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Abstract 
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The equations for positron-hydrogen scattering are written as a set of coupled momentum-space 
Lippmann-Schwinger equations. An explicit expression for the positronium formation matrix 
element that is suitable for large-scale computation is derived. Elastic and positronium 
formation cross sections are obtained in the coupled static model as a validation of the 
method. Calculations at energies below the hydrogen n = 2 threshold are used to study the 
convergence of observable quantities with increasing numbers of physical Hand Ps states. At 
higher energies, a series of calculations including multiple hydrogen and positronium states are 
performed over the energy range from 1·0 to 4·0 Ryd. Cross sections for elastic scattering, 
excitation of the 2s and 2p hydrogen levels and positronium formation in the Is, 2s and 2p 
levels are reported. 

1. Introduction 

The positron-hydrogen system, along with the electron-hydrogen system, is 
one of the fundamental three-body systems in atomic physics. A great deal of 
attention has been focused upon electron-hydrogen recently, particularly with 
respect to the convergence of pseudo-state expansions in the intermediate energy 
region (Bray and Stelbovics 1992; Scholz et al. 1988). However, at present 
our knowledge of the positron-hydrogen system is not nearly so comprehensive. 
Undoubtedly, one contributing reason for this is the relative paucity of data 
on positron-atom scattering, and in particular positron-hydrogen scattering. 
Another contributing factor is the difficulty in providing a proper formulation of 
the positronium formation process. 

As a broad generalisation, calculations of positron-atom collisions can be 
divided into two classes. At energies below the ionisation threshold, variational 
techniques have been exploited to do a number of nearly exact calculations. 
These have been performed on a number of simple systems such as hydrogen and 
helium (Bhatia et al. 1971, 1974; Humberston 1986; Armour and Humberston 
1991). However, most calculations of positron-atom scattering in the intermediate 
energy range have used prescriptions based upon ease of execution. Provided 
positronium formation is ignored, the modification of an electron-atom code to 
handle positron-atom scattering is trivial. The sign of the direct interaction 
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is reversed and the exchange interaction is omitted (e.g. Bransden et al. 1985; 
Ward et al. 1989). The omission of the positronium formation channels does 
pose questions about the overall accuracy of these approaches. 

More recently, the first attempts at applying the intermediate energy R-matrix 
method to positron-hydrogen scattering (Higgins et al. 1990; Higgins and Burke 
1991) and the first fully coupled calculations of positron-hydrogen scattering 
using a realistic channel space have been made (Hewitt et al. 1990, 1991). The 
major innovation that made the calculations of the Daresbury group possible was 
the representation of the atomic and positronium wave functions by Gaussians. 
These calculations represent improvements over previous works, where positronium 
formation was treated using perturbation theory (MandaI et al. 1975; Saha and 
Roy 1984; Basu and Ghosh 1988), or alternatively the close coupling equations 
were solved with a restricted number of channels (Bransden and Jundi 1967; 
Basu et al. 1976, 1989; Abdel-Raouf et al. 1984; Mukherjee and Basu 1991). 
More recently, the calculations of the Daresbury group have been extended to 
helium and lithium (Hewitt et al. 1992a, 1992b). 

In the present work, a general theory of positron-hydrogen scattering, wherein 
the positronium formation channels are treated on exactly the same footing as 
inelastic positron channels, is presented within the close coupling formalism. The 
close coupling equations are written in terms of a set of coupled Lippmann­
Schwinger equations. A completely general form of the positronium formation 
matrix, eminently suitable for large-scale computation, is derived. In this respect, 
the present method represents an improvement on the approach adopted by 
the Daresbury group. The method is employed in a series of calculations of 
positron-hydrogen scattering. 

2. Details of Close Coupling Equations 

The Schrodinger equation for the positron-hydrogen system is 

(1) 

where rl and r2 are the coordinates of the electron and positron centred with 
respect to the proton and E is the total energy of the three-body system. An 
alternative way of writing the Schrodinger equation is 

(2) 

where p and R are the relative and centre-of-mass coordinates for any positronium 
species. The relation between the two coordinate systems is 

(3a) 

or 

(3b) 
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With these definitions the Jacobian of the transformation between the two 
coordinate systems gives 

(4) 

In this work, the following conventions will be observed: bound states of the 
hydrogen atom will be designated wand 'l/J; bound states of the positronium 
atom will be denoted by <I> and cp. The subscripts 0: and (3 will also be used to 
distinguish between the manifolds of hydrogen and positronium states. 

The wavefunction is expanded in an eigenfunction expansion as 

w(rl, r2) = LWa(rd Fa(r2) + L <I>J3(p) GJ3(R) , 
a J3 

where the hydrogenic Wa (rd and positronium <I> J3 (p) states satisfy 

(wa(rl) I( -!Vi -1/rl - Ea)lwa(rd) 

(<I>J3(p)l( -V~ - 1/ p - EJ3)I<pJ3(p)) 

0, 

o. 

(5) 

(6a) 

(6b) 

With these definitions the wa and <I> J3 can represent either eigenstates or 
pseudo-states. The Schr6dinger equation now becomes 

(E - H) ( L Wa(rd Fa(r2) + L <I>J3(p) GJ3(R)) = o. 
a J3 

(7) 

Multiplying on the left by Wa/(rl) and integrating with respect to d3Tl yields 
the following equation: 

Similarly, 

+ L(Wa/l(H-E)I<I>J3GJ3). 
J3 

L (<PJ3 /I(I/T2 -1/rdl<I>J3) GJ3(R) 
J3 

+ L (<I>J3 /I(H - E)IWaFa) 

(8a) 

(8b) 

can be derived by multiplying on the left by W J3' (p) and integrating with respect 
to d3p. The steps by which equations (8a) and (8b) are specialised to a 
particular entrance channel and then transferred into a set of momentum-space 
Lippmann-Schwinger equations are standard and do not need to be repeated 
here. The momentum-space Lippmann-Schwinger equations for a positron with 
momentum k incident on a hydrogen atom in state Wa are 
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(9) 

