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Abstract

The influence of microscopic or local fields on the full frequency- and wavevector-dependent
dielectric loss function of Si has been calculated, based on accurate empirical pseudopotential
calculations of the electronic structure. It is shown that local-field effects, dramatically
significant at optical (g ~0) wavevectors, diminish with increasing magnitude of ¢ to
negligible proportions as g approaches the Brillouin zone boundary. In addition it is shown
that the calculated volume-plasmon dispersion relation is improved in comparison with
experimental results by the inclusion of local-field effects.

1. Introduction

The high wavevector dielectric response of a solid is of particular interest in
electron diffraction and microscopy in relation to inelastic electron scattering
(Ritchie and Howie 1977; Smith 1984). The energy lost to a solid by an electron
scattering inelastically through single-particle or collective (plasmon) excitation
processes may be related to the dielectric function of the solid which depends
on both the (Fourier-transformed) complex frequency w and the wavevector q
(Pines 1955; Raether 1980), through the so-called loss function
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where hq and fiw are the momentum and energy transferred to the solid
respectively. The general dielectric response of a periodic crystal lattice to an
applied external field of frequency w and wavevector ¢ is to induce rapidly
oscillating microscopic or local fields of frequency w and wavevector g+ G, where
G is a reciprocal-lattice vector. In terms of the Fourier-transformed electric and
displacement fields, a microscopic dielectric matrix (whose elements are defined
in terms of reciprocal-lattice vectors) is defined by

D(g+G,w) =Y eqa(qw) E(qg+G'w). (2)
T

* Paper presented at the Festschrift Symposium for Dr Geoffrey Fletcher, Monash University,
11 December 1992.

0004-9506/93,/050635$05.00



636 T. W, Josefsson and A. E. Smith

The microscopic local fields (represented by the off-diagonal elements of the
dielectric matrix), which oscillate rapidly over the atomic unit cell, are averaged
out over several unit cells to give the observable macroscopic dielectric function.
The macroscopic average is defined in the standard manner as the average of the
corresponding microscopic quantity over the primitive unit cell. The macroscopic
dielectric function is related to the dielectric matrix through the relation (Wiser
1963)

1

e(qw) = —m—[ea,lcf(q,w)]o,o .

®3)

That is, the macroscopic dielectric function is the reciprocal of the [0,0] component
of the inverse microscopic dielectric matrix, and contains products of the off-
diagonal elements of the matrix from the inversion process. In general the
presence of the off-diagonal local-field elements implies that

1

[6E}Gl(q’w)]0,0 # €0,0(q,w) - (4)
The inclusion of these microscopic or local-field effects is known to improve
significantly the calculated optical (g = 0) loss function of silicon with respect to
the experimental optical and electron energy loss data (Louie et al. 1975; Cohen
and Chelikowsky 1989). However, due to the relative difficulty and time-consuming
nature of the accurate evaluation of the dielectric matrix for nonzero g vectors,
the influence of local fields at high g has not been considered adequately in
previous calculations (Cohen and Chelikowsky 1989; Walter and Cohen 1972).
In this work we have for the first time calculated the full frequency- and
wavevector-dependent loss function of Si with local-field effects from a complete
evaluation of the dielectric matrix. This is based on a very accurate empirical
pseudopotential (EPM) calculation of the electronic structure of the solid.

We briefly outline this electronic structure calculation in Section 2, with the
loss function calculation proper outlined in Section 3. The results (both with and
without local-field effects) for the loss function and the related volume-plasmon
dispersion relation are presented for ¢ in the [1,0,0] direction in Section 4.

2. Electronic Structure

The detailed structure in the loss function of the solid is entirely dependent
on the electronic structure that we consider. For this reason we have calculated
an EPM band structure (Cohen and Chelikowsky 1989) which is inherently more
accurate than an ab initio calculation (see Wang and Klein 1981) through the
use of experimental information in constraining the calculated low-lying bands.
We consider the very successful non-local pseudopotential of Chelikowsky and
Cohen (1976),

o

Vioseudo(T) = 3 Vo See'® "+ 3" A(E) fi(r) P, (5)
G =0
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where V¢ is an adjustable pseudopotential form factor, S¢ the usual structure
factor, f; () is a function directly simulating the effects of the atomic core states
(in our case a square-well potential), P; is the projection operator for the Ith
angular momentum state and A;(E) is an adjustable non-local energy-dependent
well depth. In a plane-wave basis we obtain the full non-local pseudopotential
Hamiltonian matrix elements as

h2

Hg o (k) = o

(k—G)?bcca + Z Vigr—g| cos|(G' — G) . 7]
Gl

-+ 4671- ;AJ(E) 2L +1) P (COSQG,G/)

