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Abstract 

A discussion of the electrical state of a conducting solid in a static gravitational field is 
presented. The analysis of the stress-gravitational force balance inside the solid is complicated; 
however, outside the solid, in the evanescent electron field, the analysis of such a balance 
simplifies greatly. As a consequence of this external analysis, an expression for the electric 
field external to the body is presented which includes the direct effect of gravity on the 
electrons, as well as the indirect effect due to the stress induced by the action of gravity 
on the bulk solid. Such fields are an important determinant of the gravitational motion of 
charged particles within metallic shields. 

1. Introduction 

An understanding of the effects of the Earth's gravitational field on the electrical 
properties of matter is an essential ingredient in the design of experiments to 
study the free fall of charged particles and antiparticles. The effect of gravity 
on any shield around such falling particles is to destroy its electrical neutrality, 
i.e. it is no longer an equipotential. The problem of including the gravitational 
potential together with appropriate boundary and initial conditions within a 
quantum theory of condensed matter is not at all straightforward. In spite of 
the smallness of gravitational effects, this problem is not amenable to a solution 
by the usual versions of perturbation theory. Further, what work has been done 
on the problem begins with a particular model of a solid. As the issues are 
subtle, there are always nagging doubts about the model-dependent status of 
these theories. For an extensive review and bibliography of these theoretical and 
experimental problems, see Darling et aZ. (1992). 

In this paper, the problem of matter in a gravitational field is formulated in 
a relatively model-free way. The solution to the problem of the modification of 
the bulk structure of a solid and its electric field by gravity is not presented 
here-that will be the substance of a future paper. Rather, it is shown that the 
balancing of stress within the external evanescent electron field of a gravitating 
solid suffices to determine the external electrical field. Fortunately, this is all that 
is needed for the charged-particle-fall experiments. The electrical field outside 
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the solid is found to consist of two terms which agree with those of Schiff and 
Barnhill (1966) and Dessler et al. (1968). 

A quantum-mechanical model of matter in a gravitational and electrical field 
is given by the following Lagrangian, expressed non-relativistically in terms of 
the Fock fields: 

L = in ('¢ t U'¢ _ U'¢ t '¢) _ ~ \l '¢ t • \l '¢ + e V '¢ t '¢ _ m¢'¢ t '¢ 
2 ut ut 2m 

+ in (wtUW _ UW t w) _ n2 \lwt. \lw _ ZeVwtw _ M¢wtw 
2 uW ut 2M 

(1) 

where ¢ is the anticommuting Fock field of the electrons of mass m and charge 
-e, and W is the Fock field of the nuclei treated as elementary particles of a 
single species of mass M and charge Ze. The field commutes or anticommutes 
depending on the nuclear spin. Here V is the electrostatic potential, which is 
taken as a C-number field in the Coulomb gauge, and ¢ is the gravitational 
potential. This Lagrangian omits special relativistic and magnetic effects, neither 
of which is germane to the physics and either of which may readily be included. 

Varying the Lagrangian with respect to ,¢, wand V yields the following 
equations of motion respectively: 

inu'¢jut 

muw jut 

\l2V 

- (n2 j2m)\l2'¢ - eV'¢ + m¢,¢, 

- (n2 j2M)\l2w + ZeVW + m¢w, 

- (Zewtw - e'¢t'¢). 

The Lagrangian (1) yields the Hamiltonian 

H = J {:~ \l'¢t . \l'¢ - eV'¢t'¢ + m¢'¢t '¢ 

n2 
+ -\lwt. \lw + ZeVWtW + M¢wtw 

2M 

- ~(\lV)2 }d3x. 

(2a) 

(2b) 

(2c) 

(3) 

The Lagrangian also yields the stress tensor T, whose components Tij are given 
by 

(4a) 

- :~ {'¢t(UiUj'¢) + (UiUj'¢t)'¢ - (Ui'¢t)(Uj'¢) - (Uj'¢t) (Ui'¢) }, (4b) 

- 4~ {Wt(UiUjW ) + (UiUjWt)W - (UiWt)(Ujw) - (UjWt)(UiW)} ' (4c) 

+ {(UiV)(UjV) - ~c5ij(\lV)2}, (4d) 
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where Te , Tn and TV are the electronic, nuclear and electrostatic stress tensors, 
respectively, and fh == 0/ OXi. 

The electron momentum density is given by the operator expression 

for which the Heisenberg equation of motion reads 

oFt 
ot i~ [Pt(x) , H] 

where the electric and gravitational fields are given by 

Ei - Oi V, 

9i = - Oi<P· 

Equation (6) is the principal momentum balance equation. 
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Fig. 1. The electric and gravitational fields outside a conductor, 
and the evanescent electron probability density. Electron 
exchange effects may reverse the sense of the electric field, as 
discussed in the text. 

2. Equilibrium 

(5) 

(6) 

(7a) 

(7b) 

In an energy eigenstate or in thermal equlibrium, the expectation value of 
equation (6) yields 

(8) 

If we apply this equation to the region outside the solid, where the electron 
density decays evanescently (see Fig. 1), we find that 
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(9) 

The first term in (9) was discovered by Schiff and Barnhill (1966) and the second 
by Dessler et al. (1968) . 

3. Evaluation and Conclusion 

The second term on the right-hand side of (9) may be evaluated using a 
quantum-mechanical model of the solid. In the case of a free-electron model, for 
large distances from the surface, the wavefunctions of electrons near the Fermi 
surface will predominate, yielding (very roughly) 

:::::: (2EF/3e) (pgIY) . (10) 

In (10) EF is the kinetic energy at the Fermi surface, Ezz is the strain of the 
solid in the gravitational field, p is its mass density and Y is Young's modulus. 

For copper, we estimate from (10) 

(11) 

Consideration of the atomic theory of Young's modulus shows that the ratio of 
these two electric fields should be of order rv -(M 1m). 

If the surface dipole layer is taken into account as well as the effects of 
exchange, as in a jellium model, EDMRT may have the opposite sign and be an 
order of magnitude smaller (Rossi 1991). 
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