Close Coupling Theory of Positron-Hydrogen Scattering

J. Mitroy
Centre for Atomic, Molecular and Surface Physics, School of Mathematical and Physical Sciences, Murdoch University, Murdoch, W.A. 6150, Australia. Permanent address: Faculty of Science, Northern Territory University, G.P.O. Box 40146, Casuarina, N.T. 0811, Australia.

Abstract

The equations for positron-hydrogen scattering are written as a set of coupled momentum-space Lippmann-Schwinger equations. An explicit expression for the positronium formation matrix element that is suitable for large-scale computation is derived. Elastic and positronium formation cross sections are obtained in the coupled static model as a validation of the method. Calculations at energies below the hydrogen $n=2$ threshold are used to study the convergence of observable quantities with increasing numbers of physical H and P_{s} states. At higher energies, a series of calculations including multiple hydrogen and positronium states are performed over the energy range from $1 \cdot 0$ to $4 \cdot 0$ Ryd. Cross sections for elastic scattering, excitation of the 2 s and 2 p hydrogen levels and positronium formation in the $1 \mathrm{~s}, 2 \mathrm{~s}$ and 2 p levels are reported.

1. Introduction

The positron-hydrogen system, along with the electron-hydrogen system, is one of the fundamental three-body systems in atomic physics. A great deal of attention has been focused upon electron-hydrogen recently, particularly with respect to the convergence of pseudo-state expansions in the intermediate energy region (Bray and Stelbovics 1992; Scholz et al. 1988). However, at present our knowledge of the positron-hydrogen system is not nearly so comprehensive. Undoubtedly, one contributing reason for this is the relative paucity of data on positron-atom scattering, and in particular positron-hydrogen scattering. Another contributing factor is the difficulty in providing a proper formulation of the positronium formation process.

As a broad generalisation, calculations of positron-atom collisions can be divided into two classes. At energies below the ionisation threshold, variational techniques have been exploited to do a number of nearly exact calculations. These have been performed on a number of simple systems such as hydrogen and helium (Bhatia et al. 1971, 1974; Humberston 1986; Armour and Humberston 1991). However, most calculations of positron-atom scattering in the intermediate energy range have used prescriptions based upon ease of execution. Provided positronium formation is ignored, the modification of an electron-atom code to handle positron-atom scattering is trivial. The sign of the direct interaction
is reversed and the exchange interaction is omitted (e.g. Bransden et al. 1985; Ward et al. 1989). The omission of the positronium formation channels does pose questions about the overall accuracy of these approaches.

More recently, the first attempts at applying the intermediate energy R-matrix method to positron-hydrogen scattering (Higgins et al. 1990; Higgins and Burke 1991) and the first fully coupled calculations of positron-hydrogen scattering using a realistic channel space have been made (Hewitt et al. 1990, 1991). The major innovation that made the calculations of the Daresbury group possible was the representation of the atomic and positronium wave functions by Gaussians. These calculations represent improvements over previous works, where positronium formation was treated using perturbation theory (Mandal et al. 1975; Saha and Roy 1984; Basu and Ghosh 1988), or alternatively the close coupling equations were solved with a restricted number of channels (Bransden and Jundi 1967; Basu et al. 1976, 1989; Abdel-Raouf et al. 1984; Mukherjee and Basu 1991). More recently, the calculations of the Daresbury group have been extended to helium and lithium (Hewitt et al. 1992a, 1992b).

In the present work, a general theory of positron-hydrogen scattering, wherein the positronium formation channels are treated on exactly the same footing as inelastic positron channels, is presented within the close coupling formalism. The close coupling equations are written in terms of a set of coupled LippmannSchwinger equations. A completely general form of the positronium formation matrix, eminently suitable for large-scale computation, is derived. In this respect, the present method represents an improvement on the approach adopted by the Daresbury group. The method is employed in a series of calculations of positron-hydrogen scattering.

2. Details of Close Coupling Equations

The Schrödinger equation for the positron-hydrogen system is

$$
\begin{equation*}
\left(-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{1}{r_{1}}+\frac{1}{r_{2}}-\frac{1}{\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|}-E\right) \Psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=0 \tag{1}
\end{equation*}
$$

where r_{1} and r_{2} are the coordinates of the electron and positron centred with respect to the proton and E is the total energy of the three-body system. An alternative way of writing the Schrödinger equation is

$$
\begin{equation*}
\left(-\frac{1}{4} \nabla_{R}^{2}-\nabla_{\rho}^{2}+\frac{1}{\left|\boldsymbol{R}-\frac{1}{2} \boldsymbol{\rho}\right|}-\frac{1}{\left|\boldsymbol{R}+\frac{1}{2} \boldsymbol{\rho}\right|}-\frac{1}{\rho}-E\right) \Psi(\boldsymbol{\rho}, \boldsymbol{R})=0 \tag{2}
\end{equation*}
$$

where $\boldsymbol{\rho}$ and \boldsymbol{R} are the relative and centre-of-mass coordinates for any positronium species. The relation between the two coordinate systems is

$$
\begin{equation*}
\rho=r_{1}-r_{2}, \quad \boldsymbol{R}=\frac{1}{2}\left(\boldsymbol{r}_{1}+\boldsymbol{r}_{2}\right) \tag{3a}
\end{equation*}
$$

or

$$
\begin{equation*}
r_{1}=R+\frac{1}{2} \rho, \quad r_{2}=\boldsymbol{R}-\frac{1}{2} \rho \tag{3b}
\end{equation*}
$$

With these definitions the Jacobian of the transformation between the two coordinate systems gives

$$
\begin{equation*}
\int \mathrm{d}^{3} r_{1} \int \mathrm{~d}^{3} r_{2}=\int \mathrm{d}^{3} \rho \int \mathrm{~d}^{3} R \tag{4}
\end{equation*}
$$

In this work, the following conventions will be observed: bound states of the hydrogen atom will be designated Ψ and ψ; bound states of the positronium atom will be denoted by Φ and ϕ. The subscripts α and β will also be used to distinguish between the manifolds of hydrogen and positronium states.

The wavefunction is expanded in an eigenfunction expansion as

$$
\begin{equation*}
\Psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\sum_{\alpha} \Psi_{\alpha}\left(\boldsymbol{r}_{1}\right) F_{\alpha}\left(\boldsymbol{r}_{2}\right)+\sum_{\beta} \Phi_{\beta}(\boldsymbol{\rho}) G_{\beta}(\boldsymbol{R}) \tag{5}
\end{equation*}
$$

where the hydrogenic $\Psi_{\alpha}\left(r_{1}\right)$ and positronium $\Phi_{\beta}(\rho)$ states satisfy

$$
\begin{align*}
\left\langle\Psi_{\alpha}\left(\boldsymbol{r}_{1}\right)\right|\left(-\frac{1}{2} \nabla_{1}^{2}-1 / r_{1}-\epsilon_{\alpha}\right)\left|\Psi_{\alpha}\left(r_{1}\right)\right\rangle & =0 \tag{6a}\\
\left\langle\Phi_{\beta}(\boldsymbol{\rho})\right|\left(-\nabla_{\rho}^{2}-1 / \rho-\epsilon_{\beta}\right)\left|\Phi_{\beta}(\rho)\right\rangle & =0 \tag{6b}
\end{align*}
$$

With these definitions the Ψ_{α} and Φ_{β} can represent either eigenstates or pseudo-states. The Schrödinger equation now becomes

$$
\begin{equation*}
(E-H)\left(\sum_{\alpha} \Psi_{\alpha}\left(\boldsymbol{r}_{1}\right) F_{\alpha}\left(\boldsymbol{r}_{2}\right)+\sum_{\beta} \Phi_{\beta}(\rho) G_{\beta}(\boldsymbol{R})\right)=0 \tag{7}
\end{equation*}
$$

Multiplying on the left by $\Psi_{\alpha^{\prime}}\left(\boldsymbol{r}_{1}\right)$ and integrating with respect to $\mathrm{d}^{3} r_{1}$ yields the following equation:

$$
\begin{align*}
\left(E+\frac{1}{2} \nabla_{2}^{2}-\epsilon_{\alpha^{\prime}}\right) F_{\alpha^{\prime}}\left(\boldsymbol{r}_{2}\right)= & \sum_{\alpha}\left\langle\Psi_{\alpha^{\prime}}\right|\left(1 / r_{2}-1 / r_{12}\right)\left|\Psi_{\alpha}\right\rangle F_{\alpha}\left(\boldsymbol{r}_{2}\right) \\
& +\sum_{\beta}\left\langle\Psi_{\alpha^{\prime}}\right|(H-E)\left|\Phi_{\beta} G_{\beta}\right\rangle \tag{8a}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\left(E+\frac{1}{4} \nabla_{R}^{2}-\epsilon_{\beta^{\prime}}\right) G_{\beta^{\prime}}(\boldsymbol{R})= & \sum_{\beta}\left\langle\Phi_{\beta^{\prime}}\right|\left(1 / r_{2}-1 / r_{1}\right)\left|\Phi_{\beta}\right\rangle G_{\beta}(\boldsymbol{R}) \\
& +\sum_{\alpha}\left\langle\Phi_{\beta^{\prime}}\right|(H-E)\left|\Psi_{\alpha} F_{\alpha}\right\rangle \tag{8b}
\end{align*}
$$

can be derived by multiplying on the left by $\Psi_{\beta^{\prime}}(\rho)$ and integrating with respect to $d^{3} \rho$. The steps by which equations (8a) and (8b) are specialised to a particular entrance channel and then transferred into a set of momentum-space Lippmann-Schwinger equations are standard and do not need to be repeated here. The momentum-space Lippmann-Schwinger equations for a positron with momentum k incident on a hydrogen atom in state Ψ_{α} are

$$
\begin{align*}
\left\langle\boldsymbol{k}^{\prime} \Psi_{\alpha^{\prime}}\right| T\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle= & \left\langle\boldsymbol{k}^{\prime} \Psi_{\alpha^{\prime}}\right| V\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle \\
& +\sum_{\alpha} \int \mathrm{d}^{3} k^{\prime \prime} \frac{\left\langle\boldsymbol{k}^{\prime} \Psi_{\alpha^{\prime}}\right| V\left|\boldsymbol{k}^{\prime \prime} \Psi_{\alpha^{\prime \prime}}\right\rangle\left\langle\boldsymbol{k}^{\prime \prime} \Psi_{\alpha^{\prime \prime}}\right| T\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle}{E^{(+)}-\epsilon_{\alpha^{\prime \prime}}-\frac{1}{2} k^{\prime \prime 2}} \\
& \sum_{\beta^{\prime \prime}} \int \mathrm{d}^{3} k^{\prime \prime} \frac{\left\langle\boldsymbol{k}^{\prime} \Psi_{\alpha^{\prime}}\right| V\left|\boldsymbol{k}^{\prime \prime} \Phi_{\beta^{\prime \prime}}\right\rangle\left\langle\boldsymbol{k}^{\prime \prime} \Phi_{\beta^{\prime \prime}}\right| T\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle}{E^{(+)}-\epsilon_{\beta^{\prime \prime}}-\frac{1}{4} k^{\prime \prime 2}} \tag{9}\\
\left\langle\boldsymbol{k}^{\prime} \Phi_{\beta^{\prime}}\right| T\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle= & \left\langle\boldsymbol{k}^{\prime} \Phi_{\beta^{\prime}}\right| V\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle \\
& +\sum_{\alpha^{\prime \prime}} \int \mathrm{d}^{3} k^{\prime \prime} \frac{\left\langle\boldsymbol{k}^{\prime} \Phi_{\beta^{\prime}}\right| V\left|\boldsymbol{k}^{\prime \prime} \Psi_{\alpha^{\prime \prime}}\right\rangle\left\langle\boldsymbol{k}^{\prime \prime} \Psi_{\alpha^{\prime \prime}}\right| T\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle}{E^{(+)}-\epsilon_{\alpha^{\prime \prime}}-\frac{1}{2} k^{\prime \prime 2}} \\
& +\sum_{\beta^{\prime \prime}} \int \mathrm{d}^{3} k^{\prime \prime} \frac{\left\langle\boldsymbol{k}^{\prime} \Phi_{\beta^{\prime}}\right| V\left|\boldsymbol{k}^{\prime \prime} \Phi_{\beta^{\prime \prime}}\right\rangle\left\langle\boldsymbol{k}^{\prime \prime} \Phi_{\beta^{\prime \prime}}\right| T\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle}{E^{(+)}-\epsilon_{\beta^{\prime \prime}}-\frac{1}{4} k^{\prime \prime 2}} .
\end{align*}
$$