The generic term V is used to label the interaction between the different classes 
of channels. rhe V-matrix elements are 

(k'wa,lVlkWa ) = (27r)-3 J d3rl J d3r2 w:,(rl)exp(-ik'.r2) 

x (l/r2 - l/r12)W a (rd exp(i k. r2), (10) 

(k'<1>,a'lVlk<1>,a) (27r)-3 J d3 p J d3 R <1>p,(p)exp(-ik'.R) 

x (l/r2 -1/rl)<1>,a(p)exp(ik.R) (11a) 

(27r)-3 J d3 p J d3 R <1>p,(p)exp(-ik' .R) 

x (I 1 1 1 - 1 1 1 1)<1>,a(p)exP(ik.R) , (11b) 
R-"2P R+"2P 

(27r)-3 J d3rl J d3r2 <1>p'(p) exp[-~ik'. (rl + r2)] 

x (H-E)W a (rdexp(ik.r2). (12) 

If the states Wa (rd and <1>13' (p) are hydrogen and positronium eigenstates then 
equation (12) can be written in one of two simplified forms: 

(k'<1>,a,lVlkW a ) = (27r)-3 J d3rl J d3r2 <1>(3,(p)exp[-~ik'.(rl +r2)] 

x (~k2 - Ik - ~k'12 + Ea + E,a + l/r2 - E)w,,(rd exp(i k. r2) (13a) 

or 

(k' <1>,a' 1 Vlkw ,,) = (27r) -3 J d3 P J d3 R <1>(3' (p) exp( -i k' • R) 

X (-~k'2 - ~ Ik - k'I 2 + Ea + E,a + l/r2 - E)wa (rl) exp(i k. r2). (13b) 
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These different expressions are sometimes referred to as the post and prior forms 
of the matrix element. In the present context, where the interaction Hamiltonian 
is sandwiched between plane waves, it is irrelevant which form is adopted since 
the two forms yield identical matrix elements. If pseudo-states are included in 
the eigenfunction expansion, then the matrix elements, equations (13), have to 
be modified. The simplest possible reduction of the matrix element is now 

(k'<I>,a,lVlk'l'oo) = (27r)-3 J d31'1 J d31'2 'l'p,(p) exp[-~ik' 0 (1'1 + r2)J 

x (~k2 + ~ Ik - k'I 2 ~ 1/1'1 + 1/1'2 - 1/1'12 - E) 'l' 00(1'1) exp(i k 0 1'2). (14) 

For purposes of practical computation, it is convenient to write these matrix 
elements in a form amenable to calculations in momentum space. The direct 
interaction for positron scattering, equation (10), becomes 

(k''l'oo,lVlk'l'oo) = (800'00 - J d31' 'l'oo,(r) 'l'oo(r) exp[i(k - k') or]) /27r2I k - k'1 2 , 

(15) 

which can be written in more detail as 

(k''l'oo,lVlk'l'oo) = 2 1 , 2 [800 '00 8Ao - I)A(-I)ma '+1l 
27r Ik - k I All 

(16) 

XX~'oo(lk-k'I)C~Il(k-k/)£OO£OO/~2(C; ~ C~/)(~!::a 
where 

(17) 

C~1l (k-k') is a spherical tensor, and ~ = (2)'+1)1. 
The direct interaction for positronium-proton scattering is 

(k' ¢,6' IVlk¢,a) = 27r2 1k 1_ k'I 2 J d3 P <I>,6' (p) <I> ,a(p) 

x {exp[~i(k' - k) 0 p]- exp[-~i(k' - k) 0 p]}. (18) 

In more detail, 

(k'¢,6'lVlk¢,a) = 2 1 ,2 [1- (-I)A]i)A(-I)mll '+1l 

27r I k - k I All 
(19) 

xYt,a(lk-k'I)C~Il(k-k')e,ae,a,~2 (Cg ~ Cg') (~ :::,a 
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where 

(20) 

It is clear from equation (19) that the matrix element is nonzero only when 
A is odd, hence the positronium-proton interaction can only connect states of 
different parity. 

The positronium formation interaction is most conveniently written in terms 
of products of momentum-space wavefunctions. The hydrogen and positronium 
momentum-space wavefunctions, '¢(p) and <p(p) , are defined by 

(27r)-~ J d3r<pa(r)exp(-ip.r), 

(27r)-~ J d3 p<I>.a(p)exp(-ip.p). 

The inverse Fourier transforms are just 

(27r)-~ J d3p'¢a(p)exp(ip.r), 

(27r)-~ J d3p<P.a(p)exp(ip.p). 

(21) 

(22) 

In terms of explicit quantities, the momentum-space wavefunction for '¢a (p) is 

(23) 

where the Y lm (p) in (23) is a spherical harmonic and the spherically symmetric 
component of the wavefunction is defined by 

(24) 

Besides the momentum-space wavefunctions, the Fourier transforms of the 
wavefunctions divided by r (or p) are required. To be specific, define 

'¢r,a(P) (27r)-~ J d3r [wa(r)/r] exp(-ip.r), 

(27r)-~ J d3 r [<I>.a(p)/p] exp(~ip.p). (25) 

The explicit forms for ,¢r,a(P) and <Pr,.a(p) are naturally similar to equations (19) 
and (20), so the radial component is 

(26) 

With these definitions, the matrix element for positronium formation reduces to 
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(k'<Pf3JVlkWa) (!k2 -Ik - !k'12 + Ea + Ef3 - E) '¢a(k' - k) ¢~(~k' - k) 

