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Abstract 

We have analysed the effect of finite geometry and streaming on a resonance-like phenomenon 
in a beam-plasma system placed in an infinite magentic field. The resonance-like phenomenon 
is displayed through a variation of the amplitude of the soliton with respect to a (the ratio 
of electron to ion density). It is shown that this event is very prominent in the case of an 
infinite plasma, but for a bounded system the effect is not so significant. As such, an effect of 
this type will be difficult to observe experimentally unless the dimension of the containment 
system is considerable. Furthermore, the peak of the resonance varies considerably with the 
streaming velocity and other parameters of the plasma. The whole phenomenon is crucially 
dependent on the phase velocity of the solitary wave, whose variation is also considered in 
detail. Lastly, it is demonstrated that the existence of a resonance-like phenomenon can also 
be ascertained from an analysis of the linear dispersion relation. 

1. Introduction 

The propagation of ion-acoustic solitary waves in different plasma systems has 
been of considerable interest (Jeffrey and Katutani 1972; Ikezi 1973; Washimi 
and Taniuti 1966). The behaviour and characteristics of such solitary waves have 
been studied extensively by various theoretical methods. In this respect various 
types of plasma, consisting of hot electrons and cold ions (Washimi and Taniuti 
1966), hot electrons and hot ions (Tappert 1972) and two electron populations, 
have been dealt with. On the other hand, situations have been considered where 
the mass variation of the electron plays an important role, that is, when the 
electron is relativistic (Das and Paul 1985; Roy Chowdhury et al. 1988). A 
completely different scenario is seen to evolve when the finite geometry of the 
containment system is taken into account (Das and Ghosh 1988; Ghosh and Das 
1986, 1987). Also, the finite geometry effect has been found to be of considerable 
importance in other situations (Rubin and Klein 1990). 

Several important classes of eyents have been analysed in the context of the 
beam-plasma interaction (Yahma et al. 1983; Yajima et al. 1978). Rere we study 
an interesting resonance phenomenon between the beam electron and the plasma 
itself, manifested through the behaviour of the amplitude of the soliton, when 
the whole system is placed in a static magnetic field. This phenomenon is found 
to be dependent on the streaming velocity of the system, the ratio () of electron 

0004-9506/93/060807$05.00 



808 J. Mukhopadhyay et al. 

temperature of the beam to that of the plasma, the normalised ion temperature 
u and, most important of all, the size of the confining system. The effect of 
the finite geometry of the system is very prominent. We show below that the 
resonance phenomenon is significant only when the size of the confining system 
is quite large. 

2. Formulation 

Here we consider the case of a hot plasma placed in an infinite magnetic field, 
with the axis of the field pointing along the x-axis (the axis of the wave-guide), 
and traversed by a hot electron beam. An infinite magnetic field means that the 
field is constant in magnitude but infinite in spatial extent. Such a field compels 
the particles to move in the longitudinal x-direction only (Sayal and Sharma 
1990a, 1990b; Ghosh and Das 1985; Rasmussen 1978). We further assume that 
the usual hydrodynamic description is possible. As such, the equations governing 
the system are 

nPo¢ _ on~ = 0 
e ox ox ' 

(1) 

onj 0 
at + ox (nj Vj) = 0, (2) 

OVj OVj o¢ 3u onj 
-+Vj-+-+ nj-=O 
ot ox ox (1+a)2 ox 

(3) 

on~ ~(b b)-O 
ot + ox ne ve - , (4) 

(5) 

(6) 

These equations have been written as a simple extension of those given by Sayal 
and Sharma (1990a) for a beam-plasma system. 

Here n~ and n~ denote the electron density in the plasma and the beam, 
nj is that for the ions; v~ and v~ denote the corresponding velocities of the 
two types of electrons, Vj is that for the ions; and ¢ denotes the electrostatic 
potential. We have normalised the time to the inverse of the ion plasma frequency 
wi = (47rme e2 /mj)1/2, where e is the charge of the electron and mj the mass 
of the ion species. The densities have been normalised to neO, the equilibrium 
electron density. The space coordinate x has been normalised to the electron 
Debye length AD = (Tt /47rmeo e2)1/2, where T~ is the electron temperature. 
Furthermore, all velocities have been normalised to the sound velocity of the 
plasma, Cs = (T~/mi)1/2, and ¢ to T~/e. In the following, the subscript zero 
indicates an unperturbed value. Let us denote the ratio of beam to plasma 
electron densities as a = n~ / n~, with () = T~ / T~, and for the ion temperature 
a = TdT~; lastly, fJ. denotes the ratio me/mj. 
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To use the reductive perturbation technique (Verheest 1988; Tagare and Das 
1975; Watanabe 1984; Konno and Taniuti 1978) we stretch the basic space-time 
coordinates (x, t) as 