The generic term V is used to label the interaction between the different classes of channels. The V-matrix elements are

$$
\begin{align*}
\left\langle\boldsymbol{k}^{\prime} \Psi_{\alpha^{\prime}}\right| V\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle= & (2 \pi)^{-3} \int \mathrm{~d}^{3} r_{1} \int \mathrm{~d}^{3} r_{2} \Psi_{\alpha^{\prime}}^{*}\left(\boldsymbol{r}_{1}\right) \exp \left(-\mathrm{i} \boldsymbol{k}^{\prime} \cdot \boldsymbol{r}_{2}\right) \\
& \times\left(1 / r_{2}-1 / r_{12}\right) \Psi_{\alpha}\left(\boldsymbol{r}_{1}\right) \exp \left(\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}_{2}\right), \tag{10}\\
\left\langle\boldsymbol{k}^{\prime} \Phi_{\beta^{\prime}}\right| V\left|\boldsymbol{k} \Phi_{\beta}\right\rangle= & (2 \pi)^{-3} \int \mathrm{~d}^{3} \rho \int \mathrm{~d}^{3} R \Phi_{\beta^{\prime}}^{*}(\boldsymbol{\rho}) \exp \left(-\mathrm{i} \boldsymbol{k}^{\prime} \cdot \boldsymbol{R}\right) \\
& \times\left(1 / r_{2}-1 / r_{1}\right) \Phi_{\beta}(\boldsymbol{\rho}) \exp (\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{R}) \tag{11a}\\
= & (2 \pi)^{-3} \int \mathrm{~d}^{3} \rho \int \mathrm{~d}^{3} R \Phi_{\beta^{\prime}}^{*}(\boldsymbol{\rho}) \exp \left(-\mathrm{i} \boldsymbol{k}^{\prime} \cdot \boldsymbol{R}\right) \\
& \times\left(\frac{1}{\left|\boldsymbol{R}-\frac{1}{2} \boldsymbol{\rho}\right|}-\frac{1}{\left|\boldsymbol{R}+\frac{1}{2} \boldsymbol{\rho}\right|}\right) \Phi_{\beta}(\boldsymbol{\rho}) \exp (\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{R}), \tag{11b}\\
\left\langle\boldsymbol{k}^{\prime} \Phi_{\beta^{\prime}}\right| V\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle= & (2 \pi)^{-3} \int \mathrm{~d}^{3} r_{1} \int \mathrm{~d}^{3} r_{2} \Phi_{\beta^{\prime}}^{*}(\boldsymbol{\rho}) \exp \left[-\frac{1}{2} \mathrm{i} \boldsymbol{k}^{\prime} \cdot\left(\boldsymbol{r}_{1}+\boldsymbol{r}_{2}\right)\right] \\
& \times(H-E) \Psi_{\alpha}\left(\boldsymbol{r}_{1}\right) \exp \left(\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}_{2}\right) . \tag{12}
\end{align*}
$$

If the states $\Psi_{\alpha}\left(\boldsymbol{r}_{1}\right)$ and $\Phi_{\beta^{\prime}}^{*}(\boldsymbol{\rho})$ are hydrogen and positronium eigenstates then equation (12) can be written in one of two simplified forms:

$$
\begin{align*}
& \left\langle\boldsymbol{k}^{\prime} \Phi_{\beta^{\prime}}\right| V\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle=(2 \pi)^{-3} \int \mathrm{~d}^{3} r_{1} \int \mathrm{~d}^{3} r_{2} \Phi_{\beta^{\prime}}^{*}(\boldsymbol{\rho}) \exp \left[-\frac{1}{2} \mathrm{i} \boldsymbol{k}^{\prime} .\left(\boldsymbol{r}_{1}+\boldsymbol{r}_{2}\right)\right] \\
& \times\left(\frac{1}{2} k^{2}-\left|\boldsymbol{k}-\frac{1}{2} \boldsymbol{k}^{\prime}\right|^{2}+\epsilon_{\alpha}+\epsilon_{\beta}+1 / r_{2}-E\right) \Psi_{\alpha}\left(\boldsymbol{r}_{1}\right) \exp \left(\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}_{2}\right) \tag{13a}
\end{align*}
$$

or

$$
\begin{align*}
\left\langle\boldsymbol{k}^{\prime} \Phi_{\beta^{\prime}}\right| V\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle & =(2 \pi)^{-3} \int \mathrm{~d}^{3} \rho \int \mathrm{~d}^{3} R \Phi_{\beta^{\prime}}^{*}(\boldsymbol{\rho}) \exp \left(-\mathrm{i} \boldsymbol{k}^{\prime} \cdot \boldsymbol{R}\right) \\
& \times\left(\frac{1}{4} k^{\prime 2}-\frac{1}{2}\left|\boldsymbol{k}-\boldsymbol{k}^{\prime}\right|^{2}+\epsilon_{\alpha}+\epsilon_{\beta}+1 / r_{2}-E\right) \Psi_{\alpha}\left(\boldsymbol{r}_{1}\right) \exp \left(\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}_{2}\right) \tag{13b}
\end{align*}
$$

These different expressions are sometimes referred to as the post and prior forms of the matrix element. In the present context, where the interaction Hamiltonian is sandwiched between plane waves, it is irrelevant which form is adopted since the two forms yield identical matrix elements. If pseudo-states are included in the eigenfunction expansion, then the matrix elements, equations (13), have to be modified. The simplest possible reduction of the matrix element is now

$$
\begin{align*}
& \left\langle\boldsymbol{k}^{\prime} \Phi_{\beta^{\prime}}\right| V\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle=(2 \pi)^{-3} \int \mathrm{~d}^{3} r_{1} \int \mathrm{~d}^{3} r_{2} \Psi_{\beta^{\prime}}^{*}(\boldsymbol{\rho}) \exp \left[-\frac{1}{2} \mathrm{i} \boldsymbol{k}^{\prime} \cdot\left(\boldsymbol{r}_{1}+\boldsymbol{r}_{2}\right)\right] \\
& \quad \times\left(\frac{1}{2} k^{2}+\frac{1}{2}\left|\boldsymbol{k}-\boldsymbol{k}^{\prime}\right|^{2}-1 / r_{1}+1 / r_{2}-1 / r_{12}-E\right) \Psi_{\alpha}\left(\boldsymbol{r}_{1}\right) \exp \left(\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}_{2}\right) \tag{14}
\end{align*}
$$

For purposes of practical computation, it is convenient to write these matrix elements in a form amenable to calculations in momentum space. The direct interaction for positron scattering, equation (10), becomes

$$
\begin{equation*}
\left\langle\boldsymbol{k}^{\prime} \Psi_{\alpha^{\prime}}\right| V\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle=\left(\delta_{\alpha^{\prime} \alpha}-\int \mathrm{d}^{3} r \Psi_{\alpha^{\prime}}(\boldsymbol{r}) \Psi_{\alpha}(\boldsymbol{r}) \exp \left[\mathrm{i}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \cdot \boldsymbol{r}\right]\right) / 2 \pi^{2}\left|\boldsymbol{k}-\boldsymbol{k}^{\prime}\right|^{2} \tag{15}
\end{equation*}
$$

which can be written in more detail as

$$
\begin{align*}
& \left\langle\boldsymbol{k}^{\prime} \Psi_{\alpha^{\prime}}\right| V\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle=\frac{1}{2 \pi^{2}\left|\boldsymbol{k}-\boldsymbol{k}^{\prime}\right|^{2}}\left[\delta_{\alpha^{\prime} \alpha} \delta_{\lambda 0}-\sum_{\lambda \mu} \mathrm{i}^{\lambda}(-1)^{m_{\alpha^{\prime}}+\mu}\right. \tag{16}\\
& \left.\quad \times X_{\alpha^{\prime} \alpha}^{\lambda}\left(\left|\boldsymbol{k}-\boldsymbol{k}^{\prime}\right|\right) C_{-\mu}^{\lambda}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \hat{\ell}_{\alpha} \hat{\ell}_{\alpha^{\prime}} \hat{\lambda}^{2}\left(\begin{array}{ccc}
\ell_{\alpha} & \lambda & \ell_{\alpha^{\prime}} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\lambda & \ell_{\alpha} & \ell_{\alpha^{\prime}} \\
\mu & m_{\alpha} & -m_{\alpha^{\prime}}
\end{array}\right)\right]
\end{align*}
$$

where

$$
\begin{equation*}
X_{\alpha^{\prime} \alpha}^{\lambda}(K)=\int_{0}^{\infty} \mathrm{d} r r^{2} \Psi_{\alpha^{\prime}}(r) \Psi_{\alpha}(r) j_{\lambda}(K r) \tag{17}
\end{equation*}
$$

$C_{-\mu}^{\lambda}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)$ is a spherical tensor, and $\hat{\lambda}=(2 \lambda+1)^{\frac{1}{2}}$.
The direct interaction for positronium-proton scattering is

$$
\begin{align*}
\left\langle\boldsymbol{k}^{\prime} \phi_{\beta^{\prime}}\right| V\left|\boldsymbol{k} \phi_{\beta}\right\rangle= & \frac{1}{2 \pi^{2}\left|\boldsymbol{k}-\boldsymbol{k}^{\prime}\right|^{2}} \int \mathrm{~d}^{3} \rho \Phi_{\beta^{\prime}}(\rho) \Phi_{\beta}(\boldsymbol{\rho}) \\
& \times\left\{\exp \left[\frac{1}{2} \mathrm{i}\left(\boldsymbol{k}^{\prime}-\boldsymbol{k}\right) \cdot \boldsymbol{\rho}\right]-\exp \left[-\frac{1}{2} \mathrm{i}\left(\boldsymbol{k}^{\prime}-\boldsymbol{k}\right) \cdot \boldsymbol{\rho}\right]\right\} \tag{18}
\end{align*}
$$

In more detail,

$$
\begin{align*}
& \left\langle\boldsymbol{k}^{\prime} \phi_{\beta^{\prime}}\right| V\left|\boldsymbol{k} \phi_{\beta}\right\rangle=\frac{1}{2 \pi^{2}\left|\boldsymbol{k}-\boldsymbol{k}^{\prime}\right|^{2}}\left[1-(-1)^{\lambda}\right] \sum_{\lambda \mu} \mathrm{i}^{\lambda}(-1)^{m_{\beta^{\prime}}+\mu} \tag{19}\\
& \quad \times Y_{\beta^{\prime} \beta}^{\lambda}\left(\left|\boldsymbol{k}-\boldsymbol{k}^{\prime}\right|\right) C_{-\mu}^{\lambda}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \hat{\ell}_{\beta} \hat{\ell}_{\beta^{\prime}} \hat{\lambda}^{2}\left(\begin{array}{ccc}
\ell_{\beta} & \lambda & \ell_{\beta^{\prime}} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\lambda & \ell_{\beta} & \ell_{\beta^{\prime}} \\
\mu & m_{\beta} & -m_{\beta^{\prime}}
\end{array}\right)
\end{align*}
$$

where

$$
\begin{equation*}
Y_{\beta^{\prime} \beta}^{\lambda}(K)=\int_{0}^{\infty} \mathrm{d} \rho \rho^{2} \Phi_{\beta^{\prime}}(\boldsymbol{\rho}) \Phi_{\beta}(\boldsymbol{\rho}) j_{\lambda}\left(\frac{1}{2} K \rho\right) . \tag{20}
\end{equation*}
$$

It is clear from equation (19) that the matrix element is nonzero only when λ is odd, hence the positronium-proton interaction can only connect states of different parity.

