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Abstract 

Recently derived 10th-order high-temperature expansions for the Hubbard model are used to 
obtain the ferromagnetic susceptibility and specific heat at high temperatures. Numerical 
results are obtained for the simple cubic and face-centred cubic lattices by using Pade 
approximants to sum the series. The results are compared with two solvable limiting cases, 
namely the non-interacting limit U = 0 and the strongly-correlated or atomic limit t = O. 

1. Introduction 

One of the fascinating, only partially understood, areas of condensed matter 
physics is that of electron states in narrow bands, where correlations between 
the electrons play an essential part in the physics (see e.g. Moriya 1981). The 
Hubbard model (Hubbard 1963) provides a simple framework for discussing such 
phenomena. Initially proposed in connection with magnetism in transition metals, 
the model has recently again become the focus of much work in connection with 
theories of high temperature superconductivity (for reviews see e.g. Emery 1989; 
Fukuyama 1989). 

The Hubbard Hamiltonian 

H = -t L (ct,. Cja + c}a Cia) + U L niT ni~ 
(ij)a 

(1) 

consists of two parts. The first term describes non-interacting electrons within 
a tight-binding picture and gives rise to the usual Bloch band description. The 
U-term is a simplified Coulomb repulsion which only acts between electrons of 
opposite spin at the same site. This model is clearly only a caricature of reality 
but one hopes, in the usual way, that some essential physics remains. This indeed 
appears to be the case. 

Except in one dimension, where some exact results exist, the properties of the 
Hubbard model can only be deduced from approximate calculations. One such 
approach is via high-temperature expansions. Until very recently such expansions 
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had only been computed to order (f3t)4 for the general case. Even then there were 
errors in the 4th-order term-an indication of the complexity of the calculation. 
Recent work by Pan and Wang (1991), ten Haaf and van Leeuwen (1992), and 
our group (Henderson et ai. 1992; Oitmaa et ai. 1993) has extended the series 
considerably. 

We write the Hamiltonian in a more general form as 

H=Ho+ V, (2) 

with 

Ho = U L nij nil - f.i, L(nij + nil) - h L(nij - nil), (3) 

V = -t L (cra Cja + C~a Cia). (4) 
( ij)a 

Here f.i, is the chemical potential and h = f.i,nB, with B the external magnetic 
field. We take H 0 to be the unperturbed Hamiltonian. This corresponds to the 
'atomic limit' which can be solved exactly. Using rather standard diagrammatic 
perturbation theory, the details of which can be found in Henderson et ai. (1992), 
we obtain an expansion for the logarithm of the grand partition function in the 
form 

~ InZg == lnzo + f>o1' F1' (f3U,x,y) (f3t)". 
1'=2 

(5) 

In this expression Zo is the partition function per site in the atomic limit 

Zo = 1 + x(y + y-l) + x2e- f3U , (6) 

where x = ef3p. is the fugacity and y = ef3h . The F l' are multinominal expressions 
in x, y, the coefficients being functions of f3 U. The first one is 

F2(f3U,x,y) = !q[(y+y-l)X+ f3~(1-e-f3U)x2 

+ e-f3U (y + y-l )X3] , (7) 

where q is the coordination number of the lattice. The subsequent expressions 
rapidly become too lengthy to write down explicitly. We have obtained the F l' 
terms through FlO for the standard lattices: square, triangular, simple cubic, 
body-centred cubic and face-centred cubic. This has been possible only through 
efficient computerisation of the whole procedure. Even then a few of the 10th-order 
diagrams required several weeks of CPU time on a DEC workstation. Without a 
significant breakthrough in the algorithm it would be impractical to extend the 
series further. For loose-packed lattices only even powers of f3t occur in (5). 
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From the grand potential (5) standard thermodynamics relations can be used 
to obtain the internal energy, 

E = -(:~) x (~ lnzg) , (8) 

and the specific heat C = 8E/8T. The (dimensionless) magnetic susceptibility is 
given by 

x = yli~l (Y ~y (~ lnzg). (9) 

This is related to the real susceptibility X by X = kB TX/ JL~. 
The resulting expressions have the form 

00 

E = Eo + LziJr-1Er(~U,x)(~tt, (10) 
r=2 

00 

X = Xo + L ziJ r - 1 Xr(~U, x)(~tt , (11) 
r=2 

where Eo, XO are the zeroth-order or atomic-limit quantities, and the E r , X r are 
polynomials in x with coefficients dependent on ~ U. The atomic-limit internal 
energy and susceptibility are, with (= e-{3U, 

Eo = Ux2(/(1 + 2x + x2() , (12) 

Xo = 2x/(1 + 2x + x2(). (13) 

The expansions (10) and (11) are expressed in terms of the fugacity x. For 
most purposes it is more convenient to express the series in terms of the average 
number of electrons per site, which can be obtained from the grand potential as 

n = (x :x) (~lnZg) 
= 2x(1 + x()/(1 + 2x + x2() 

00 

+ LZiJr-1Yr(~U,X) (~tt. (14) 
r=2 

It is then necessary to invert this expression to obtain x in powers of (~t), 
with coefficients being functions of n, ~ U. In general this can only be done 



