, then one has to solve the following 
secular equation: 

where k and l satisfy the relation given by (8). We shall give an example. 
In a current-biased junction, the interaction Hamiltonian is 

HI = 1cp/c, 

where P is the flux. Since 

for 'Y equal to either 0: or {3, we have 

Hence 

HI = 2M </J, 
e 

(9) 

(10) 

(11) 

(12) 

(13) 

which is completely analogous to the model Hamiltonian for describing the 
dynamics of a band electron in a uniform electric field (Shockley 1950). It is 
well known that in the latter case 

ds F 
dt 1i '. 

(14) 

where s is the crystal wavevector and F is the applied force. Therefore, in the 
Coulomb blockade problem, 

dk 21 

dt e 
(15) 

As pointed out by Widom et al. (1982), the voltage V across the junction 
corresponds to the group velocity of a band electron in a crystal in a uniform 
field. It thus has the periodicity of the energy band in k-space. We expand it 
in a Fourier series, 

Vk = L Vn sin(2n1rk/~) , (16) 
n 
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where ~ is the size of the Brillouin zone, as indicated after equation (7). From 
(14) we find that the frequency of Vk is 47r I / e~, whereas for tunnelling of type 
a quasi-particles only, the frequency is 27rI/ea~0/.. Note that ~O/. = 1 is the size 
of the Brillouin zone if the tunnelling of type (3 quasi-particles is ignored in 
(3). Therefore the interference effect leading to a change of the periodicity of 
V should be observable at suitably low temperatures, where the noise level will 
not mask the effect (Le. for kBT < e2 /2C). 

1·0 ...-----------------, 
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-1'0 -0'5 1'0 

Fig. 1. Eigenvalues of the Hamiltonian (6) as a function of k. The dashed curve 
was evaluated under the conditions ¢ = 0, e2 /2C : T2 : Tl = 1· 0 : 0·3 : O· O. 
The lower and upper solid curves show Ek and Ei; as a function of k. They 
were calculated under the conditions ¢ = 0, e2 /2C : T2 : n = 1· 0 : 0·3 : 0·1. 

3. Discussion 

We have applied the above ideas to the case of a Josephson junction, in which 
the two kinds of quasi-particles are the Cooper pairs with charge 2e and the 
unpaired electrons with charge e. In most experimental situations Josephson 
tunnelling produces a much larger current than that due to single-electron 
tunnelling. Thus we have a = 2 and (3 = 1. In view of (8), the states Ik) (k > 0) 
and Ik - 1) are coupled. From (9) we get 

(17) 

After the coupling, the size of the first Brillouin zone is reduced to be in the 
range 0 < k < 1. To show explicitly what has been derived, we have plotted 
in Fig. 1 the energy bands before and after coupling. The dashed curve is the 
lowest band without single-electron tunnelling. The lower and upper solid curves 
show E;; and Ej; as functions of k. These were calculated under the conditions 
that ¢ = 0 and e2 /2C : T2 : Tl = 1 : 0·3 : 0·1. 
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Table 1. Fourier coefficients of junction voltage [equation (16)] 

All Vj are normalised, with VI equal to unity 

(e2/2C) : T2 : TI V2 V3 V4 

1 ·0 : 0 . 3 : O· OOA -0·481 0·305 -0·216 
1·0:0·3:0·05B -0·474 0·291 -0·203 
1 ·0 : 0 . 3 : O· lOB -0·436 0·229 -0·149 
1·0: 0·3: 0·15B -0·402 0·170 -0·113 

A No single-electron tunnelling, Vj is the Fourier coefficient of the voltage 
at the frequency jIrI/ lei. 
B Single-electron tunnelling included, Vj (from E;) is the Fourier coefficient 
at the frequency 4jd / lei. 
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In Table 1 we have listed the ratios of the Fourier coefficients of the junction 
voltage at different values of T1 . According to the discussion above, if only 
Josephson tunnelling occurs, then the fundamental frequency of voltage oscillations 
is W = 7rIj lei, and the coefficient V; is associated with the oscillation of frequency 
Wj = j7rIj lei- If there is also single electron tunnelling, then W = 47rIj lei, and 
the coefficient V; is associated with the oscillation Wj = 4j7r I j lei. This distinction 
should be identifiable in experiments. The temperature should be low enough 
to quench the noise effectively, and, at the same time, should be in a range 
that would enable variation of the relative populations of the two quasi-particle 
species, i.e. close to Tc. Thus the preferred material for making a junction that 
would show this interference effect would be one that has a low Tc. 
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