+ (211"2)-1 J d3q '¢a(k' - q) ¢~(!k' - q)/Iq - kl2 (27) 

in the case of (13a). The more general expression equation (14) becomes 

(k'<Pf3lVlkWa) = (!Ik - k'I 2 - E) '¢a(k' - k) ¢~(!k - k) 

- '¢r,a(k' - k) ¢~(!k' - k) - '¢a(k' - k) ¢;,f3(!k' - k) 

+ (211"2)-1 J d3q '¢a(k' - q) ¢~(!k' - q)/Iq - k12 . (28) 

In both equations (27) and (28), the most compact form of the interaction 
matrix element involves a three-dimensional integral. The difficulties in doing 
the partial-wave reduction have led to a number of attempts to circumvent 
the problem. At present, two different approaches to the computation of the 
rearrangement matrix elements have seen some use. The traditional approach 
makes use of Feynman integrals to reformulate the integrand as a one-dimensional 
integral (Massey and Mohr 1954; Cheshire 1964; Darewych 1987; Sil et al. 
1979). This approach is the easiest to adopt for calculations involving simple 
wavefunctions, e.g. the coupled static model involving the H(ls) and Ps(ls) states 
(Basu et al. 1976). For states with n;::: 2, parametric differentiation is used, 
and resulting expressions become increasingly complicated. Further complications 
arise when fa and ff3 are both greater than zero. Parametric differentiation of 
the spherical harmonics leads to expressions which become increasingly ferocious 
as fa and ff3 increase, and the method has only been applied to calculations 
with relatively restricted close coupling expansions (Basu et al. 1989). An 
innovative technique by Hewitt et al. (1990) relies on the convenient translational 
properties of Gaussian-type orbitals. By expanding the hydrogen and positronium 
wave functions as a linear combinations of Gaussians, the evaluation of the 
three-dimensional integral is greatly simplified. This technique also relies upon 
parametric differentiation of spherical harmonics to develop formulae to handle 
cases with nonzero angular momentum factors. 

In the present work, equation (28) will be adopted since it is preferable to work 
with expressions of the widest generality. The integrand will be separated into 
two parts, an angular term corresponding to the two spherical harmonics, and a 
term arising from the product of the radial parts of the two momentum-space 
wavefunctions, Le. 

Since the radial part is only a function of the magnitude of q, k', and the angle 
cos(} = q. k', a Legendre expansion of the product of P a(lk'-ql) P~(I ~k' - ql) is 
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practical. Once the Legendre expansion is performed, the partial-wave reduction 
of the matrix element leads to a completely general expression which is eminently 
manageable. 

3. Partial-wave Reduction of Interaction Matrix Elements 

For a calculation to be feasible, the matrix elements must be reduced to 
partial-wave form. The matrix elements are reduced by the formula 

v~!2Iadk', k) = L J dk J dk'YLIMI(k') (L'M'£alma/IJMJ) 
mo/moMM' 

X (k'n'Wlnk) (LlvUaMaIJM) YLlu(k), (30) 

where (LM£a ma IJM) is a Clesbch-Gordan coefficient. In writing down equation 
(30) all considerations of spin coupling have been ignored, since the absence of 
an exchange interaction leads to the singlet and triplet partial-wave T -matrix 
elements being identical. Performing the reductions, the following expressions 
are realised: 

V (J) (k' k) ""1'>'(_1)T+>'I+>'+J\3\,2e'~,e'~'IL'L" 
0. 1 LI aL , = 6 A A ~ ~ 

x ( (2)') ! ) ~ k>'-T k'T X>';>-(k' k) 
(27)!(2>' - 27)! a a , 

(31) 

The X~;~(k', k) is an angular integral defined by 

where PN(U) is a Legendre polynomial, K = Ik - k'l, U = k.k', and X~/a is 
given in equation (17). 

The interaction between the different positronium channels is nonzero only 
when the levels have different parities. 'When this occurs, the matrix element is 
very similar to the interaction between the different hydrogen channels, 

v:(J) (k' k) "" 1'>' (_l)T+>.+>.1 +J \ 3 \ ,2 e' (.I e' (.II L' L" 
(31 £' (3L , = 6 A A /J /J 

(
L' 

x 0 
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where 

(34) 

and where the definitions of K and u are the same as those used for equation 
(32). The numerical evaluation of the integrals of equations (32) and (34) to 
yield X~;~(k',k) and Y~;~(k',k) is done using a composite Gauss-Legendre 
quadrature mesh. This technique is highly reliable and has received extensive 
use in numerous calculations of electron-atom scattering. 

The matrix element for positronium formation is considerably more complicated, 
involving as it does an additional integration. The specific form of this matrix 
element that is most amenable to large-scale computation seems to be 

V (J) (k' k) "" l·f a +£/3 (_l)L+J+c+£" \ 2 \,2 '0 ~ '0(3 LA LA, (3L'aL , = L-- /\ /\ {C~ {C 

(35) 

where 7 = 7 a +7 (3. This matrix element involves two separate integrals. The first 
integral is over the angle between k and k', viz. 

zr,~a(k', k) = ~kT [11 du [(~k2 + ~Ki - E) ?/Ja(I(l) ¢(3(K2) 

- ?/Jr,a(K1 ) ¢(3(K2 ) - ?/Ja(Kd ¢r,(3 (K2 )]PA (u) , (36) 

with K1 = Ik - k'i and K2 = Ik - ~k'i. No problems are encountered in the 
numerical evaluation of (36) since the integrations are similar to those encountered 
previously, e.g. (32) and (34). The second term in (35) is 

Zi,~~(k', k) = s!31°° dq q2+T HEa(k', q) VL(q, k), (37) 

where V L(k, q) is just the partial-wave component of the momentum-space form 
of the Coulomb potential, i.e. 