616 J. Oitmaa and J. A. Henderson 

numerically. Finally the fugacity is eliminated to obtain expansions in the form 

oc 

E = ~ er (n, (3U)((3tr , (15) 
r=O 

oc 

elkB = ~ar (n,(3U) ((3tr, (16) 
r=O 

oc 

x = Lcr (n,(3U)((3tr. (17) 
r=O 

The aim of most series studies of the Hubbard model (Henderson et al. 
1992, and references therein) has been to locate the phase transition and hence 
determine the form of the phase diagram. This is done by looking for a 
mathematical singularity in X, which will signal a transition from a paramagnetic 
to a ferromagnetic phase, or in the staggered susceptibility X, which signals an 
antiferromagnetic phase. This is difficult to achieve in practice since the series are 
typically quite erratic. A less ambitious goal is to use the series to evaluate the 
thermodynamic quantities at high temperatures, well above any transition, where 
the series are well converged. This was done by Beni et al. (1973) using short 
series. The present work can be thought of as an extension of that calculation 
using our much longer series. 

2. The Susceptibility 

The susceptibility in the atomic limit is given by 

Xo = 2xl(1 + 2x + x2(), 

where, in this limit, the fugacity is 

n -1 + [(1 - n)2 + n(2 - n)(]! 
X= ------~--~----~--~~ 

(2 - n)( 

Analytic expressions can be obtained in the following special cases: 
(i) (3 U = 0 (infinite-temperature limit) 

Xo = !n(2 - n), 

(ii) (3U = 00 (strong-correlation limit) 

Xo =n, 

(iii) n = 1 (half-filled band) 

Xo = e(3u/2/(1 + e(3U/2). 

(18) 

(19) 

(20) 

(21) 



Thermodynamics of the Hubbard Model 617 

Turning now to the general case, where 

00 

x = Xo + L cr(n, (3U) ((3W , 
r=2 

we proceed as follows. For given values of n, (3 U we obtain the coefficients of 
the series numerically (up to r = 10). We then construct Pade approximants to 
the series, 

(22) 

where P K and Q L are polynomials in (3t of degree K, L respectively, with 
K +L :::; 10. Evaluation of the Pade approximants thus provides estimates of X. 
An estimate of the reliability of the result is obtained from the consistency between 
different approximants. This approach takes some account of the remaining 
unknown terms of the series and is far superior to simply summing the known 
terms. 
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Fig. 1. Susceptibility versus (3 U for the simple cubic lattice, for U It = 00 (the atomic limit) 
and for U/t = 10. The full curves are for half-filling, the broken curves for quarter-filling. 

In Figs 1 and 2 we show the susceptibility kn TXI/-lb, plotted as a function 
of (3 U, for the simple cubic and face-centred cubic lattices respectively. For 
each lattice we show results for n = 1 (half-filling) and n = 0·5, for U It = 00 
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Fig. 2. Susceptibility versus f3 U for the face-centred cubic lattice. 

and U It = 10. The former case is the atomic limit and so comparison of the 
two curves shows the effect of increasing bandwidth (proportional to t) on the 
susceptibility. The results for the two lattices are broadly similar. 

We note the following points: 
(i) At high temperatures the susceptibility has the approximate form 

A B 
X rv kBT + (kBT)2 + ... , (23) 

with A, B dependent on n but independent of t. 
(ii) At finite temperature and fixed U the effect of increasing t is to depress 

the susceptibility below the atomic limit result. 
(iii) There is no indication of an upturn in the susceptibility for n S 0·5 in the 

region f3 U rv 6. Such a change in curvature was noted by Beni et ai. (1973) 
but is presumably an artifiact of their short series. 

Presumably the susceptibility does diverge but at some much lower temperature 
where the series cannot effectively probe. 

rt is also of some interest to evaluate the susceptibility in the region of small 
U/t to compare the result with the uncorrelated limit (U = 0), where again 
the system is exactly solvable. Evaluation of the series for small f3 U (including 
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(3 U = 0) must be done with care to avoid serious roundoff problems (or divergences) 
which come from terms with negative powers of ((3U) [see e.g. equation (7)]. In 
Fig. 3 we show the susceptibility for the fcc lattice, as a function of (3t, for n = 1 
and n = 0·5, as before. For each n we show three curves for Ujt = 0,1,10. The 
following features are apparent. 

0·6 

----
0·4 

C\J 

~ -===------
~ -~--~ Ult=1 /-~ 

Ult=O -_ -
0·2 

n = 1·0 
n= 0·5 

~t 

Fig. 3. Susceptibility versus (3t for the face-centred cubic lattice, for U/t = 10, 1 and ° (the 
non-interacting limit). 

(iv) For fixed t the susceptibility is enhanced by the correlation term U, consistent 
with (ii) above. 

(v) For U jt :S 1 the curves approach the (3t = 0 limit with zero slope, consistent 
with a strict Curie law X = AjkB T at high temperatures. At temperatures 
sufficiently high that the electrons are non-degenerate, a Curie-law behaviour 
is expected to hold even for non-interacting electrons. For larger U jt the 
curves have a finite positive slope consistent with the form (23). 