(7) 

where c is an arbitrarily small parameter. We further set 

n~ n~(O) + m~(l) + c2n~(2) + ... , 

nj n}O) + m}l) + c2n}2) + ... , 

nZ nZ(O) + mZ(l) + c2nZ(2) + ... , 

Vj vj(O) + w?) + c2v?) + ... , 

(8) 

(9) 

Substituting (8) and (9) in equations (1) to (6) we get the following information 
regarding different perturbed quantities: 

( ) 2 (0) 
1 + 0: nj ¢/l) 

(1 + 0:)2(.-\ _ V(0»)2 _ 3(m}0)2 ' 
(10) 

(.-\ _ v(O»)(1 + 0:)2 ¢}l) 

[(1 + 0:)2(.-\ _ v;0»)2 - 3cm}0)]2 ' 
(11) 

nb(O) 
e ¢}l) 

e - P.(A - vZ(0»)2 ' 
(12) 

A - vb(O) 
e ¢/l) 

e - P.(A - v~(0»)2 ' 
(13) 

(14) 

Eliminating all other quantities in favour of ¢/l) we get 

CP,,(l) 
_'1'_ + q2,,(1) = 0 

oz2 'I' , 
(15) 

where 

(16) 
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We consider a solution of (15) in the form 

¢P) = f(C TJ) sinqz 

and impose the condition that ¢P) should vanish on the boundary of the container, 
assumed to be a rectangular one. Thus we have ¢(1) = 0 for z = 0 and z = b, 
so that we at once get q = mr / b. Combined with (16) this gives 

n 27r2 (1 + a)2nfO) 

b (1 + a)2 (>1 - Vj(0))2 - 3cmfO)2 

nb(O) 
e -1 

B - Il().. - v~0))2 . 
(17) 

Proceeding now to terms of the order of £2 we get 

n (2) n n (2) n (1) n (1) 
_ ().. - v(O))~ ~(n(l) v.(1)) n~O) ~ nCO) ~ V(O) ~ = 0 (18) 

1 a~ + a~ 1 I + 1 a~ + 1 aT) + 1 aT) , 

(2) (1) (1) 
_ ().. _ V(O)) aVj + v.(1) aVj + V.(O) aVj 

I a~ I a~ I aT) 

a¢(2) a¢(1) 30- (0) anF) 

+ ~ + ---a;) + (1 +a)2 nj ~ 

3CT (1) an(l) + 30- nCl) anfl) = 0 (19) 
+ (1 + a)2 nj a~ (1 + a)2 1 aT) 

an b(2) aVb(2) a 
_ ().. _ vb(O))_e_ + nb(O)_e_ + _(nb(l) vb(l)) 

e a~ e a~ a~ e e 

n bel) n bel) 
b(O) ~ b(O) ~ - 0 

+ ne aTJ + Ve aT) - , (20) 

a b(2) a bel) 
_ IInb(O)().. _ Vb(O))~ _ lI)..nb(l) ~ 

t" e e a~ t" e a~ 

n bel) 0.-1.(2) 0.-1.(1) 
+ IInb(O) vb(O) _UV __ _ nb(O) _'1' __ nb(l) _'1'_ 

t" e e aTJ e a~ e a~ 

a¢(l) anb(2) anb(l) 
- nb(O) -- +B_e_ +B_e_ = 0 (21) 

e aT) a~ aTJ ' 
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fP¢(2) fP¢(l) 2 ¢(1)2 b 2 (2) 
--+--=-1,( )+--+n ()-n .. 

fJZ 2 fJe 'I' 2 e 1 

Again eliminating other variables, we get an equation of the form 

where Q(f) is given by 

QU) 

and where 

al = 1, 

a2 = B / [[0 - p,(A - V~(0»)2] (1 :aa)2 n~0)2 - (A - vj(0»)2) ] , 

a3 = C / [[0 - p,(A - V~(0»)2] (1 :aa? n~0)2 - (A - v~0»)2) ] , 

B ( 317 n~0)2 _ (A _ v.(0»)2) ( 2n~(0) p,(A - v~0»)2 
(1 + a)2 1 1 [0 _ p,(A _ vb(0»)2]2 

+ p,n~(O) V~(O)(A - v~(O») _ p,An~(O)(A - v~(O») 

[0 - p,(A - v~(O»)2]2 [0 - p,(A - v~(0»)2]2 

+ p,n~(O)(A - v~(0»)2 _ n~(O) ) 

[0 - p,(A - V~(0»)2]2 0 - p,(A _ v~(O»)2 

_ [0 _ (A _ b(0»)2] 2 1 + a nj A - Vj ( ( )4 (0)(, (0»)2 

P, ve (1 + a)2(A _ v[0»)2 _ 3an~0)2 

+ n}O) (A - vj(0»)2(1 + a)4 

[(1 + a)2(A - vj(0»)2 - 3an}0)2j2 

+ 317(1 + a)2 n~0)3 ) 