VL(k, q) = 27f 100 
du Iq - kl 2 PL(u); 

27f 
qk QA(~(qjk + kjq)). 

u=q.k (3Sa) 

(38b) 
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In expression (38b), Q)..(!(qjk+kjq)) is a Legendre function of the second kind. 
The H ~a (k', q) are just projections of the product of the spherically symmetric 
part of the momentum-space wavefunctions, e.g. 

u = q . k,' in this case. A great deal of care has to be taken to ensure that the 
numerical computations involved in the evaluation of (37) are done reliably and 
efficiently. Of crucial importance to the efficient integration of (37) is the fact 
that the functions H~a(q, k') are only a function of k', but not k. Therefore, the 
functions H ~a (k', q) can be computed and stored for all possible combinations 
of A, (3, Q and k' before the final integration over q is performed. This leads to 
a substantial decrease in the time needed to compute the matrix elements for all 
combinations of k and k'. There is an additional difficulty associated with (37), 
namely the presence of the Coulomb singularity. The argument of the Legendre 
function of the second kind goes to 1 as q goes to k and so a logarithmic 
singularity occurs at q = k. This singularity is handled by a subtraction technique. 
The basic integral that has to be done is of the type, 

h(k', k) = 1= dq H(k', q) QL(!(qjk + kjq)) . 

This is rewritten as 

h(k', k) = 1= dq [H(k', q) - F(q)] QL(!(qjk + kjq)) 

+ 1= dq F(q) QL(!(qjk + kjq)) . 

By normalising F(q) so that 

F(k) = H(k', k), 

(40) 

(41) 

(42) 

the logarithmic singularity in the first term in (41) can be removed. The utility 
of this method depends on choosing a suitable form for F( q) that permits the 
analytic evaluation of the second term of (41). The specific details of the procedure 
used in the present work are quite involved so this discussion is postponed to 
the Appendix. 

Since all of the integrals involved in the formation of the kernel [e.g. equations 
(32), (34), (36) and (39)] involve the Fourier transforms of wavefunctions or 
products of wavefunctions, some comments on the evaluation of the Fourier 
transforms are appropriate. In the present work, the exact hydrogenic and 
positronium states are written as linear combinations of Slater-type orbitals 
(STOs) in the variables Tl and p respectively. This permits the analytic 
evaluation of the functions in (17), (20), (24) and (26) using equation (6.621) 
of Gradsteyn and Ryhzik (1980). To expedite later calculations, these functions 
are tabulated and converted to cubic splines. However, it should be noted 
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that the representation of the target wavefunctions in terms of STOs is not an 
essential feature of the current approach. It would be just as straightforward to 
represent the target wavefunctions by a numerical tabulation on an r-space grid 
and perform the Fourier transforms using numerical quadrature. 

One modification is made to the kernel matrix elements to facilitate numerical 
computation. In general, the kernel elements are either pure real or pure 
complex quantities. Dividing each individual matrix element by i L - L' leads to 
purely real kernel elements. When this is done, the partial-wave form of the 
Lippmann-Schwinger equation is 

T;}l,aL(k', k) = V~!2,aL(k', k) 

v(.J) (k' k//) T(J) (k// k) + L Jd3 k// a'L'a"L'" a"L"aL' 
E(+) - E~," - -21k//2 

0'." ...... 

V (J) (k' k//) T(J) (k// k) 
~ J d3 k// a' L' /3" L'" /3" L" aL ' 

+ ~ (+) lk//2 ' 
/3" E - E/3" - "4 

(43) 

VJ!2'aL(k', k) 

V (J) (k' k//) T(J) (k// k) 
(3' £' 0:." £'" 0:" L" aL ' 

E(+) - Ea" - ~k//2 

V ( J) (k' k//) T( J) (k// k) 
~ J 3 // /3' L' /3" L'" /3" L" aL , 
+~ dk 2' 

/3" E( +) - E/3" - i-k// 
(44) 

Apart from the fact that energy denominators arising from intermediate positronium 
states ((3//) have a i- k 2 factor instead of the usual ~ k 2 factor, these equations 
are identical to those occurring in electron-atom scattering. Hence, techniques 
introduced to solve these equations for electron-atom scattering (McCarthy and 
Stelbovics 1983) can be adopted with minimal modification. 

4. Calculations 

The calculations presented in this paper have been performed for two 
complementary purposes. First, the results of calculations more extensive than 
any previous calculations are reported. Second, as a validation of the formal 
and computational details of the present method, calculations using a restricted 
channel space have been made and the cross sections from these calculations are 
in agreement with those from earlier calculations. 

GG(1, 1). This calculation includes the H(ls) and Ps(ls) levels. This model 
is often called the coupled static approximation. This calculation was used to 
validate the numerical procedures. 

GG(3,0) and GG(6, 0). One aim of this paper was to investigate the influence 
that inclusion of positronium formation channels would have on the positron impact 
excitation of hydrogen levels. Accordingly, calculations of positron-hydrogen 
scattering that omit the positronium channels have also been carried out. The 
calculations include the lowest three (Is, 2s, 2p) and six (Is, 2s, 3s, 3p, 3d) levels 
of hydrogen respectively. 
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CC(3, 1)_ This basis includes the H(ls), H(2s), H(2p) and Ps(ls) levels_ This 
calculation was primarily done as a validation check of the present method_ There 
have been a number of previous calculations (Wakid and LaBahn 1972; Basu et 
ai_ 1989; Hewitt et al. 1991) using this basis_ 

CC(3, 3)_ This basis includes the H(ls), H(2s) and H(2p) and Ps(ls), Ps(2s) 
and Ps(2p) levels_ 

CC(6, 3)_ This basis includes the lowest six levels of hydrogen (Is, 2s, 2p, 3s, 3p, 
3d), and the three lowest states of positronium (Is, 2s, 2p)_ The motivation for 
this calculation is that the energy and spatial extent of the Ps( n=2) levels are 
closer to the H( n=3) levels than the H( n=2) levels_ Therefore, the inclusion of 
the H( n=3) levels in the channel expansion is probably necessary for some sort 
of convergence to be achieved in the cross sections for the Ps( n=2) levels_ 