The positronium formation interaction is most conveniently written in terms of products of momentum-space wavefunctions. The hydrogen and positronium momentum-space wavefunctions, $\psi(\boldsymbol{\rho})$ and $\phi(\boldsymbol{\rho})$, are defined by

$$
\begin{align*}
& \psi_{\alpha}(\boldsymbol{p})=(2 \pi)^{-\frac{3}{2}} \int \mathrm{~d}^{3} r \phi_{\alpha}(\boldsymbol{r}) \exp (-\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{r}), \\
& \phi_{\beta}(\boldsymbol{p})=(2 \pi)^{-\frac{3}{2}} \int \mathrm{~d}^{3} \rho \Phi_{\beta}(\boldsymbol{\rho}) \exp (-\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{\rho}) \tag{21}
\end{align*}
$$

The inverse Fourier transforms are just

$$
\begin{align*}
& \Psi_{\alpha}(\boldsymbol{r})=(2 \pi)^{-\frac{3}{2}} \int \mathrm{~d}^{3} p \psi_{\alpha}(\boldsymbol{p}) \exp (\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{r}), \\
& \Phi_{\beta}(\boldsymbol{\rho})=(2 \pi)^{-\frac{3}{2}} \int \mathrm{~d}^{3} p \phi_{\beta}(\boldsymbol{p}) \exp (\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{\rho}) . \tag{22}
\end{align*}
$$

In terms of explicit quantities, the momentum-space wavefunction for $\psi_{\alpha}(\boldsymbol{p})$ is

$$
\begin{equation*}
\psi_{\alpha}(\boldsymbol{p})=\mathrm{i}^{\ell_{\alpha}}(-1)^{\ell_{\alpha}} Y_{\ell_{\alpha} m_{\alpha}}(\boldsymbol{p}) \psi_{\alpha}(p) \tag{23}
\end{equation*}
$$

where the $Y_{\ell m}(\boldsymbol{p})$ in (23) is a spherical harmonic and the spherically symmetric component of the wavefunction is defined by

$$
\begin{equation*}
\psi_{\alpha}(p)=(2 / \pi)^{\frac{1}{2}} \int_{0}^{\infty} \mathrm{d} r r^{2} \Psi_{\alpha}(r) j_{\ell_{\alpha}}(p r) \tag{24}
\end{equation*}
$$

Besides the momentum-space wavefunctions, the Fourier transforms of the wavefunctions divided by r (or ρ) are required. To be specific, define

$$
\begin{align*}
& \psi_{r, \alpha}(\boldsymbol{p})=(2 \pi)^{-\frac{3}{2}} \int \mathrm{~d}^{3} r\left[\Psi_{\alpha}(\boldsymbol{r}) / r\right] \exp (-\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{r}) \\
& \phi_{r, \beta}(\boldsymbol{p})=(2 \pi)^{-\frac{3}{2}} \int \mathrm{~d}^{3} r\left[\Phi_{\beta}(\boldsymbol{\rho}) / \rho\right] \exp (-\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{\rho}) . \tag{25}
\end{align*}
$$

The explicit forms for $\psi_{r, \alpha}(\boldsymbol{p})$ and $\phi_{r, \beta}(\boldsymbol{p})$ are naturally similar to equations (19) and (20), so the radial component is

$$
\begin{equation*}
\psi_{r, \alpha}(p)=(2 / \pi)^{\frac{1}{2}} \int_{0}^{\infty} \mathrm{d} r r \Psi_{\alpha}(r) j_{\ell_{\alpha}}(p r) \tag{26}
\end{equation*}
$$

With these definitions, the matrix element for positronium formation reduces to

$$
\begin{align*}
\left\langle\boldsymbol{k}^{\prime} \Phi_{\beta}\right| V\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle= & \left(\frac{1}{2} k^{2}-\left|\boldsymbol{k}-\frac{1}{2} \boldsymbol{k}^{\prime}\right|^{2}+\epsilon_{\alpha}+\epsilon_{\beta}-E\right) \psi_{\alpha}\left(\boldsymbol{k}^{\prime}-\boldsymbol{k}\right) \phi_{\beta}^{*}\left(\frac{1}{2} \boldsymbol{k}^{\prime}-\boldsymbol{k}\right) \\
& +\left(2 \pi^{2}\right)^{-1} \int \mathrm{~d}^{3} q \psi_{\alpha}\left(\boldsymbol{k}^{\prime}-\boldsymbol{q}\right) \phi_{\beta}^{*}\left(\frac{1}{2} \boldsymbol{k}^{\prime}-\boldsymbol{q}\right) /|\boldsymbol{q}-\boldsymbol{k}|^{2} \tag{27}
\end{align*}
$$

in the case of (13a). The more general expression equation (14) becomes

$$
\begin{align*}
\left\langle\boldsymbol{k}^{\prime} \Phi_{\beta}\right| V\left|\boldsymbol{k} \Psi_{\alpha}\right\rangle= & \left(\frac{1}{2}\left|\boldsymbol{k}-\boldsymbol{k}^{\prime}\right|^{2}-E\right) \psi_{\alpha}\left(\boldsymbol{k}^{\prime}-\boldsymbol{k}\right) \phi_{\beta}^{*}\left(\frac{1}{2} \boldsymbol{k}-\boldsymbol{k}\right) \\
& -\psi_{r, \alpha}\left(\boldsymbol{k}^{\prime}-\boldsymbol{k}\right) \phi_{\beta}^{*}\left(\frac{1}{2} \boldsymbol{k}^{\prime}-\boldsymbol{k}\right)-\psi_{\alpha}\left(\boldsymbol{k}^{\prime}-\boldsymbol{k}\right) \phi_{r, \beta}^{*}\left(\frac{1}{2} \boldsymbol{k}^{\prime}-\boldsymbol{k}\right) \\
& +\left(2 \pi^{2}\right)^{-1} \int \mathrm{~d}^{3} q \psi_{\alpha}\left(\boldsymbol{k}^{\prime}-\boldsymbol{q}\right) \phi_{\beta}^{*}\left(\frac{1}{2} \boldsymbol{k}^{\prime}-\boldsymbol{q}\right) /|\boldsymbol{q}-\boldsymbol{k}|^{2} \tag{28}
\end{align*}
$$

In both equations (27) and (28), the most compact form of the interaction matrix element involves a three-dimensional integral. The difficulties in doing the partial-wave reduction have led to a number of attempts to circumvent the problem. At present, two different approaches to the computation of the rearrangement matrix elements have seen some use. The traditional approach makes use of Feynman integrals to reformulate the integrand as a one-dimensional integral (Massey and Mohr 1954; Cheshire 1964; Darewych 1987; Sil et al. 1979). This approach is the easiest to adopt for calculations involving simple wavefunctions, e.g. the coupled static model involving the $\mathrm{H}(1 \mathrm{~s})$ and $\mathrm{Ps}(1 \mathrm{~s})$ states (Basu et al. 1976). For states with $n \geq 2$, parametric differentiation is used, and resulting expressions become increasingly complicated. Further complications arise when ℓ_{α} and ℓ_{β} are both greater than zero. Parametric differentiation of the spherical harmonics leads to expressions which become increasingly ferocious as ℓ_{α} and ℓ_{β} increase, and the method has only been applied to calculations with relatively restricted close coupling expansions (Basu et al. 1989). An innovative technique by Hewitt et al. (1990) relies on the convenient translational properties of Gaussian-type orbitals. By expanding the hydrogen and positronium wave functions as a linear combinations of Gaussians, the evaluation of the three-dimensional integral is greatly simplified. This technique also relies upon parametric differentiation of spherical harmonics to develop formulae to handle cases with nonzero angular momentum factors.

In the present work, equation (28) will be adopted since it is preferable to work with expressions of the widest generality. The integrand will be separated into two parts, an angular term corresponding to the two spherical harmonics, and a term arising from the product of the radial parts of the two momentum-space wavefunctions, i.e.

$$
\begin{align*}
I & =\int \mathrm{d}^{3} q \psi_{\alpha}\left(\boldsymbol{k}^{\prime}-\boldsymbol{q}\right) \phi_{\beta}^{*}\left(\frac{1}{2} \boldsymbol{k}^{\prime}-\boldsymbol{q}\right) /|\boldsymbol{q}-\boldsymbol{k}|^{2} \tag{29}\\
& =\int \mathrm{d}^{3} q P_{\alpha}\left(\left|\boldsymbol{k}^{\prime}-\boldsymbol{q}\right|\right) P_{\beta}^{*}\left(\left|\frac{1}{2} \boldsymbol{k}^{\prime}-\boldsymbol{q}\right|\right) Y_{\ell_{\alpha} m_{\alpha}}\left(\boldsymbol{k}^{\prime}-\boldsymbol{q}\right) Y_{\ell_{\beta} m_{\beta}}^{*}\left(\frac{1}{2} \boldsymbol{k}^{\prime}-\boldsymbol{q}\right) /|\boldsymbol{q}-\boldsymbol{k}|^{2}
\end{align*}
$$

Since the radial part is only a function of the magnitude of q, k^{\prime}, and the angle $\cos \theta=\boldsymbol{q} \cdot \boldsymbol{k}^{\prime}$, a Legendre expansion of the product of $P_{\alpha}\left(\left|\boldsymbol{k}^{\prime}-\boldsymbol{q}\right|\right) P_{\boldsymbol{\beta}}^{*}\left(\left|\frac{1}{2} \boldsymbol{k}^{\prime}-\boldsymbol{q}\right|\right)$ is
practical. Once the Legendre expansion is performed, the partial-wave reduction of the matrix element leads to a completely general expression which is eminently manageable.