R,
X /0 (K1) fi(r) (K" .r) Sg—g T dr, (6)

where K = k+G, Pi(cosfk k') is a Legendre polynomial, R; is an estimated
atomic well width (Animalu and Heine 1965) and 7 = £[1,1,1] is the usual diamond
structure unit cell origin relative to one of the atoms. The non-local well depth
is given in terms of the adjustable parameters a and 8 by

Ai(B) = on + B {[E°(K) E(K")]'/? — E°(Kr)}, (7)

where E°(K) is the free-electron energy and E°(Ky) an average energy. For
silicon it is necessary to consider only the I = 0 angular momentum state and

EPM form factor parameters corresponding to the three lowest values of |G — G’|
(see Table 1).

Table 1. Empirical pseudopotential parameters (see equations 6 and 7) used for Si

Lattice V\/g 1% VB Vm Qo ,30 Ro
constant (A) (eV) (eV) (eV) (eV) (eV) (A)
5-431 —3-429 —0-517 0-476 7-48 0-32 1-06

Fig. 1 displays the calculated band structure of silicon obtained from this
pseudopotential with matrices of the order of 145x145 (the reciprocal-lattice
vectors through the set [3,3,3] in units of 27/a, where a is the unit cell parameter).
The four highest valence bands and the 23 lowest conduction bands used in
the loss function calculation are shown along the usual symmetry directions in
k-space.

The initial pseudopotential parameters are based on the Chelikowsky and
Cohen (1976) values with minor modifications where needed so that the calculated
low-lying bands correspond as closely as possible to experiment. The resulting
relative band gaps are within at most 0-05-0-1eV of the observed values up
to the first few conduction bands (Grobman and Eastman 1972; Spicer and
Eden 1968; Hulten and Nilsson 1976). The accuracy of the higher bands is
more uncertain as experimental results are difficult to obtain (see Fraxedas et al.
1990). However, the higher conduction bands are determined completely by the
pseudopotential parameters, which in turn are entirely constrained by the very
accurate low-lying bands.



638 T. W. Josefsson and A. E. Smith

Energy level (eV)

=
>

Bloch wave vector k

Fig. 1. Electronic structure of silicon calculated in this work. The highest (23rd) conduction
band included in the loss function summation is indicated by the dotted line.

3. Dielectric Matrix and Loss Function

An expression for the dielectric matrix in the random phase approximation
(RPA) was first derived by Adler (1962) and Wiser (1963):

dre?

g+ Gllg+ G|

li [fO(En’(k + q)) - fO(En(k))]
X oot k% En(k + q) — En(k) — hw + iha

€ce(q,w) = g —

x (K 4 g,n' | /@) " | g n) (k,n|e 0t 7 |k 1 g0/}, (8)
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where (2 is the system volume, o a ‘damping’ interaction parameter or self-energy
term, w and q are the frequency and wavevector of the field, fo(E) the Fermi
function, and the summation is over all possible transitions between allowed
crystal Bloch states |k,n) with energy E, (k). We rewrite this expression (in the
limit of a large crystal) in the integral form

ec.c(q,w) =bge — G’GCT'I 9
G,G (q ) GG Q|q+G| |q+G’| ; n,n ( )
G.G'
2 Foo (k.a
nn' (‘L )___}111_130+ 3/ ( ) — &3k, (10)
(2m) 7z Wna(k,q) —w+ia

where the band-structure-dependent functions are given by

F& (k,q) = (k + q,n’ |64F9) 7 | k,n) (k,n|e 0TV T |k 4 q,n'), (11)

n,n’

(@) = 3 B (K + @) = Ea(R)]. (12)

The functions Ff nc," (k,q) and wyn(k,q) must be evaluated numerically by
means of time-consuming band structure calculations. In order to decrease the
calculation time for the highly singular integral in equation (10), we consider the
special points scheme of Monkhurst and Pack (1976). The special points give
a much better representation of the complete set of allowed k points than an
equivalent number of random points, and may be used to generate orthonormal
expansion functions (see Monkhurst and Pack 1976) with the correct symmetry
to expand the functions Fg nc’: (k,q) and wp n(k,q) at an arbitrary point in the
Brillouin zone (BZ).