3. The Specific Heat 

We start again with the atomic limit. The internal energy in this limit IS 

given by 

(24) 
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When differentiating this to obtain the specific heat it must be remembered that 
x is also temperature-dependent. After some algebra we obtain the result 

This can be simplified in the special cases 

(i) (3 U = 0 (infinite-temperature limit) 

(ii) (3U = 00 (strong-correlation limit) 

2 
n 2 -(3U e/kB = ( )((3U) e , 

41-n 

(iii) n = 1 (half-filled band) 

e(3Uj2 
e/kB = ((3U)2 (3Uj2 2 • 

4(1 + e ) 

(26) 

(27) 

(28) 

When the hopping term is included we use the same approach as for the 
susceptibility, i.e. we construct Pade approximants to the series, for fixed n, (3 U, 
and evalute these for the appropriate values of (3t. There is, however, a minor 
technical difficulty. It is straightforward to compute the energy series (15) 

00 

E = :~'::>r(n,(3U) ((3tr, 
r=O 

from which we obtain the specific heat as 

00 

e/kB = L {_((3U)2 e~ - r((3U)er} ((3tr (29) 
r=O 

with e~ = oer /o(/3 U). However, the er are not available as analytic expressions 
in /3 U, and hence the derivative in (29) must be evaluated numerically. Since 
the er are smooth functions of /3 U this can be done easily. 

In Figs 4 and 5 we show the specific heat as a function of /3 U for the simple 
cubic and face-centred cubic lattices respectively. Again we consider the two 
cases n = 1 and 0·5 and for each n two values of U/t, namely U/t = 00 (the 
atomic limit) and U/t = 10. Results for the two lattices are broadly similar. 

We note the following points: 

(i) In the atomic limit the specific heat has a single Schottky-type peak 
which moves to smaller (3 U, i.e. higher temperatures, as the electron 
density decreases. As noted by Beni et al. (1973) this peak is associated 
with the onset of significance excitation of doubly occupied sites. 
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Fig. 4. Specific heat versus (3 U for the simple cubic lattice, for U It = CXJ and U It = 10. 
The error bars are subjective error estimates obtained from variations among different 
Pade approximants. 

(ii) For half-filling, or near half-filling, the inclusion of finite hopping t does 
not destroy this peak, but the peak broadens, decreases in height, and 
moves to higher temperatures. 

(iii) For lower electron density, and in particular for n = 0·5 as shown, 
the effect of finite t is quite different and much more dramatic. The 
specific heat is increased above that in the atomic limit, indicating an 
enhancement in excitations of the system. The high-temperature peak 
is no longer present, and in the ((3 U) range shown the specific heat is 
monotonically increasing. A new peak, which we are unable to obtain 
from our series, must develop at lower temperatures. 

Finally we plot the specific heat versus (3t in Fig. 6, to allow comparison 
with the non-interacting limit U = 0, and note the following features: 

(iv) For n = 1 there is a qualitative change in the specific heat on going from 
U It = 10, where there is still a pronounced high-temperature peak, as in 
the atomic limit, to U It = 0, where the specific heat is a monotonically 
increasing function of (3t in the range shown. Of course there must be 
a maximum at some lower temperature, since when U = 0 it is well 
known that C rv (3-1 in the low-temperature limit (3t -+ 00. There is a 
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crossover temperature at j3t rv 0·4, below which for fixed t the specific 
heat is depressed for increasing U. 

(v) For n = 0·5, in the range of j3t values shown, the specific heat for 
U It = 10 is everywhere greater than for the non-interacting limit. 
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Fig. 5. Specific heat versus f3 U for the face-centred cubic lattice. 

4. Conclusions 

We have recently derived high-temperature expansions to 10th order for the 
Hubbard model on the standard 2- and 3-dimensionallattices. This is a substantial 
increase in order over previous series for this model. In the temperature range 
where phase transitions are to be expected, the series are erratic and difficult 
to analyse with precision. However, at higher temperatures the series are well 
converged and can be accurately summed using Pade approximants. 

In this way we have computed both the ferromagnetic susceptibility and 
the specific heat for the simple cubic and face-centred cubic lattices. Results 
are presented for two values of the electon density, namely n = 1 (half-filled 
band) and n = 0·5, and for various ratios U It. The results are compared with 
the exactly solvable limiting cases; the non-interacting limit, U It = 0, and the 
strongly-correlated or atomic limit, U It = 00. In most cases the results provide 
a smooth interpolation between these two limits. 



Thermodynamics of the Hubbard Model 

~ 
(3 

0·4 

0·3 

0·2 

19-' ~'/ ___ Ult = 0 
~ UIt= 10 

n= 1·0 
0·1 I- I I / _ _ _ n = 0.5 

o 0·2 0·4 o·s 
~t 

623 

Fig. 6. Specific heat versus f3t for the face-centred cubic lattice for U It = 0 and 10. Results 
for U It = 1 are virtually indistinguishable from the case U It = o. 
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