3. Partial-wave Reduction of Interaction Matrix Elements

For a calculation to be feasible, the matrix elements must be reduced to partial-wave form. The matrix elements are reduced by the formula

$$
\begin{align*}
V_{\alpha^{\prime} L^{\prime} \alpha L}^{(J)}\left(k^{\prime}, k\right)= & \sum_{m_{\alpha^{\prime}} m_{\alpha} M M^{\prime}} \int \mathrm{d} \hat{\boldsymbol{k}} \int \mathrm{~d} \hat{\boldsymbol{k}}^{\prime} Y_{L^{\prime} M^{\prime}}^{*}\left(\hat{\boldsymbol{k}}^{\prime}\right)\left\langle L^{\prime} M^{\prime} \ell_{\alpha^{\prime}} m_{\alpha^{\prime}} \mid J M_{J}\right\rangle \\
& \times\left\langle\boldsymbol{k}^{\prime} \alpha^{\prime}\right| V|\alpha \boldsymbol{k}\rangle\left\langle L M \ell_{\alpha} M_{\alpha} \mid J M\right\rangle Y_{L M}(\hat{\boldsymbol{k}}), \tag{30}
\end{align*}
$$

where $\left\langle L M \ell_{\alpha} m_{\alpha} \mid J M\right\rangle$ is a Clesbch-Gordan coefficient. In writing down equation (30) all considerations of spin coupling have been ignored, since the absence of an exchange interaction leads to the singlet and triplet partial-wave T-matrix elements being identical. Performing the reductions, the following expressions are realised:

$$
\begin{align*}
V_{\alpha^{\prime} L^{\prime} \alpha L}^{(J)}\left(k^{\prime}, k\right)= & \sum_{\lambda \lambda^{\prime} \tau} \mathrm{i}^{\lambda}(-1)^{\tau+\lambda^{\prime}+\lambda+J} \hat{\lambda}^{3} \hat{\lambda}^{2} \hat{\ell}_{\alpha} \hat{\ell}_{\alpha^{\prime}} \hat{L} \hat{L}^{\prime} \\
& \times\left(\frac{(2 \lambda)!}{(2 \tau)!(2 \lambda-2 \tau)!}\right)^{\frac{1}{2}} k^{\lambda-\tau} k^{\prime \tau} X_{\alpha^{\prime} \alpha}^{\lambda^{\prime} \lambda}\left(k^{\prime}, k\right) \tag{31}\\
& \times\left(\begin{array}{ccc}
L^{\prime} & \lambda^{\prime} & \lambda-\tau \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\lambda & \tau & L^{\prime} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\ell_{\alpha^{\prime}} & \lambda & \ell_{\alpha} \\
0 & 0 & 0
\end{array}\right)\left\{\begin{array}{ccc}
\lambda & L^{\prime} & L \\
\lambda^{\prime} & \lambda-\tau & \tau
\end{array}\right\}\left\{\begin{array}{ccc}
\ell_{\alpha^{\prime}} & L^{\prime} & J \\
L & \ell_{\alpha} & \lambda
\end{array}\right\} .
\end{align*}
$$

The $X_{\alpha^{\prime} \alpha}^{\lambda^{\prime} \lambda}\left(k^{\prime}, k\right)$ is an angular integral defined by

$$
\begin{equation*}
X_{\alpha^{\prime} \alpha}^{\lambda^{\prime} \lambda}\left(k^{\prime}, k\right)=2 \pi \int_{-1}^{1} \mathrm{~d} u P_{\lambda^{\prime}}(u)\left[\delta_{\lambda 0} \delta_{\alpha \alpha^{\prime}}-X_{\alpha^{\prime} \alpha}^{\lambda}(K)\right] / 2 \pi^{2} K^{(\lambda+2)} \tag{32}
\end{equation*}
$$

where $P_{\lambda^{\prime}}(u)$ is a Legendre polynomial, $K=\left|\boldsymbol{k}-\boldsymbol{k}^{\prime}\right|, u=\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{k}}^{\prime}$, and $X_{\alpha^{\prime} \alpha}^{\lambda}$ is given in equation (17).

The interaction between the different positronium channels is nonzero only when the levels have different parities. When this occurs, the matrix element is very similar to the interaction between the different hydrogen channels,

$$
\begin{align*}
V_{\beta^{\prime} L^{\prime} \beta L}^{(J)}\left(k^{\prime}, k\right)= & \sum_{\lambda \lambda^{\prime} \tau} \mathrm{i}^{\lambda}(-1)^{\tau+\lambda+\lambda^{\prime}+J} \hat{\lambda}^{3} \hat{\lambda}^{\prime 2} \hat{\ell}_{\beta} \hat{\ell}_{\beta^{\prime}} \hat{L} \hat{L}^{\prime} \\
& \times\left(\frac{(2 \lambda)!}{(2 \tau)!(2 \lambda-2 \tau)!}\right)^{\frac{1}{2}} k^{\lambda-\tau} k^{\prime \tau} Y_{\beta^{\prime} \beta}^{\lambda^{\prime} \lambda}\left(k^{\prime}, k\right)\left[1-(-1)^{\lambda}\right](33) \tag{33}\\
\times & \times\left(\begin{array}{ccc}
L^{\prime} & \lambda^{\prime} & \lambda-\tau \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\lambda & \tau & L^{\prime} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\ell_{\beta^{\prime}} & \lambda & \ell_{\beta} \\
0 & 0 & 0
\end{array}\right)\left\{\begin{array}{ccc}
\lambda & L^{\prime} & L \\
\lambda^{\prime} & \lambda-\tau & \tau
\end{array}\right\}\left\{\begin{array}{ccc}
\ell_{\beta^{\prime}} & \ell_{\beta} & J \\
L & L^{\prime} & \lambda
\end{array}\right\},
\end{align*}
$$

where

$$
\begin{equation*}
Y_{\beta^{\prime} \beta}^{\lambda^{\prime} \lambda}\left(k^{\prime}, k\right)=2 \pi \int_{-1}^{1} \mathrm{~d} u P_{\lambda^{\prime}}(u) Y_{\beta^{\prime} \beta}^{\lambda^{\prime} \lambda}(K) / 2 \pi^{2} K^{(\lambda+2)} \tag{34}
\end{equation*}
$$

and where the definitions of K and u are the same as those used for equation (32). The numerical evaluation of the integrals of equations (32) and (34) to yield $X_{\alpha^{\prime} \alpha}^{\lambda^{\prime} \lambda}\left(k^{\prime}, k\right)$ and $Y_{\beta^{\prime} \beta}^{\lambda^{\prime} \lambda}\left(k^{\prime}, k\right)$ is done using a composite Gauss-Legendre quadrature mesh. This technique is highly reliable and has received extensive use in numerous calculations of electron-atom scattering.

The matrix element for positronium formation is considerably more complicated, involving as it does an additional integration. The specific form of this matrix element that is most amenable to large-scale computation seems to be

$$
\begin{align*}
& V_{\beta L^{\prime} \alpha L}^{(J)}\left(k^{\prime}, k\right)=\sum_{\lambda \tau_{\alpha} \tau_{\beta} c j k} \mathrm{i}^{\ell_{\alpha}+\ell_{\beta}}(-1)^{L+J+c+\ell_{\alpha}} \hat{\lambda}^{2} \hat{\lambda}^{2} \hat{\ell}_{\alpha} \hat{\ell}_{\beta} \hat{L} \hat{L}^{\prime} \\
& \times\left(\frac{\left(2 \ell_{\alpha}\right)\left(2 \ell_{\beta}\right)!}{\left(2 \tau_{\alpha}\right)!\left(2 \tau_{\beta}\right)!\left(2 \ell_{\alpha}-2 \tau_{\alpha}\right)!\left(2 \ell_{\beta}-2 \tau_{\beta}\right)!}\right)^{\frac{1}{2}}\left(\frac{1}{2}\right)^{\ell_{\beta}-\tau_{\beta}} k^{\prime \ell_{\alpha}+\ell_{\beta}-\tau_{\alpha}-\tau_{\beta}} \\
& \times\left(\begin{array}{ccc}
j & \lambda & L^{\prime} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
k & \lambda & L \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\lambda_{\alpha}-\tau_{\alpha} & j & \lambda_{\beta}-\tau_{\beta} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\tau_{\alpha} & k & \tau_{\beta} \\
0 & 0 & 0
\end{array}\right)\left\{\begin{array}{ccc}
L & c & L^{\prime} \\
j & \lambda & k
\end{array}\right\} \\
& \times\left\{\begin{array}{ccc}
\ell_{\beta} & L^{\prime} & J \\
L & \ell_{\alpha} & c
\end{array}\right\}\left\{\begin{array}{ccc}
k & c & j \\
\tau_{\alpha} & \ell_{\alpha} & \ell_{\alpha}-\tau_{\alpha} \\
\tau_{\beta} & \ell_{\beta} & \ell_{\beta}-\tau_{\beta}
\end{array}\right\}\left[Z_{1, \beta \alpha}^{\lambda, \tau}\left(k^{\prime}, k\right)+Z_{2, \beta \alpha}^{\lambda, \tau L}\left(k^{\prime}, k\right)\right] \tag{35}
\end{align*}
$$

where $\tau=\tau_{\alpha}+\tau_{\beta}$. This matrix element involves two separate integrals. The first integral is over the angle between \boldsymbol{k} and \boldsymbol{k}^{\prime}, viz.

$$
\begin{align*}
Z_{1, \beta \alpha}^{\lambda \tau}\left(k^{\prime}, k\right)= & \frac{1}{2} k^{\tau} \int_{-1}^{1} \mathrm{~d} u\left[\left(\frac{1}{2} k^{2}+\frac{1}{2} K_{1}^{2}-E\right) \psi_{\alpha}\left(K_{1}\right) \phi_{\beta}\left(K_{2}\right)\right. \\
& \left.-\psi_{r, \alpha}\left(K_{1}\right) \phi_{\beta}\left(K_{2}\right)-\psi_{\alpha}\left(K_{1}\right) \phi_{r, \beta}\left(K_{2}\right)\right] P_{\lambda}(u) \tag{36}
\end{align*}
$$

with $K_{1}=\left|\boldsymbol{k}-\boldsymbol{k}^{\prime}\right|$ and $K_{2}=\left|\boldsymbol{k}-\frac{1}{2} \boldsymbol{k}^{\prime}\right|$. No problems are encountered in the numerical evaluation of (36) since the integrations are similar to those encountered previously, e.g. (32) and (34). The second term in (35) is

$$
\begin{equation*}
Z_{2, \beta \alpha}^{\lambda \tau L}\left(k^{\prime}, k\right)=\frac{1}{8 \pi^{3}} \int_{0}^{\infty} \mathrm{d} q q^{2+\tau} H_{\beta \alpha}^{\lambda}\left(k^{\prime}, q\right) V_{L}(q, k) \tag{37}
\end{equation*}
$$

where $V_{L}(k, q)$ is just the partial-wave component of the momentum-space form of the Coulomb potential, i.e.

$$
\begin{align*}
V_{L}(k, q) & =2 \pi \int_{0}^{\infty} \mathrm{d} u|\boldsymbol{q}-\boldsymbol{k}|^{2} P_{L}(u) ; \quad u=\hat{\boldsymbol{q}} \cdot \hat{\boldsymbol{k}} \tag{38a}\\
& =\frac{2 \pi}{q k} Q_{\lambda}\left(\frac{1}{2}(q / k+k / q)\right) \tag{38b}
\end{align*}
$$

In expression (38b), $Q_{\lambda}\left(\frac{1}{2}(q / k+k / q)\right)$ is a Legendre function of the second kind. The $H_{\beta \alpha}^{\lambda}\left(k^{\prime}, q\right)$ are just projections of the product of the spherically symmetric part of the momentum-space wavefunctions, e.g.

$$
\begin{equation*}
H_{\beta \alpha}^{\lambda}\left(k^{\prime}, q\right)=2 \pi \int_{-1}^{1} \mathrm{~d} u \phi_{\beta}\left(\left|\frac{1}{2} \boldsymbol{k}^{\prime}-\boldsymbol{q}\right|\right) \psi_{\alpha}\left(\left|\boldsymbol{k}^{\prime}-\boldsymbol{q}\right|\right) P_{\lambda}(u), \tag{39}
\end{equation*}
$$

$u=\hat{\boldsymbol{q}} . \hat{\boldsymbol{k}}^{\prime}$ in this case. A great deal of care has to be taken to ensure that the numerical computations involved in the evaluation of (37) are done reliably and efficiently. Of crucial importance to the efficient integration of (37) is the fact that the functions $H_{\beta \alpha}^{\lambda}\left(q, k^{\prime}\right)$ are only a function of k^{\prime}, but not k. Therefore, the functions $H_{\beta \alpha}^{\lambda}\left(k^{\prime}, q\right)$ can be computed and stored for all possible combinations of λ, β, α and k^{\prime} before the final integration over q is performed. This leads to a substantial decrease in the time needed to compute the matrix elements for all combinations of k and k^{\prime}. There is an additional difficulty associated with (37), namely the presence of the Coulomb singularity. The argument of the Legendre function of the second kind goes to 1 as q goes to k and so a logarithmic singularity occurs at $q=k$. This singularity is handled by a subtraction technique. The basic integral that has to be done is of the type,

$$
\begin{equation*}
I_{L}\left(k^{\prime}, k\right)=\int_{0}^{\infty} \mathrm{d} q H\left(k^{\prime}, q\right) Q_{L}\left(\frac{1}{2}(q / k+k / q)\right) \tag{40}
\end{equation*}
$$

This is rewritten as

$$
\begin{align*}
I_{L}\left(k^{\prime}, k\right)= & \int_{0}^{\infty} \mathrm{d} q\left[H\left(k^{\prime}, q\right)-F(q)\right] Q_{L}\left(\frac{1}{2}(q / k+k / q)\right) \\
& +\int_{0}^{\infty} \mathrm{d} q F(q) Q_{L}\left(\frac{1}{2}(q / k+k / q)\right) \tag{41}
\end{align*}
$$

By normalising $F(q)$ so that

$$
\begin{equation*}
F(k)=H\left(k^{\prime}, k\right) \tag{42}
\end{equation*}
$$

the logarithmic singularity in the first term in (41) can be removed. The utility of this method depends on choosing a suitable form for $F(q)$ that permits the analytic evaluation of the second term of (41). The specific details of the procedure used in the present work are quite involved so this discussion is postponed to the Appendix.