We split the BZ integration into a sum of smaller integrations over mini-cells
centred around the special points k., writing equation (10) (suppressing band,

matrix indices and the g dependence for simplicity) as

G= )P EIEO+ ZI (13)

and expand the band-structure-dependent functions FG (k,q) and wy o (k,q)
in a Taylor series to first order:

Mhgm [ L) = Tk
e cellc w(kc) - Vw(k)lkc . (k - kc) —w+ia

a3k . (14)

The special points expansion functions of Monkhurst and Pack (1976) are used
in conjunction with the analytic Dalton and Gilat (1972) solution to the above
integral to obtain an analytic expression for the full integral [equation (10)]. We
are only required to perform tedious numerical calculations of F, Fy n, (k: q) and
wnn(k,q) at the few selected special points. The approxnnatlons and errors
introduced in terminating the Taylor series expansion of the integrand at first
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order may be made arbitrarily small by decreasing the mini-cell integration
volume or, equivalently, increasing the number of special points. In this sense
the accuracy of the full expression (for a given electronic structure) is limited
only by the total number of special points we consider.

To obtain satisfactory convergence of the macroscopic dielectric function (from
which we obtain the loss function in Section 4), it is sufficient to use 182 special
points in the irreducible Brillouin zone (IBZ) or, equivalently, 6912 points in the
full BZ. The convergence has been tested with 570 (23328) point calculations in
the IBZ (BZ), and the results differ by less than a few per cent. In addition it is
necessary to consider dielectric matrices of the order of 59x59 in the inversion
process, corresponding to all those reciprocal-lattice vectors G through the set
[2,2,2] (in units of 27/a).

The symmetry of the dielectric matrix may be used to further simplify the
calculation process considerably. Although €¢,¢ (g, w) is hermitian, its symmetry
is in general quite complicated and is relattlad to the wavevector q and the lattice
symmetry through the symmetry of Ff ;f (k,q) and wy, n(k,q). For the ¢ =0
case the dielectric matrix has the full symmetry of the crystal lattice; we need

7 —————————— ——— T

wmemeeeemme- experiment (Roether 1980)
with local field effects
B | e without local field effects H T

s

—Im[1/e(q,w)]

Frequency (eV)

Fig. 2. Calculated (570 special points) and experimental optical (g = 0) loss function for Si
around the plasmon peak.
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only consider the 1/48 irreducible wedge of the BZ (182 k points in the
integrations) and 72 independent terms in the dielectric matrix. In the next
section we present results for finite ¢ in the [1,0,0] direction, where the symmetry
is more complicated. The 182 special points result in 963 independent sets of k

and k-+¢ points in the integrations. In addition there are now 225 independent
terms in the dielectric matrix.

4. Results and Discussion

The calculated optical ¢ — 0 loss function for Si is dramatically improved in
comparison with experimental results by the inclusion of local-field effects as first
shown by Louie et al. (1975). In Fig. 2 we compare the present g — 0 results

(from a 570-special-point calculation) with and without local-field effects, with
the experimental results (Raether 1980).
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Fig. 3. Calculated (182 special points) loss function for Si without local-field effects for ¢ = 0
to [2,0,0] in units of 27/a.
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The main plasmon peak centred at 17-9 eV without local-field effects is shifted
down to 17-2 eV, only 0-3 eV above the 16-9 eV experimental plasma frequency.
In addition the magnitude of the plasma peak is reduced by almost half, indicating
that collective electron or plasmon excitations are less well defined in the presence
of the rapidly oscillating microscopic fields. The agreement between experiment
and theory (see Fig. 2) is very good, considering that electron exchange, correlation
effects and electron-hole interactions are not considered directly in the RPA
(see Van Camp et al. 1981) or in our band structure calculation (see Hybertson
and Louie 1984; Manghi et al. 1985). This is partly due to the fact that the
dielectric function at the higher frequencies, where the loss function peak occurs,
is much less dependent on the low-lying energy levels, where electron-hole effects
are significant, than on the higher energy bands where these effects are less
important. The detailed structure in the loss function above 15 eV is dependent
on (and hence a measure of) the high-lying band structure topology.
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Fig. 4. Calculated (182 special points) loss function for Si including local-field effects for
g =0 to [2,0,0] in units of 27r/a. The loss function above q ~ [1,0,0] is very similar to Fig. 3.