For most of the calculations reported in this paper, a 24-point Gaussian 
quadrature mesh was used to discretise the kernel of the integral equation_ A 
32-point quadrature mesh was used for the CC(6, 3) calculation because the kernel 
contains more complicated structures than the kernels of the smaller calculations_ 

Table L Elastic and positronium formation cross sections (in units of 7ra~) for the J = 0, 1 
and 2 partial waves at a number of energies (in Rydbergs) above the positronium formation 

threshold for the coupled static approximation 

HB: Higgins and Burke (1991)_ BBG: Basu, Banerji and Ghosh (1976)_ HNB: Hewitt, Noble 
and Bransden (1991) 

Energy 0-64 1-0 1-471 2-0 3-0 4-0 

Elastic J = 0 
Present 0-6689 0-6140 0-5199 0-4317 0-3132 0-2426 
HB 0-6633 0-6122 0-5213 0-4316 0-3159 
BBG 0-6152 0-5216 0-2428 

J=l 
Present 0-0231 0-0165 0-0411 0-0895 0-1420 0-1261 
HB 0-0236 0-0174 0-0420 0-0907 0-1435 
BBG 0-0169 0-0435 0-1266 

J=2 
Present 0-0850 0-0874 0-0673 0-0578 0-0490 0-0434 
HB 0-0833 0-0881 0-0691 0-0586 0-0500 
BBG 0-0882 0-0689 0-0436 

Positronium J = 0 
Present 2-31-4 1-50-3 2-1T3 1-0T3 1-0T2 3-51-3 

HB 1_8-4 1-3r3 1-94-3 9_1-4 1-04-2 

BBG 1-53-3 2-2T3 3-1T 3 

HNB 1-43-3 9_0-4 1_11-2 

J=l 
Present 0-2880 0-4279 0-4617 0-4533 0-1960 0-0633 
HB 0-2960 0-4386 0-4721 0-4586 0-1991 
BBG 0-4323 0-4721 0-0580 
HNB 0-4286 0-4549 0-1990 

J=2 
Present 0-420 0-9742 0-8862 0-6333 0-2526 0-0986 
HB 0-9865 0-8974 0-6370 0-2556 
BBG 0-9864 0-8976 0-0934 
HNB 0-9748 0-6343 0-2547 
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The first check made of the integrity of the present method involved the 
replication of the cross section computed in the first Born approximation (Saha 
and Roy 1984; Nahar 1989). Cross sections for positronium formation to the 
Ps(ls), Ps(2s), Ps(2p), Ps(3p) and Ps(3d) levels have been successfully reproduced 
at a variety of energies. Cross sections for electron capture from positronium to 
the H(ls) and H(2s) levels (Darewych 1987) have also been reproduced. 

Another check of the numerical integrity of the program is made by evaluating 
the Z2(k', k) factor of (37) by two completely different techniques and comparing 
the results. For scattering calculations restricted to € = 0 hydrogenic and 
positronium levels, it is straightforward to evaluate Z2(k', k) taking recourse to 
techniques originally due to Feynman (Cheshire 1964). There were no significant 
differences between calculated phase shifts and cross sections using two different 
methods of computing this term when constructing the kernel of the integral 
equation. 

Since the results of the coupled static CC(l,l) model have been reported on 
a number of occasions (Basu et al. 1976; Higgins and Burke 1991; Hewitt et al. 
1991), these results provide a good benchmark for testing the present method. 
Cross sections for the J = 0, 1, and 2 partial waves for elastic scattering and 
positronium formation are reported in Table 1. There are small differences, 
generally of the order of 1%, between the present cross sections and those 
reported by previous calculations. The largest differences occur when the Ps(ls) 
cross section is very small and much more sensitive to numerical details. While 
it would be desirable to eliminate these minor discrepancies, the quality of the 
agreement indicates that the present method is certainly capable of performing 
reliable calculations. 

Table 2. S-wave phase shifts (in radians) for positron-hydrogen scattering as a function of 
incident momentum (in aol ) at energies below the threshold for positronium formation 

k CC(l,l) CC(l,l)A,B CC(3,1) CC(3,1)A CC(3,3) CC(6,3) Converged 
variationalC 

0·1 -0·0190 -0·0191A 0·0328 0·0324 0·0521 0·0656 0·1483 
0·2 -0·0472 -0·0472A 0·0212 0·0204 0·0449 0·0634 0·1877 
0·3 -0·0874 -0·0872A -0·0164 -0·0189 0·00531 0·0276 0·1677 
0·4 -0·1365 -0·1365A -0·0672 -0·0696 -0·0475 -0·0273 0·1201 

-0·135B 

0·5 -0·1891 -0·1894A -0·1231 -0·1259 -0·1042 -0·0857 0·0624 
-0·188B 

0·6 -0·2413 -0·2415A -0·1796 -0·1831 -0·1607 -0·1442 0·0039 
-0·242B 

0·7 -0·2897 -0·290l A -0·2324 -0·2362 -0·2137 -0·1990 -0·0512 
-0·292B 

A Wakid and LaBahn (1972). B Basu et al. (1976). C Bhatia et al. (1971). 