Since all of the integrals involved in the formation of the kernel [e.g. equations (32), (34), (36) and (39)] involve the Fourier transforms of wavefunctions or products of wavefunctions, some comments on the evaluation of the Fourier transforms are appropriate. In the present work, the exact hydrogenic and positronium states are written as linear combinations of Slater-type orbitals (STOs) in the variables r_{1} and ρ respectively. This permits the analytic evaluation of the functions in (17), (20), (24) and (26) using equation (6.621) of Gradsteyn and Ryhzik (1980). To expedite later calculations, these functions are tabulated and converted to cubic splines. However, it should be noted
that the representation of the target wavefunctions in terms of STOs is not an essential feature of the current approach. It would be just as straightforward to represent the target wavefunctions by a numerical tabulation on an r-space grid and perform the Fourier transforms using numerical quadrature.

One modification is made to the kernel matrix elements to facilitate numerical computation. In general, the kernel elements are either pure real or pure complex quantities. Dividing each individual matrix element by $\mathrm{i}^{L-L^{\prime}}$ leads to purely real kernel elements. When this is done, the partial-wave form of the Lippmann-Schwinger equation is

$$
\begin{align*}
T_{\alpha^{\prime} L^{\prime} \alpha L}^{(J)}\left(k^{\prime}, k\right)= & V_{\alpha^{\prime} L^{\prime} \alpha L}^{(J)}\left(k^{\prime}, k\right) \\
& +\sum_{\alpha^{\prime \prime}} \int \mathrm{d}^{3} k^{\prime \prime} \frac{V_{\alpha^{\prime} L^{\prime} \alpha^{\prime \prime} L^{\prime \prime}}^{(J)}\left(k^{\prime}, k^{\prime \prime}\right) T_{\alpha^{\prime \prime} L^{\prime \prime} \alpha L}^{(J)}\left(k^{\prime \prime}, k\right)}{E^{(+)}-\epsilon_{\alpha^{\prime \prime}}-\frac{1}{2} k^{\prime \prime 2}} \\
& +\sum_{\beta^{\prime \prime}} \int \mathrm{d}^{3} k^{\prime \prime} \frac{V_{\alpha^{\prime} L^{\prime} \beta^{\prime \prime} L^{\prime \prime}}^{(J)}\left(k^{\prime}, k^{\prime \prime}\right) T_{\beta^{\prime \prime} L^{\prime \prime} \alpha L}^{(J)}\left(k^{\prime \prime}, k\right)}{E^{(+)}-\epsilon_{\beta^{\prime \prime}}-\frac{1}{4} k^{\prime \prime 2}}, \tag{43}\\
T_{\beta^{\prime} L^{\prime} \alpha L}^{(J)}\left(k^{\prime}, k\right)= & V_{\beta^{\prime} L^{\prime} \alpha L}^{(J)}\left(k^{\prime}, k\right) \\
& +\sum_{\alpha^{\prime \prime}} \int \mathrm{d}^{3} k^{\prime \prime} \frac{V_{\beta^{\prime} L^{\prime} \alpha^{\prime \prime} L^{\prime \prime}}^{(J)}\left(k^{\prime}, k^{\prime \prime}\right) T_{\alpha^{\prime \prime} L^{\prime \prime} \alpha L}^{(J)}\left(k^{\prime \prime}, k\right)}{E^{(+)}-\epsilon_{\alpha^{\prime \prime}}-\frac{1}{2} k^{\prime \prime 2}} \\
& +\sum_{\beta^{\prime \prime}} \int \mathrm{d}^{3} k^{\prime \prime} \frac{V_{\beta^{\prime} L^{\prime} \beta^{\prime \prime} L^{\prime \prime}}^{(J)}\left(k^{\prime}, k^{\prime \prime}\right) T_{\beta^{\prime \prime} L^{\prime \prime} \alpha L}^{(J)}\left(k^{\prime \prime}, k\right)}{E^{(+)}-\epsilon_{\beta^{\prime \prime}}-\frac{1}{4} k^{\prime \prime 2}} . \tag{44}
\end{align*}
$$

Apart from the fact that energy denominators arising from intermediate positronium states ($\beta^{\prime \prime}$) have a $\frac{1}{4} k^{2}$ factor instead of the usual $\frac{1}{2} k^{2}$ factor, these equations are identical to those occurring in electron-atom scattering. Hence, techniques introduced to solve these equations for electron-atom scattering (McCarthy and Stelbovics 1983) can be adopted with minimal modification.

4. Calculations

The calculations presented in this paper have been performed for two complementary purposes. First, the results of calculations more extensive than any previous calculations are reported. Second, as a validation of the formal and computational details of the present method, calculations using a restricted channel space have been made and the cross sections from these calculations are in agreement with those from earlier calculations.
$C C(1,1)$. This calculation includes the $\mathrm{H}(1 \mathrm{~s})$ and $\mathrm{Ps}(1 \mathrm{~s})$ levels. This model is often called the coupled static approximation. This calculation was used to validate the numerical procedures.
$C C(3,0)$ and $C C(6,0)$. One aim of this paper was to investigate the influence that inclusion of positronium formation channels would have on the positron impact excitation of hydrogen levels. Accordingly, calculations of positron-hydrogen scattering that omit the positronium channels have also been carried out. The calculations include the lowest three ($1 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{p}$) and six ($1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}, 3 \mathrm{p}, 3 \mathrm{~d}$) levels of hydrogen respectively.
$C C(3,1)$. This basis includes the $\mathrm{H}(1 \mathrm{~s}), \mathrm{H}(2 \mathrm{~s}), \mathrm{H}(2 \mathrm{p})$ and $\mathrm{Ps}(1 \mathrm{~s})$ levels. This calculation was primarily done as a validation check of the present method. There have been a number of previous calculations (Wakid and LaBahn 1972; Basu et al. 1989; Hewitt et al. 1991) using this basis.
$C C(3,3)$. This basis includes the $\mathrm{H}(1 \mathrm{~s}), \mathrm{H}(2 \mathrm{~s})$ and $\mathrm{H}(2 \mathrm{p})$ and $\mathrm{Ps}(1 \mathrm{~s}), \mathrm{Ps}(2 \mathrm{~s})$ and $\mathrm{Ps}(2 \mathrm{p})$ levels.
$C C(6,3)$. This basis includes the lowest six levels of hydrogen (1s, $2 \mathrm{~s}, 2 \mathrm{p}, 3 \mathrm{~s}, 3 \mathrm{p}$, 3 d), and the three lowest states of positronium ($1 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{p}$). The motivation for this calculation is that the energy and spatial extent of the $\operatorname{Ps}(n=2)$ levels are closer to the $\mathrm{H}(n=3)$ levels than the $\mathrm{H}(n=2)$ levels. Therefore, the inclusion of the $\mathrm{H}(n=3)$ levels in the channel expansion is probably necessary for some sort of convergence to be achieved in the cross sections for the $\operatorname{Ps}(n=2)$ levels.

For most of the calculations reported in this paper, a 24 -point Gaussian quadrature mesh was used to discretise the kernel of the integral equation. A 32 -point quadrature mesh was used for the $\mathrm{CC}(6,3)$ calculation because the kernel contains more complicated structures than the kernels of the smaller calculations.

Table 1. Elastic and positronium formation cross sections (in units of πa_{0}^{2}) for the $J=0,1$ and 2 partial waves at a number of energies (in Rydbergs) above the positronium formation threshold for the coupled static approximation
HB: Higgins and Burke (1991). BBG: Basu, Banerji and Ghosh (1976). HNB: Hewitt, Noble and Bransden (1991)

Energy	$0 \cdot 64$	$1 \cdot 0$	1.471	$2 \cdot 0$	$3 \cdot 0$	$4 \cdot 0$
Elastic $J=0$						
Present	$0 \cdot 6689$	$0 \cdot 6140$	$0 \cdot 5199$	0.4317	$0 \cdot 3132$	$0 \cdot 2426$
HB	$0 \cdot 6633$	$0 \cdot 6122$	$0 \cdot 5213$	$0 \cdot 4316$	$0 \cdot 3159$	
BBG		0.6152	$0 \cdot 5216$			$0 \cdot 2428$
$J=1$						
Present	$0 \cdot 0231$	$0 \cdot 0165$	$0 \cdot 0411$	$0 \cdot 0895$	$0 \cdot 1420$	$0 \cdot 1261$
HB	$0 \cdot 0236$	$0 \cdot 0174$	$0 \cdot 0420$	$0 \cdot 0907$	$0 \cdot 1435$	
BBG		0.0169	$0 \cdot 0435$			$0 \cdot 1266$
$J=2$						
Present	$0 \cdot 0850$	$0 \cdot 0874$	$0 \cdot 0673$	$0 \cdot 0578$	$0 \cdot 0490$	$0 \cdot 0434$
HB	$0 \cdot 0833$	$0 \cdot 0881$	$0 \cdot 0691$	0.0586	$0 \cdot 0500$	
BBG		0.0882	0.0689			$0 \cdot 0436$
Positronium $J=0$						
Present	$2 \cdot 31{ }^{-4}$	$1 \cdot 50^{-3}$	$2 \cdot 12^{-3}$	$1 \cdot 02^{-3}$	$1 \cdot 02^{-2}$	$3 \cdot 51^{-3}$
HB	$1 \cdot 8^{-4}$	$1 \cdot 34^{-3}$	$1 \cdot 94{ }^{-3}$	$9 \cdot 1^{-4}$	$1 \cdot 04^{-2}$	
BBG		1.53^{-3}	$2 \cdot 22^{-3}$			$3 \cdot 12^{-3}$
HNB		$1 \cdot 43^{-3}$		$9 \cdot 0^{-4}$	$1 \cdot 11^{-2}$	
$J=1$						
Present	0. 2880	0.4279	$0 \cdot 4617$	0.4533	0-1960	$0 \cdot 0633$
HB	0.2960	$0 \cdot 4386$	$0 \cdot 4721$	0.4586	0-1991	
BBG		$0 \cdot 4323$	$0 \cdot 4721$			$0 \cdot 0580$
HNB		$0 \cdot 4286$		0.4549	$0 \cdot 1990$	
$J=2$						
Present	$0 \cdot 420$	0.9742	$0 \cdot 8862$	$0 \cdot 6333$	$0 \cdot 2526$	$0 \cdot 0986$
HB		0.9865	$0 \cdot 8974$	0.6370	$0 \cdot 2556$	
BBG		0.9864	$0 \cdot 8976$			$0 \cdot 0934$
HNB		0.9748		$0 \cdot 6343$	$0 \cdot 2547$	

The first check made of the integrity of the present method involved the replication of the cross section computed in the first Born approximation (Saha and Roy 1984; Nahar 1989). Cross sections for positronium formation to the $\mathrm{Ps}(1 \mathrm{~s}), \mathrm{Ps}(2 \mathrm{~s}), \mathrm{Ps}(2 \mathrm{p}), \mathrm{Ps}(3 \mathrm{p})$ and $\mathrm{Ps}(3 \mathrm{~d})$ levels have been successfully reproduced at a variety of energies. Cross sections for electron capture from positronium to the $\mathrm{H}(1 \mathrm{~s})$ and $\mathrm{H}(2 \mathrm{~s})$ levels (Darewych 1987) have also been reproduced.