High-g-vector Dielectric Response of Si 643

With increasing magnitude of g the plasma frequency shifts to higher energies
(see Figs 3 and 4 for ¢ ranging from 0 through to [2,0,0]) and, contrary to
previous work [performed without local-field effects: Cohen and Chelikowsky
(1989); Walter and Cohen (1972)], the loss function peak broadens and the
magnitude decreases. Above g =[2,0,0] the loss function peak becomes very
broad, indicating that collective electronic or plasmon excitations are very weak
and not sustainable.

The effect of the rapidly oscillating microscopic fields decreases quickly as the
magnitude of g increases, to the extent that the dramatic effect observed on the
plasmon peak at ¢ =0 (Fig. 2) is almost negligible as g approaches the Brillouin
zone boundary (see Fig. 5). This indicates that rapidly varying microscopic fields
are also unsustainable at these high wavevectors.

with local field effects
----------------------- without local field effects

—Im[1/e(q,m)]

PUNEPENS N SRS SO S SR U SN S ST SRS NS SO ST ST S N ST ST S

0 5 10 15 20 25 30

Frequency (eV)

Fig. 5. Calculated (570 special points) loss function with and without local-field effects for
Si around the plasmon peak. Here g = [1,0,0] in units of 2w/ a.

The loss function peak is a measure of collective longitudinal excitations
(volume-plasmons) in the solid (Raether 1980). Fig. 6 displays the loss function
peak frequency versus wavevector or the volume-plasmon dispersion relation.
Results both with and without local-field effects are compared with the experimental
results of Stiebling and Raether (1978). It can be seen that consideration of
the local fields considerably improves the calculated dispersion relation at small
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g, but the effect diminishes with increasing g. The parabolic nature of the
calculated and experimental dispersion relations is shown up to the Brillouin
zone boundary ¢ = [1,0,0]. Beyond this point the calculated results become too
broad to define any clear plasma frequency. However, the RPA results do not
seem to taper off to the extent that the experimental results do. This is not
related to local-field effects (or poor band structure) but is most likely due to
the neglect of Landau damping of the plasmons (Bross 1978).

24 T T T T T T T T

« =« with local field effects
o o o without local field effects N
experimental (Stiebling 1978)

Frequency (eV)

16 1 ! s 1 1 L . 1
0-0 02 04 06 0-8 10 12

g (units of 2n/a)

Fig. 6. Calculated plasmon dispersion relation with (solid squares) and without (open circles)
local-field effects. The experimental results (Stiebling and Raether 1978, solid curve) are also
shown.

5. Conclusion

For small optical wavevectors ¢ it is known (Louie et al. 1975; Cohen and
Chelikowsky 1989) that rapidly varying microscopic or local fields dramatically
improve the electron energy loss function as calculated from the dielectric response
in the RPA. The calculated plasma frequency with local-field effects is decreased
by 1eV to 17-2 eV, approaching the experimental frequency of 16-9eV. The
experimental plasmon peak magnitude is also accurately reproduced. This
reduction in the calculated plasmon peak height (by a factor of two) indicates
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that local-field effects result in less well defined collective electronic or plasmon
excitations. We have calculated accurately for the first time the large-g-vector
dependence of the loss function, including the effects of rapidly oscillating
microscopic fields. It has been shown that these local fields become progressively
less significant as the magnitude of ¢ increases, to the extent that they are almost
negligible as q approaches the Brillouin zone boundary. For this reason the
inclusion of local-field effects, while significantly improving the small-q plasmon
dispersion relation, does not affect the large-q dispersion relation to the same
extent.
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