In Table 2 phase shifts for the J = 0 partial waves are presented for incident 
energies below the Ps formation threshold. The agreement between the present 
CC(l,l) phase shifts and those previously calculated by Wakid and LaBahn 
(1972) and Basu et al. (1976) for the J = 0 partial wave is as good as can be 
expected. 
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A comparison between the present CC(3,1) phase shifts and the variational 
calculation of Wakid and LaBahn (1972) provides another benchmark. The overall 
agreement between the two calculations is good, with the 181'gest discrepancy 
being only 0·004 rad. However, the differences between the two calculations show 
a systematic trend in that the present phase shifts are always larger (by 1 % to 
2%) than the variational phase shifts. The differences can probably be ascribed 
to the use of a trial wavefunction by Wakid and LaBahn that was not sufficiently 
flexible. A similar conclusion also holds for the CC(3,3) calculation. Although 
the values are not tabulated in Table 2, Wakid and LaBahn also reported phase 
shifts for the CC(3,3) basis. Once again, there is an overall consistency between 
the two calculations with the present phase shifts being 3-5% larger at most 
energies. The difference between the 181'ge CC(6, 3) calculation and the converged 
variational result of Bhatia et ai. (1971) is not surprising. It is known from 
previous calculations of e±-hydrogen scattering (Burke et ai. 1969; Burke and 
Mitchell 1973; Fon et ai. 1978; Fon and Gallahar 1972) that the convergence of 
the close coupling expansion with increasing numbers of basis states is very slow, 
unless pseudo-states are added to the basis. 

Table 3. P-wave phase shifts (in radians) for positron-hydrogen scattering as a function of 
incident momentum (in a ( 1 ) at energies below the threshold for positronium formation 

k CC(l,l) CC(3,1) CC(3,3) CC(6,3) Converged 
variational A 

0·1 0·000763 0·00533 0·00627 0·00669 0·0094 
0·2 0·00472 0·0182 0·0222 0·0236 0·0338 
0·3 0·0134 0·0342 0·0402 0·0439 0·0665 
0·4 0·0223 0·0496 0·0558 0·0620 0·1016 
0·5 0·0287 0·0615 0·0679 0·0755 0·1309 
0·6 0·0314 0·0690 0·0759 0·0841 0·1547 
0·7 0·0339 0·0770 0·0856 0·0942 0·1799 

A Bhatia et al. (1974). 

Phase shifts for the J = 1 partial wave at incident energies below the Ps 
formation threshold are listed in Table 3. Unfortunately, there are no reported 
phase shifts that can be compared with the present models. The overall trend 
is quite similar to that occurring for the S-wave. As the size of the channel 
space is increased, the phase shifts increase monotonically tow81'ds the v81'iational 
calculation (Bhatia et ai. 1971). However, once again the omission of any 
pseudo-states from the basis leads to the overall level of convergence being 
relatively poor. 

Partial cross sections for ground-state positronium formation at energies above 
the positronium formation threshold, but below the first excitation threshold for 
hydrogen, are presented in Table 4. The present cross sections are in excellent 
agreement with the cross sections of Basu et ai. (1989) for the J = 1 and J = 2 
partial waves. The only major disagreement occurs for the J = 0 partial wave at 
k = O·71a(jl. Calculations with different quadrature meshes have been performed 
to try and reproduce the value of Basu et al. but only minor changes to the cross 
section occur. The cross section reported by Basu et ai. is probably incorrect. The 
convergence of the cross sections computed with the larger CC(3, 3) and CC(6,3) 
basis sets to the accurate v81'iational cross sections of Brown and Humberston 



Close Coupling Theory 765 

(1985) is very slow. The J = 1 and J = 2 partial cross sections are generally 
about 25% too small. The unusually small J = 0 partial cross section exhibits 
no discernible signs of convergence. 

The differences between the present calculations and those of the Daresbury 
group using the CC(3,3) model are too large to be attributed to numerical 
effects. The present calculation or the Hewitt et al. calculation must have a more 
fundamental error, such as the phase in a matrix element. Since the present 
formalism was tested by a number of independent checks, which does not seem 
to have been done by Hewitt et al., it is the latter which is most likely in error. 

Table 4. Positronium formation cross sections (in units of 1ra5) for the J = 0, 1 and 2 partial 
waves and the total cross section at four different momenta (in a ( 1 ) in the Ore gap 

Model J=O J=1 J=2 Total 

k = 0·71 
CC(3,1) 0.253-2 0.115- 1 0.289-3 0.144- 1 

CC(3,I)B 0.608-2 0.121- 1 0.286-3 0.157- 2 

CC(3,3) 0.181-3 0.172- 1 0.435-3 0.179-1 

CC(6,3) 0.220-3 0.199-1 0.521-3 0.206- 1 

VarC 0.41- 2 0.27- 1 0·6T3 

k = 0·75 
CC(3,1) 0.407-2 0·276 0·145 0·4462 
CC(3,I)A 0.405- 2 0·277 0·144 
CC(3,I)B 0.418- 2 0·278 0·144 
CC(3,3) 0.150-4 0·294 0·199 0·5194 
CC(3,3)A 0.49-2 1·47 0·570 
CC(6,3) 0.129- 3 0·301 0·228 0·557 
Varc 0.44- 2 0·365 0·335 

k = 0·80 
CC(3,1) 0.277-3 0·412 0·465 1·0544 
CC(3,I)A 0.270-3 0·412 0·459 
CC(3,I)B 0.244-3 0·411 0·465 
CC(3,3) 0.538-4 0·406 0·576 1·2012 
CC(3,3)A 0.64-2 0·259 0·933 
CC(6,3) 0.224- 7 0·418 0·618 1·2654 
VarC 0.49-2 0·482 0·812 

k = 0·85 
CC(3,1) 0.143-3 0·470 0·687 1·6128 
CC(3,I)A 0.137-3 0·443 0·706 
CC(3,I)B 0.157-3 0·470 0·684 
CC(3,3) 0.886-4 0·460 0·809 1·8124 
CC(3,3)A 0.12-2 1·44 0·771 
CC(6,3) 0.363-4 0·479 0·842 1·8888 
VarC 0.58-2 0·561 1·057 

A Hewitt et al. (1991). 
B Basu et al. (1989). 
C Variational, Brown and Humberston (1984, 1985). 