Another check of the numerical integrity of the program is made by evaluating the $Z_{2}\left(k^{\prime}, k\right)$ factor of (37) by two completely different techniques and comparing the results. For scattering calculations restricted to $\ell=0$ hydrogenic and positronium levels, it is straightforward to evaluate $Z_{2}\left(k^{\prime}, k\right)$ taking recourse to techniques originally due to Feynman (Cheshire 1964). There were no significant differences between calculated phase shifts and cross sections using two different methods of computing this term when constructing the kernel of the integral equation.

Since the results of the coupled static $\mathrm{CC}(1,1)$ model have been reported on a number of occasions (Basu et al. 1976; Higgins and Burke 1991; Hewitt et al. 1991), these results provide a good benchmark for testing the present method. Cross sections for the $J=0,1$, and 2 partial waves for elastic scattering and positronium formation are reported in Table 1. There are small differences, generally of the order of 1%, between the present cross sections and those reported by previous calculations. The largest differences occur when the $\mathrm{Ps}(1 \mathrm{~s})$ cross section is very small and much more sensitive to numerical details. While it would be desirable to eliminate these minor discrepancies, the quality of the agreement indicates that the present method is certainly capable of performing reliable calculations.

Table 2. S-wave phase shifts (in radians) for positron-hydrogen scattering as a function of incident momentum (in a_{0}^{-1}) at energies below the threshold for positronium formation

k	$\mathrm{CC}(1,1)$	$\mathrm{CC}(1,1)^{\mathrm{A}, \mathrm{B}}$	$\mathrm{CC}(3,1)$	$\mathrm{CC}(3,1)^{\mathrm{A}}$	$\mathrm{CC}(3,3)$	$\mathrm{CC}(6,3)$	Converged variational
$0 \cdot 1$	-0.0190	-0.0191^{A}	0.0328	0.0324	0.0521	0.0656	0.1483
0.2	-0.0472	-0.0472^{A}	0.0212	0.0204	0.0449	0.0634	0.1877
0.3	-0.0874	-0.0872^{A}	-0.0164	-0.0189	0.00531	0.0276	0.1677
0.4	-0.1365	-0.1365^{A}	-0.0672	-0.0696	-0.0475	-0.0273	0.1201
0.5	-0.1891	-0.135^{B}	-0.1894^{A}	-0.1231	-0.1259	-0.1042	-0.0857
0.6	-0.2413	-0.188^{B}	-0.2415^{A}	-0.1796	-0.1831	-0.1607	-0.1442
		-0.242^{B}			0.0624		
0.7	-0.2897	-0.2901^{A}	-0.2324	-0.2362	-0.2137	-0.1990	-0.0512
		-0.292^{B}					0.039

${ }^{\text {A }}$ Wakid and LaBahn (1972). ${ }^{\text {B }}$ Basu et al. (1976). ${ }^{\text {C Bhatia et al. (1971). }}$

In Table 2 phase shifts for the $J=0$ partial waves are presented for incident energies below the Ps formation threshold. The agreement between the present $\mathrm{CC}(1,1)$ phase shifts and those previously calculated by Wakid and LaBahn (1972) and Basu et al. (1976) for the $J=0$ partial wave is as good as can be expected.

A comparison between the present $\mathrm{CC}(3,1)$ phase shifts and the variational calculation of Wakid and LaBahn (1972) provides another benchmark. The overall agreement between the two calculations is good, with the largest discrepancy being only 0.004 rad . However, the differences between the two calculations show a systematic trend in that the present phase shifts are always larger (by 1% to 2%) than the variational phase shifts. The differences can probably be ascribed to the use of a trial wavefunction by Wakid and LaBahn that was not sufficiently flexible. A similar conclusion also holds for the $\mathrm{CC}(3,3)$ calculation. Although the values are not tabulated in Table 2, Wakid and LaBahn also reported phase shifts for the $\mathrm{CC}(3,3)$ basis. Once again, there is an overall consistency between the two calculations with the present phase shifts being $3-5 \%$ larger at most energies. The difference between the large $\mathrm{CC}(6,3)$ calculation and the converged variational result of Bhatia et al. (1971) is not surprising. It is known from previous calculations of $\mathrm{e}^{ \pm}$-hydrogen scattering (Burke et al. 1969; Burke and Mitchell 1973; Fon et al. 1978; Fon and Gallahar 1972) that the convergence of the close coupling expansion with increasing numbers of basis states is very slow, unless pseudo-states are added to the basis.

Table 3. P-wave phase shifts (in radians) for positron-hydrogen scattering as a function of incident momentum (in a_{0}^{-1}) at energies below the threshold for positronium formation

k	$\mathrm{CC}(1,1)$	$\mathrm{CC}(3,1)$	$\mathrm{CC}(3,3)$	$\mathrm{CC}(6,3)$	Converged variational $^{\mathrm{A}}$
$0 \cdot 1$	0.000763	0.00533	0.00627	0.00669	0.0094
$0 \cdot 2$	$0 \cdot 00472$	0.0182	0.0222	0.0236	0.0338
0.3	$0 \cdot 0134$	0.0342	0.0402	0.0439	0.0665
0.4	0.0223	0.0496	0.0558	0.0620	0.1016
0.5	0.0287	0.0615	0.0679	0.0755	0.1309
0.6	0.0314	0.0690	0.0759	0.0841	0.1547
0.7	0.0339	0.0770	0.0856	0.0942	0.1799

${ }^{\text {A }}$ Bhatia et al. (1974).
Phase shifts for the $J=1$ partial wave at incident energies below the Ps formation threshold are listed in Table 3. Unfortunately, there are no reported phase shifts that can be compared with the present models. The overall trend is quite similar to that occurring for the S-wave. As the size of the channel space is increased, the phase shifts increase monotonically towards the variational calculation (Bhatia et al. 1971). However, once again the omission of any pseudo-states from the basis leads to the overall level of convergence being relatively poor.

Partial cross sections for ground-state positronium formation at energies above the positronium formation threshold, but below the first excitation threshold for hydrogen, are presented in Table 4. The present cross sections are in excellent agreement with the cross sections of Basu et al. (1989) for the $J=1$ and $J=2$ partial waves. The only major disagreement occurs for the $J=0$ partial wave at $k=0 \cdot 71 a_{0}^{-1}$. Calculations with different quadrature meshes have been performed to try and reproduce the value of Basu et al. but only minor changes to the cross section occur. The cross section reported by Basu et al. is probably incorrect. The convergence of the cross sections computed with the larger $\mathrm{CC}(3,3)$ and $\mathrm{CC}(6,3)$ basis sets to the accurate variational cross sections of Brown and Humberston
(1985) is very slow. The $J=1$ and $J=2$ partial cross sections are generally about 25% too small. The unusually small $J=0$ partial cross section exhibits no discernible signs of convergence.

The differences between the present calculations and those of the Daresbury group using the $\mathrm{CC}(3,3)$ model are too large to be attributed to numerical effects. The present calculation or the Hewitt et al. calculation must have a more fundamental error, such as the phase in a matrix element. Since the present formalism was tested by a number of independent checks, which does not seem to have been done by Hewitt et al., it is the latter which is most likely in error.

Table 4. Positronium formation cross sections (in units of πa_{0}^{2}) for the $J=0,1$ and 2 partial waves and the total cross section at four different momenta (in a_{0}^{-1}) in the Ore gap

Model	$J=0$	$J=1$	$J=2$	Total
$k=0.71$				
$\mathrm{CC}(3,1)$	$0 \cdot 253^{-2}$	$0 \cdot 115^{-1}$	$0 \cdot 289^{-3}$	$0 \cdot 144^{-1}$
$\mathrm{CC}(3,1)^{\text {B }}$	$0 \cdot 608^{-2}$	$0 \cdot 121^{-1}$	$0 \cdot 286^{-3}$	$0 \cdot 157^{-2}$
$\mathrm{CC}(3,3)$	$0 \cdot 181^{-3}$	$0 \cdot 172^{-1}$	$0 \cdot 435^{-3}$	$0 \cdot 179^{-1}$
$\mathrm{CC}(6,3)$	$0 \cdot 220^{-3}$	$0 \cdot 199^{-1}$	$0 \cdot 521^{-3}$	$0 \cdot 206^{-1}$
$\operatorname{Var}^{\text {C }}$	$0 \cdot 41^{-2}$	$0 \cdot 27^{-1}$	$0 \cdot 62^{-3}$	
$k=0.75$				
$\mathrm{CC}(3,1)$	$0 \cdot 407^{-2}$	$0 \cdot 276$	$0 \cdot 145$	$0 \cdot 4462$
$\mathrm{CC}(3,1)^{\mathrm{A}}$	$0 \cdot 405^{-2}$	$0 \cdot 277$	$0 \cdot 144$	
$\mathrm{CC}(3,1)^{\mathrm{B}}$	$0 \cdot 418^{-2}$	$0 \cdot 278$	$0 \cdot 144$	
$\mathrm{CC}(3,3)$	$0 \cdot 150^{-4}$	$0 \cdot 294$	$0 \cdot 199$	$0 \cdot 5194$
$\mathrm{CC}(3,3)^{\mathrm{A}}$	$0 \cdot 49^{-2}$	$1 \cdot 47$	$0 \cdot 570$	
$\mathrm{CC}(6,3)$	$0 \cdot 129^{-3}$	$0 \cdot 301$	$0 \cdot 228$	$0 \cdot 557$
$\operatorname{Var}^{\text {C }}$	$0 \cdot 44^{-2}$	$0 \cdot 365$	$0 \cdot 335$	
$k=0 \cdot 80$				
$\mathrm{CC}(3,1)$	$0 \cdot 277^{-3}$	$0 \cdot 412$	$0 \cdot 465$	1.0544
$\mathrm{CC}(3,1)^{\mathrm{A}}$	$0 \cdot 270^{-3}$	$0 \cdot 412$	0.459	
$\mathrm{CC}(3,1)^{\text {B }}$	$0 \cdot 244^{-3}$	0.411	$0 \cdot 465$	
$\mathrm{CC}(3,3)$	$0 \cdot 538^{-4}$	$0 \cdot 406$	0.576	$1 \cdot 2012$
$\mathrm{CC}(3,3)^{\mathrm{A}}$	$0 \cdot 64^{-2}$	$0 \cdot 259$	0.933	
$\mathrm{CC}(6,3)$	$0 \cdot 224^{-7}$	0.418	0.618	$1 \cdot 2654$
Var ${ }^{\text {C }}$	$0 \cdot 49^{-2}$	0.482	$0 \cdot 812$	
$k=0.85$				
$\mathrm{CC}(3,1)$	$0 \cdot 143^{-3}$	$0 \cdot 470$	$0 \cdot 687$	$1 \cdot 6128$
$\mathrm{CC}(3,1)^{\mathrm{A}}$	$0 \cdot 137^{-3}$	$0 \cdot 443$	$0 \cdot 706$	
$\mathrm{CC}(3,1)^{\text {B }}$	$0 \cdot 157^{-3}$	$0 \cdot 470$	$0 \cdot 684$	
$\mathrm{CC}(3,3)$	$0 \cdot 886^{-4}$	$0 \cdot 460$	$0 \cdot 809$	$1 \cdot 8124$
$\mathrm{CC}(3,3)^{\mathrm{A}}$	$0 \cdot 12^{-2}$	1.44	$0 \cdot 771$	
$\mathrm{CC}(6,3)$	$0 \cdot 363^{-4}$	$0 \cdot 479$	$0 \cdot 842$	$1 \cdot 8888$
$\operatorname{Var}^{\text {C }}$	$0 \cdot 58^{-2}$	$0 \cdot 561$	$1 \cdot 057$	

[^0]For all the calcułations reported in Tables 5 and 6 , rearrangement terms were included in the kernel for all partial waves up to and including $J=12$. The maximum number of partial waves for which complete solutions of the integral equations were found (excluding rearrangement terms) varied from 16 at $1 \cdot 0$ Ryd
to 24 at 4.0 Ryd. The higher partial waves needed to ensure convergence of the partial-wave sum were included using the unitarised Born approximation.

The influence of the rearrangement channels upon the elastic and excitation cross sections can be gauged from Table 5 . Comparison of the $\mathrm{CC}(3,0)$ elastic cross sections with the $\mathrm{CC}(3,1)$ and $\mathrm{CC}(3,3)$ cross sections reveals that inclusion of the rearrangement channels leads to the elastic cross section increasing by about 25%. The enhancement of the elastic cross section is also apparent when

Table 5. Total cross sections (in units of πa_{0}^{2}) for elastic scattering and excitation of hydrogen levels at selected energies (in Rydbergs)

Model	$1 \cdot 0$	$1 \cdot 2$	$1 \cdot 5$	$2 \cdot 0$	$3 \cdot 0$	$4 \cdot 0$
$\mathrm{H}(1 \mathrm{~s}) \rightarrow \mathrm{H}(1 \mathrm{~s})$						
CC(1,1)	0.7603	0.7201	$0 \cdot 6674$	$0 \cdot 6135$	$0 \cdot 5317$	$0 \cdot 4318$
$\mathrm{CC}(3,0)$	$0 \cdot 5957$	$0 \cdot 5605$	$0 \cdot 5142$	0.4595	$0 \cdot 3822$	$0 \cdot 3304$
$\mathrm{CC}(3,1)$	0.7246	$0 \cdot 6758$	$0 \cdot 6120$	0.5419	$0 \cdot 4634$	$0 \cdot 3894$
$\mathrm{CC}(3,3)$	0.7174	$0 \cdot 6850$	$0 \cdot 6206$	$0 \cdot 5311$	$0 \cdot 4670$	$0 \cdot 4026$
$\mathrm{CC}(6,0)$	0.5831	$0 \cdot 5511$	$0 \cdot 5037$	0.4502	$0 \cdot 3775$	$0 \cdot 3249$
$\mathrm{CC}(6,3)$	0.7282	0.6428	0.6224	0.5228	$0 \cdot 4613$	$0 \cdot 3749$
$\mathrm{H}(1 \mathrm{~s}) \rightarrow \mathrm{H}(2 \mathrm{~s})$						
CC(3,0)	0-1309	$0 \cdot 1778$	$0 \cdot 2004$	$0 \cdot 1995$	$0 \cdot 1526$	$0 \cdot 1267$
$\mathrm{CC}(3,1)$	0.1676	$0 \cdot 2299$	$0 \cdot 2768$	$0 \cdot 2339$	$0 \cdot 0998$	$0 \cdot 0869$
$\mathrm{CC}(3,3)$	0.1768	0.1562	$0 \cdot 1971$	$0 \cdot 2544$	$0 \cdot 1021$	$0 \cdot 0812$
CC(6,0$)$	0.1827	$0 \cdot 2316$	$0 \cdot 2211$	$0 \cdot 2019$	$0 \cdot 1607$	$0 \cdot 1200$
CC(6,3$)$	0.1932	$0 \cdot 2164$	$0 \cdot 1345$	0.2266	$0 \cdot 1173$	$0 \cdot 0800$
$\mathrm{H}(1 \mathrm{~s}) \rightarrow \mathrm{H}(2 \mathrm{p})$						
$\mathrm{CC}(3,0)$	$0 \cdot 2816$	$0 \cdot 4912$	$0 \cdot 7624$	$0 \cdot 9819$	$1 \cdot 0378$	1-0022
$\mathrm{CC}(3,1)$	$0 \cdot 2816$	$0 \cdot 4762$	$0 \cdot 6026$	0.5843	$0 \cdot 7524$	$0 \cdot 8573$
CC(3,3)	0. 2857	$0 \cdot 4334$	$0 \cdot 6622$	$0 \cdot 6254$	$0 \cdot 7243$	$0 \cdot 8297$
$\mathrm{CC}(6,0)$	0.3392	0.5753	$0 \cdot 8004$	$0 \cdot 9812$	0.9998	$0 \cdot 9688$
$\mathrm{CC}(6,3)$	0.3048	$0 \cdot 5203$	$0 \cdot 7204$	$0 \cdot 6732$	$0 \cdot 7210$	0.8272

Table 6. Total cross sections (in units of πa_{0}^{2}) for positronium formation in the $\operatorname{Ps}(1 \mathrm{~s}), \operatorname{Ps}(2 \mathrm{~s})$ and $\operatorname{Ps}(2 p)$ levels at selected energies (in Rydbergs)

Model	$1 \cdot 0$	$1 \cdot 2$	1.5	$2 \cdot 0$	$3 \cdot 0$	$4 \cdot 0$
$\mathrm{H}(1 \mathrm{~s}) \rightarrow \mathrm{Ps}(1 \mathrm{~s})$						
FBA	$4 \cdot 7810$	$4 \cdot 2275$	$3 \cdot 2516$	$2 \cdot 0062$	$0 \cdot 8053$	$0 \cdot 3627$
$\mathrm{CC}(1,1)$	$2 \cdot 5902$	$2 \cdot 8814$	$2 \cdot 8717$	$2 \cdot 3597$	1-1207	$0 \cdot 4895$
$\mathrm{CC}(3,1)$	$2 \cdot 3529$	$2 \cdot 4203$	$2 \cdot 3475$	$2 \cdot 1337$	$1 \cdot 1047$	0.4693
$\mathrm{CC}(3,3)$	$2 \cdot 5554$	$2 \cdot 8421$	$2 \cdot 2960$	1.9269	0.9815	$0 \cdot 4257$
CC(6,3$)$	$2 \cdot 5943$	$2 \cdot 4988$	$2 \cdot 2083$	$1 \cdot 8143$	$1 \cdot 0276$	$0 \cdot 4291$
$\mathrm{H}(1 \mathrm{~s}) \rightarrow \mathrm{Ps}(2 \mathrm{~s})$						
FBA	$0 \cdot 0741$	$0 \cdot 1695$	$0 \cdot 2299$	$0 \cdot 2076$	$0 \cdot 1071$	$0 \cdot 0522$
$\mathrm{CC}(3,3)$	$0 \cdot 0196$	$0 \cdot 0706$	$0 \cdot 1042$	$0 \cdot 1296$	$0 \cdot 2261$	$0 \cdot 1241$
$\mathrm{CC}(6,3)$	$0 \cdot 0136$	$0 \cdot 0530$	$0 \cdot 0949$	$0 \cdot 0946$	0-2020	$0 \cdot 1264$
$\mathrm{H}(1 \mathrm{~s}) \rightarrow \mathrm{Ps}(2 \mathrm{p})$						
FBA	$0 \cdot 2554$	$0 \cdot 2710$	$0 \cdot 2169$	$0 \cdot 1376$	$0 \cdot 0541$	$0 \cdot 0222$
$\mathrm{CC}(3,3)$	$0 \cdot 0309$	0.1696	0.1646	$0 \cdot 2003$	$0 \cdot 0761$	$0 \cdot 0189$
$\mathrm{CC}(6,3)$	$0 \cdot 0256$	$0 \cdot 1248$	$0 \cdot 1750$	0-1699	$0 \cdot 0757$	$0 \cdot 0209$

the $\mathrm{CC}(6,0)$ and $\mathrm{CC}(6,3)$ cross sections are compared. The major part of the increase occurs when the $\operatorname{Ps}(1 \mathrm{~s})$ state is added to the calculation; the further inclusion of the $\operatorname{Ps}(2 \mathrm{~s})$ and $\mathrm{Ps}(2 \mathrm{p})$ levels leads to a smaller increase.

The situation for the 2 s and 2 p excitation cross sections is more complicated. These cross sections have an uneven energy dependence when the positronium states are added to the calculation. This is probably due to the presence of unresolved resonances. A broad resonance is present in the $J=0$ partial wave for the $\mathrm{CC}(1,1)$ model at an incident energy of $2 \cdot 6$ Ryd (Higgins and Burke 1991; Hewitt et al. 1991). A further resonance occurs when the $\operatorname{Ps}(2 s)$ state is added to the basis (Mitroy 1993). Irrespective of the existence of these resonances, the inclusion of the positronium levels leads to the 2 s and 2 p excitation cross sections changing by amounts of the order of 20%.

Cross sections for positronium formation are listed in Table 6. Comparison of the first Born approximation (FBA) with the close coupling calculations indicates the FBA is not accurate for energies less than $4 \cdot 0$ Ryd. This is especially true for Ps formation in the 2 s and 2 p excited states. The uneven energy dependence of the cross sections makes it difficult to draw any definite conclusions about the convergence of the cross sections with respect to increasing numbers of channels. A systematic series of calculations using a very fine energy mesh needs to be performed.

5. Conclusions

In this work the general theory of positron-hydrogen scattering is presented as a set of coupled Lippmann-Schwinger equations in momentum space. The major improvement over the seminal calculations of Hewitt et al. (1990) is an explicit and completely general form for the positronium matrix element. The use of a Gaussian representation for the atomic orbitals will introduce inaccuracies into the wavefunctions, and moreover is not particularly suited to describing highly excited orbitals. These drawbacks are absent in the current approach which is not limited to a particular representation for the wavefunction. However, no definite conclusions on the respective merits of the two approaches can be made since the computations of Hewitt et al. are marred by an error of unknown origin.

At low energies, extensive calculations have been made and demonstrate the overall reliability of the method. However, larger basis sets (including pseudo-states) have to be employed if the present method is to approach the accuracy of the best variational calculations. At intermediate energies, the present calculations, including the six lowest hydrogen and three lowest positronium states are the most extensive yet reported.

The present calculations represent the largest that could be carried out on the available computational facilities (an IBM RISC-6000) in a reasonable length of time. For the calculations using $\operatorname{CC}(6,3)$ channel space, the initial calculation of the $H_{\beta \alpha}^{\lambda}\left(k^{\prime}, p\right)$ table took about 80 minutes, while the computation of the kernel for each partial wave (mostly taken in the computation of the rearrangement terms) takes 30 minutes for $J=2$ and 80 minutes for $J=12$. Since the present calculations were done with a patched-up electron-atom scattering program, there are many aspects of the program that could be improved and it would certainly be possible to do larger calculations.

In principle, the extension of the present method to the case of positronatom scattering is straightforward. However, there are two complications that
make positron-atom scattering much more complicated than positron-hydrogen scattering. First, the residual ion can exist in a number of different states. Hence, the coupled channel expansion should include the set of residual ion states as well as the set of positronium states. Second, the electron in positronium and the electrons in the residual ion core can have an interaction of the exchange type. The most compact representation of the positronium-ion exchange matrix element interaction involves a six-dimensional integral (Massey and Mohr 1954) and so could be extremely difficult to evaluate.