For all the calculations reported in Tables 5 and 6, rearrangement terms were 
included in the kernel for all partial waves up to and including J = 12. The 
maximum number of partial waves for which complete solutions of the integral 
equations were found (excluding rearrangement terms) varied from 16 at 1·0 Ryd 
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to 24 at 4·0 Ryd. The higher partial waves needed to ensure convergence of the 
partial-wave sum were included using the unitarised Born approximation. 

The influence of the rearrangement channels upon the elastic and excitation 
cross sections can be gauged from Table 5. Comparison of the CC(3,0) elastic 
cross sections with the CC(3,1) and CC(3,3) cross sections reveals that inclusion 
of the rearrangement channels leads to the elastic cross section increasing by 
about 25%. The enhancement of the elastic cross section is also apparent when 

Table 5. Total cross sections (in units of 7ra~) for elastic scattering and excitation of hydrogen 
levels at selected energies (in Rydbergs) 

Model 1·0 1·2 1·5 2·0 3·0 4·0 

H(Is) -+ H(Is) 
CC(l,l) 0·7603 0·7201 0·6674 0·6135 0·5317 0·4318 
CC(3,0) 0·5957 0·5605 0·5142 0·4595 0·3822 0·3304 
CC(3,1) 0·7246 0·6758 0·6120 0·5419 0·4634 0·3894 
CC(3,3) 0·7174 0·6850 0·6206 0·5311 0·4670 0·4026 
CC(6,0) 0·5831 0·5511 0·5037 0·4502 0·3775 0·3249 
CC(6,3) 0·7282 0·6428 0·6224 0·5228 0·4613 0·3749 

H(ls) -+ H(2s) 
CC(3,0) 0·1309 0·1778 0·2004 0·1995 0·1526 0·1267 
CC(3,1) 0·1676 0·2299 0·2768 0·2339 0·0998 0·0869 
CC(3,3) 0·1768 0·1562 0·1971 0·2544 0·1021 0·0812 
CC(6,0) 0·1827 0·2316 0·2211 0·2019 0·1607 0·1200 
CC(6,3) 0·1932 0·2164 0·1345 0·2266 0·1173 0-0800 

H(ls) -+ H(2p) 
CC(3,0) 0·2816 0·4912 0·7624 0·9819 1·0378 1·0022 
CC(3,1) 0·2816 0·4762 0·6026 0·5843 0·7524 0·8573 
CC(3,3) 0·2857 0·4334 0·6622 0·6254 0·7243 0·8297 
CC(6,0) 0·3392 0·5753 0·8004 0·9812 0·9998 0·9688 
CC(6,3) 0·3048 0·5203 0·7204 0·6732 0·7210 0·8272 

Table 6. Total cross sections (in units of 7ra~) for positronium formation in the Ps(ls), Ps(2s) 
and Ps(2p} levels at selected energies (in Rydbergs) 

Model 1·0 1·2 1·5 2·0 3·0 4·0 

H(ls) -+ Ps(ls) 
FBA 4·7810 4·2275 3·2516 2·0062 0·8053 0·3627 
CC(I,I) 2·5902 2·8814 2·8717 2·3597 1·1207 0·4895 
CC(3,1) 2·3529 2·4203 2·3475 2·1337 1·1047 0·4693 
CC(3,3) 2·5554 2·8421 2·2960 1·9269 0·9815 0·4257 
CC(6,3) 2·5943 2·4988 2·2083 1·8143 1·0276 0·4291 

H(ls) -+ Ps(2s) 
FBA 0·0741 0·1695 0·2299 0·2076 0·1071 0·0522 
CC(3,3) 0·0196 0·0706 0·1042 0·1296 0·2261 0·1241 
CC(6,3) 0·0136 0·0530 0·0949 0·0946 0·2020 0·1264 

H(ls) -+ Ps(2p) 
FBA 0·2554 0·2710 0·2169 0·1376 0·0541 0·0222 
CC(3,3) 0·0309 0.1696 0·1646 0·2003 0·0761 0·0189 
CC(6,3) 0·0256 0·1248 0·1750 0·1699 0·0757 0·0209 
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the CC(6,0) and CC(6,3) cross sections are compared. The major part of the 
increase occurs when the Ps(ls) state is added to the calculation; the further 
inclusion of the Ps(2s) and Ps(2p) levels leads to a smaller increase. 

The situation for the 2s and 2p excitation cross sections is more complicated. 
These cross sections have an uneven energy dependence when the positronium 
states are added to the calculation. This is probably due to the presence of 
unresolved resonances. A broad resonance is present in the J = 0 partial wave for 
the CC(l,l) model at an incident energy of 2·6 Ryd (Higgins and Burke 1991; 
Hewitt et al. 1991). A further resonance occurs when the Ps(2s) state is added 
to the basis (Mitroy 1993). Irrespective of the existence of these resonances, 
the inclusion of the positronium levels leads to the 2s and 2p excitation cross 
sections changing by amounts of the order of 20%. 

Cross sections for positronium formation are listed in Table 6. Comparison of 
the first Born approximation (FBA) with the close coupling calculations indicates 
the FBA is not accurate for energies less than 4·0 Ryd. This is especially true 
for Ps formation in the 2s and 2p excited states. The uneven energy dependence 
of the cross sections makes it difficult to draw any definite conclusions about the 
convergence of the cross sections with respect to increasing numbers of channels. A 
systematic series of calculations using a very fine energy mesh needs to be performed. 

5. Conclusions 

In this work the general theory of positron-hydrogen scattering is presented as 
a set of coupled Lippmann-Schwinger equations in momentum space. The major 
improvement over the seminal calculations of Hewitt et al. (1990) is an explicit 
and completely general form for the positronium matrix element. The use of a 
Gaussian representation for the atomic orbitals will introduce inaccuracies into 
the wavefunctions, and moreover is not particularly suited to describing highly 
excited orbitals. These drawbacks are absent in the current approach which is not 
limited to a particular representation for the wavefunction. However, no definite 
conclusions on the respective merits of the two approaches can be made since 
the computations of Hewitt et al. are marred by an error of unknown origin. 