Acknowledgments

I would like to thank Dr A. T. Stelbovics and Prof. J. F. Williams for many useful conversations and for extending the hospitality of the Centre for Atomic, Molecular and Surface Physics, located jointly at Murdoch University and the University of Western Australia.

References

Abdel-Raouf, M. A., Darewych, J. W., McEachran, R. P., and Stauffer, A. D. (1984). Phys. Lett. A 100, 353.
Armour, D. G., and Humberston, J. W. (1991). Phys. Rep. 244, 167.
Basu, M., and Ghosh, A. S. (1988). J. Phys. B 21, 3439.
Basu, D., Banerji, G., and Ghosh, A. S. (1976). Phys. Rev. A 13, 1381.
Basu, M., Mukherjee, M., and Ghosh, A. S. (1989). J. Phys. B 22, 2195.
Bhatia, A. K., Temkin, A., Drachman, R. J., and Eiserike, H. (1971). Phys. Rev. A 3, 1328.
Bhatia, A. K., Temkin, A., and Eiserike, H. (1974). Phys. Rev. A 9, 219.
Bransden, B. H., and Jundi, Z. (1967). Proc. Phys. Soc. London 92, 881.
Bransden, B. H., McCarthy, I. E., and Stelbovics, A. T. (1985). J. Phys. B 18, 823.
Bray, I., and Stelbovics, A. T. (1992). Phys. Rev. A 46, 6995.
Brown, C. J., and Humberston, J. W. (1984). J. Phys. B 17, L423.
Brown, C. J., and Humberston, J. W. (1985). J. Phys. B 18, L401.
Burke, P. G., and Mitchell, J. F. B. (1973). J. Phys. B 6, 207.
Burke, P. G., Gallaher, D. F., and Geltman, S. (1969). J. Phys. B 2, 1142.
Cheshire, I. M. (1964). Proc. Phys. Soc. London 83, 227.
Darewych, J. W. (1987). J. Phys. B 20, 5917.
Fon, W. C., and Gallaher, D. F. (1972). J. Phys. B 5, 943.
Fon, W. C., Burke, P. G., and Kingston, A. E. (1978). J. Phys. B 11, 521.
Gradshteyn, I. S., and Ryhzik, I. S. (1980) 'Tables of Integrals, Series and Products' (Academic: New York).
Hewitt, R. N., Noble, C. J., and Bransden, B. H. (1990). J. Phys. B 23, 4185.
Hewitt, R. N., Noble, C. J., and Bransden, B. H. (1991). J. Phys. B 24, L635.
Hewitt, R. N., Noble, C. J., and Bransden, B. H. (1992a). J. Phys. B 25, 557.
Hewitt, R. N., Noble, C. J., and Bransden, B. H. (1992b). J. Phys. B 25, 2683.
Higgins, K., and Burke, P. G. (1991). J. Phys. B 24, L343.
Higgins, K., Burke, P. G., and Walters, H. R. J. (1990). J. Phys. B 23, 1345.
Humberston, J. W. (1986). Adv. Atom. Mol. Phys. 244, 1.
McCarthy, I. E., and Stelbovics, A. T. (1983). Phys. Rev. A 28, 2693.
Mandal, P., Saha, B. C., and Sil, N. C. (1975). J. Chem. Phys. 63, 4767.
Massey, H. W. S., and Mohr, C. B. O. (1954). Proc. Phys. Soc. London A 67, 695.
Mitroy, J. (1993). J. Phys. B (in press).
Nahar, S. N. (1989). Phys. Rev. A 40, 6231.
Saha, B. C., and Roy, P. K. (1984). Phys. Rev. A 30, 2980.
Scholz, T., Walters, H. R. J., Burke, P. G., and Scott, M. P. (1988). J. Phys. B 21, 2097.
Sil, N. C., Saha, B. C., Saha, H. P., and Mandal, P. (1979). Phys. Rev. A 19, 655.

Wakid, S. E. A., and LaBahn, R. W. (1972). Phys. Rev. A 6, 2039.
Ward, S. J., Horbatsch, M., McEachran, R. P., and Stauffer, A. D. (1989). J. Phys. B 22, 1845.

Appendix: Avoiding the Coulomb Singularity

In this appendix the details of the procedures to remove the singularity from the integrand in equation (37) are presented. This singularity is handled by a subtraction technique. In its most reduced form the basic integral that has to be done can be written as

$$
\begin{equation*}
I(L, k)=\int_{0}^{\infty} \mathrm{d} q H(q) Q_{L}\left(\frac{1}{2}(q / k+k / q)\right) \tag{A1}
\end{equation*}
$$

This can be rewritten as

$$
\begin{equation*}
I(L, k)=I_{1}(L, k)+I_{2}(L, k) \tag{A2}
\end{equation*}
$$

where the first term, namely

$$
\begin{equation*}
I_{1}(L, k)=\int_{0}^{\infty} \mathrm{d} q[H(q)-F(q)] Q_{L}\left(\frac{1}{2}(q / k+k / q)\right) \tag{A3}
\end{equation*}
$$

is easily evaluated by numerical quadrature since the subtracting function $F(q)$ is scaled so that $F(k)=H(k)$, which eliminates the singularity from (A3). The second term, namely

$$
\begin{equation*}
I_{2}(L, k)=\int_{0}^{\infty} \mathrm{d} q F(q) Q_{L}\left(\frac{1}{2}(q / k+k / q)\right) \tag{A4}
\end{equation*}
$$

will be evaluated analytically. A subtracting function can be derived using the identity

$$
\begin{equation*}
\frac{1}{2 \pi^{2}} \int \mathrm{~d}^{3} q \frac{\psi(\boldsymbol{q})}{|\boldsymbol{q}-\boldsymbol{p}|^{2}}=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} r \frac{\Psi(\boldsymbol{r})}{r} \exp (-\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{r}) \tag{A5}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(\boldsymbol{q})=(2 \pi)^{-\frac{3}{2}} \int \mathrm{~d}^{3} r \Psi(\boldsymbol{r}) \exp (-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}) \tag{A6}
\end{equation*}
$$

Performing the angular integrations yields

$$
\begin{equation*}
\frac{1}{\pi p} \int_{0}^{\infty} \mathrm{d} q q \psi(q) Q_{L}\left(\frac{1}{2}(q / p+p / q)\right)=(2 / \pi)^{\frac{1}{2}} \int_{0}^{\infty} \mathrm{d} r r \Psi(r) j_{L}(p r) \tag{A7}
\end{equation*}
$$

The identity (A7) is not restricted to functions which are solutions of the radial Schrödinger equation: it is also satisfied by a square-integrable function such as a Slater-type orbital. The choice

$$
\begin{equation*}
\psi(r)=r^{L} \exp (-\alpha r) \tag{A8}
\end{equation*}
$$

leads to the result

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{d} q \frac{q^{L+1}}{\left(\alpha^{2}+q^{2}\right)^{L+1}} Q_{L}\left(\frac{1}{2}(q / p+p / q)\right)=\frac{\pi}{\alpha} \frac{p^{L+1}}{(2 L+2)\left(\alpha^{2}+p^{2}\right)^{L+1}} \tag{A9}
\end{equation*}
$$

In practice, the use of (A3) and (A4) in conjunction with (A9) proved disappointing. In a number of instances, $I(L, k)$ proved to be much smaller than either of the two terms that contribute to it, i.e.

$$
I(L, K)=\left|I_{1}(L, k)+I_{2}(L, k)\right| \ll I_{1}(L, k)
$$

When this occurs, the large cancellations between $I_{1}(L, k)$ and $I_{2}(L, k)$ lead to a significant degradation in the precision of $I(L, k)$ and to an overall loss of accuracy.

Because of this problem, an alternative strategy was used in the evaluation of $I(L, k)$. Rather than having a subtracting function spanning the entire $[0, \infty]$ interval, the subtracting function was confined to a finite range. This is possible since the integrations are performed using a composite Gaussian quadrature mesh. The subtraction procedure was only applied to the particular element of the composite mesh in which the singularity occurred. The explicit form of the subtraction used for the calculation presented in this work was

$$
\begin{equation*}
I(L, k)=J_{1}(L, k)+J_{2}(L, k)+J_{3}(L, k) \tag{A10}
\end{equation*}
$$

where

$$
\begin{align*}
J_{1}(L, k)= & \int_{0}^{q_{1}} \mathrm{~d} q H(q) Q_{L}\left(\frac{1}{2}(q / k+k / q)\right) \\
& +\int_{q_{2}}^{\infty} \mathrm{d} q H(q) Q_{L}\left(\frac{1}{2}(q / k+k / q)\right) \tag{A11}
\end{align*}
$$

which is evaluated using numerical quadrature since the singularity at k is not contained in the $\left[0, q_{1}\right]$ and $\left[q_{2}, \infty\right]$ intervals. The second term, namely

$$
\begin{align*}
J_{2}(L, k)= & \int_{q_{1}}^{q_{2}} \mathrm{~d} q H(q) Q_{L}\left(\frac{1}{2}(q / k+k / q)\right) \\
& -H(k) Q_{0}\left(\frac{1}{2}(q / k+K / q)\right) \tag{A12}
\end{align*}
$$

can also be evaluated numerically. It is possible to use $Q_{0}\left(\frac{1}{2}(q / k+k / q)\right)$ as the subtracting function for all values of L because $\left(Q_{L}(x)-Q_{0}(x)\right)$ goes to a constant as $x \rightarrow 1$. The final term,

$$
\begin{equation*}
J_{3}(L, k)=H(k) \int_{q_{1}}^{q_{2}} \mathrm{~d} q Q_{0}\left(\frac{1}{2}(q / k+k / q)\right) \tag{A13}
\end{equation*}
$$

is evaluated analytically. The reason $Q_{0}\left(\frac{1}{2}(q / k+k / q)\right)$, and not $Q_{L}\left(\frac{1}{2}(k / q+q / k)\right)$, is used for the subtraction is that an analytic expression for the indefinite integral involving $Q_{0}\left(\frac{1}{2}(k / q+q / k)\right)$ exists. This is not true for $Q_{L}\left(\frac{1}{2}(k / q+q / k)\right)$ with a
general value of L. No difficulties are encountered in integrating (A13) and the result is

$$
\begin{align*}
J_{3}(L, k)= & \left(q_{2} / k\right) H(k)\left[\left(q_{2} / k+1\right) \log _{\mathrm{e}}\left(1+q_{2} / k\right)\right. \\
& \left.-2 \log _{\mathrm{e}}(2)-\left(q_{2} / k-1\right) \log _{\mathrm{e}}\left(q_{2} / k-1\right)\right] \\
& +\left(q_{1} / k\right) H(k)\left[\left(q_{1} / k-1\right) \log _{\mathrm{e}}\left(1-q_{1} / k\right)\right. \\
& \left.+2 \log _{\mathrm{e}}(2)-\left(q_{1} / k+1\right) \log _{\mathrm{e}}\left(1+q_{1} / k\right)\right] \tag{A14}
\end{align*}
$$

The procedure outlined in equations (A10) to (A14) cannot be applied if the singularity occurs in the last element of the composite quadrature mesh used for the numerical integrations, as the integral (A13) diverges when $q_{2} \rightarrow \infty$. In these cases the subtraction is performed using the procedure outlined in (A1) to (A9).

[^0]: ${ }^{\text {A }}$ Hewitt et al. (1991).
 ${ }^{\text {B }}$ Basu et al. (1989).
 ${ }^{C}$ Variational, Brown and Humberston (1984, 1985).