At low energies, extensive calculations have been made and demonstrate 
the overall reliability of the method. However, larger basis sets (including 
pseudo-states) have to be employed if the present method is to approach the 
accuracy of the best variational calculations. At intermediate energies, the present 
calculations, including the six lowest hydrogen and three lowest positronium 
states are the most extensive yet reported. 

The present calculations represent the largest that could be carried out on the 
available computational facilities (an IBM RISC-6000) in a reasonable length of 
time. For the calculations using CC(6,3) channel space, the initial calculation of 
the H ~a (k' , p) table took about 80 minutes, while the computation of the kernel 
for each partial wave (mostly taken in the computation of the rearrangement 
terms) takes 30 minutes for J = 2 and 80 minutes for J = 12. Since the present 
calculations were done with a patched-up electron-atom scattering program, there 
are many aspects of the program that could be improved and it would certainly 
be possible to do larger calculations. 

In principle, the extension of the present method to the case of positron­
atom scattering is straightforward. However, there are two complications that 



768 J. Mitroy 

make positron-atom scattering much more complicated than positron-hydrogen 
scattering. First, the residual ion can exist in a number of different states. Hence, 
the coupled channel expansion should include the set of residual ion states as 
well as the set of positronium states. Second, the electron in positronium and 
the electrons in the residual ion core can have an interaction of the exchange 
type. The most compact representation of the positronium-ion exchange matrix 
element interaction involves a six-dimensional integral (Massey and Mohr 1954) 
and so could be extremely difficult to evaluate. 
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Appendix: A voiding the Coulomb Singularity 

In this appendix the details of the procedures to remove the singularity from 
the integrand in equation (37) are presented. This singularity is handled by a 
subtraction technique. In its most reduced form the basic integral that has to 
be done can be written as 

J(L, k) = 100 
dq H(q) QL(!(q/k + k/q)). (AI) 

This can be rewritten as 

J(L, k) = h(L, k) + J2 (L, k), (A2) 

where the first term, namely 

h(L, k) = 100 
dq [H(q) - F(q)] QLG(q/k + k/q)) , (A3) 

is easily evaluated by numerical quadrature since the subtracting function F ( q) 
is scaled so that F(k) = H(k), which eliminates the singularity from (A3). The 
second term, namely 

h(L, k) = 100 
dq F(q) Qd!(q/k + k/q)) (A4) 

.will be evaluated analytically. A subtracting function can be derived using the 
identity 

I J 3 1jJ(q) I J 3 W(r) . 
-2 d q

l 
12 =-----;r dr--exp(-lp.r), 

27f q-p (27f) 2 r 
(A5) 

where 

(A6) 

Performing the angular integrations yields 

(A7) 

The identity (A 7) is not restricted to functions which are solutions of the radial 
Schr6dinger equation: it is also satisfied by a square-integrable function such as 
a Slater-type orbital. The choice 

(AS) 
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leads to the result 

(A9) 

In practice, the use of (A3) and (A4) in conjunction with (A9) proved 
disappointing. In a number of instances, J (L, k) proved to be much smaller than 
either of the two terms that contribute to it, i.e. 

J(L, K) = \h(L, k) + J2 (L, k)\ «: h(L, k). 

'When this occurs, the large cancellations between J 1 (L, k) and J 2 (L, k) lead to 
a significant degradation in the precision of J (L, k) and to an overall loss of 
accuracy. 

Because of this problem, an alternative strategy was used in the evaluation 
of J(L, k). Rather than having a subtracting function spanning the entire [0,00] 
interval, the subtracting function was confined to a finite range. This is possible 
since the integrations are performed using a composite Gaussian quadrature 
mesh. The subtraction procedure was only applied to the particular element of 
the composite mesh in which the singularity occurred. The explicit form of the 
subtraction used for the calculation presented in this work was 

J(L, k) = J1 (L, k) + h(L, k) + J3 (L, k), (Ala) 

where 

h(L, k) fo Q1 dq H(q) Q L(~ (q/k + k/q») 

+ 100 
dq H(q) QL(~(q/k + k/q») , 

Q2 

(A11) 

which is evaluated using numerical quadrature since the singularity at k is not 
contained in the [a, qll and [q2, ooJ intervals. The second term, namely 

J2 (L, k) = 1Q2 dqH(q)QL(~(q/k+k/q») 
q, 

- H(k) Qo(~(q/k + K/q») (A12) 

can also be evaluated numerically. It is possible to use QoG(q/k + k/q») as 
the subtracting function for all values of L because (Qdx) - Qo(x)) goes to a 
constant as x -+ 1. The final term, 

1q2 h(L, k) = H(k) dq Qo(~(q/k + k/q») , 
q, 

(A13) 

is evaluated analytically. The reason Qo(~(q/k+k/q»), and not QL(~(k/q+q/k»), 
is used for the subtraction is that an analytic expression for the indefinite integral 
involving Qo(~(k/q+q/k») exists. This is not true for QL(~(k/q+q/k») with a 
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general value of L. No difficulties are encountered in integrating (AI3) and the 
result is 

J3 (L, k) = (qz/k)H(k)[(qz/k + 1) loge (1 + q2/k) 

- 2loge(2) - (q2/k - 1) 10ge(q2/k - 1») 

+ (ql/k)H(k)[(q1/k -l)loge(1- ql/k) 

+ 2loge(2) - (q1/k + 1) loge(I + ql/k»). (A14) 

The procedure outlined in equations (AlO) to (AI4) cannot be applied if the 
singularity occurs in the last element of the composite quadrature mesh used for 
the numerical integrations, as the integral (A13) diverges when q2 -+ 00. In these 
cases the subtraction is performed using the procedure outlined in (AI) to (A9). 
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