[(1 + a)2(A - v[0»)2 - 3an~0)]2 

- [0 - p,(A - v~(0»)2] (1 !aa)2 n}0)2 - (A - v~0»)2) , 

811 

(22) 

(23) 
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c 

In the present situation we take the following unperturbed values for physical 
parameters: n}O) = 1 + a, v}O) = 0, v~(O) = vo (the bulk velocity) and ~(O) = oo. 
Now multiplying both sides of equation (23) by sinqz and integrating over z, we 
get the KdV equation 

3. Soliton Solutions 

(3 = fob 002 sin3qz dz / fob 003 sin2 qz dz, 

"( = fob 001 sin2 qz dz / fob 003 sin2qz dz. 

(24) 

It is now easy to observe that the KdV equation (24) possesses a solitary 
wave solution of the form 

( ~ - V7)) f = Asech2 -{j- , (25) 

with 

A = 3v / (3 and {j = J 4"( / v . (26) 

It is interesting to note that in the present case the soliton amplitude A and 
width {j both depend in a complicated way on the phase velocity through (3, "( 
and OOi (i = 1, 2, 3). The phase velocity is actually determined from equation 
(17) which can be rewritten as 
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Fig. 1. Variation of phase velocity A with 0: for b = 15 and Va = 0·5. 
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Fig. 2. Variation of the soliton amplitude showing the resonance phenomenon, for (}" = 0 and 
b = 15. 
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OAO 

Fig. 3. Soliton amplitude for small values of b and for a = 0, 
Vo = 0·5 and () = 0 ·145. Note the disappearance of the sharp 
peak. 

Equation (27) is biquadratic with general coefficients and cannot be solved 
analytically. We analysed the possible solutions of (27) numerically by the 
Newton~Raphson method on a fast computer. Several solutions of A pertaining 
to different sets of values of the physical constants (vo, e, a, b) are shown in 
Fig. 1. These values of A were then used in the expressions for the soliton 
amplitude and width (26). We have plotted the amplitude as a function of the 
parameter a = n~/n~, i.e. the ratio of the electron densities, in Figs 2~5 for 
different values of (vo, e, b, a). Before further discussion, we note that the 
soliton amplitude clearly shows a peak in each case, but the peak height is very 
prominent when the size of the containing system is very large (see Fig. 2 for 
b = 15). If the size is smaller, however, for example b = 3 or even less, then the 
peak is not so distinct. Hence the dimension of the containment system has a 
very important effect on the resonance phenomenon between the incoming beam 
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Fig. 5. Relative height of the peaks for different b values for 
a = 0, e = 0 ·145 and Va = 0·5. 

electrons and the plasma, as displayed through the peak in the variation of the 
soliton amplitude. 

In short, it can be noted that since in the majority of experimental plasma 
arrangements it is difficult to enlarge the size of the confining system, this 
resonance phenomenon may not be easily detected. Of course the peak in the 
soliton amplitude depends on the streaming velocity vo, as well as e and (J". It is 
interesting to note (see Fig. 2) that the peak in the soliton amplitude increases 
with e while all other parameters, including the streaming velocity vo, are kept 
fixed. Such a situation is also exhibited in Fig. 4a where we show the phenomenon 
for the small value of b = 3 and (J" = o. It should be noted that this value of b 
can be considered marginal for the observation of this resonance phenomenon; if 
b is reduced further, it is difficult to observe the peak (see Fig. 2). On the other 
hand, as we increase (J" the height of the peak is reduced. For the width of the 
soliton, we observe that the usual pattern is followed, as displayed in Fig. 6. 

4. Linear Analysis and Resonance 

In our analysis we have observed an interesting resonance phenomenon through 
the behaviour of the amplitude of the soliton, an essentially nonlinear mode in 
the plasma. Now we want to show that insight into this phenomenon can be 
obtained through a conventional linear analysis. Let us consider equations (1) 
and (6) and set 

etc. , (28) 
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with the equilibrium values as noted previously; we neglect higher-order terms in 
c5ni, c5Vi, c5n~, etc. Hence we obtain a set of linear equations for these variations. 
We then make the usual assumptions that each such variation can be represented 
as 

c5n~ = n~(z) ei(kx-wt); etc. 

As a result we obtain 

- wni(Z) + (1 + a)kih(z) = 0, (29) 
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- 30"k 
- WVj(z) + k¢(z) + --nj(z) = 0, 

l+a 

- wn~(z) + akv~(z) + Vo kn~(z) = 0, 

(30) 

(31) 

- WI-lQ:V~(z) + I1Q:VO(Z) v~(z) - ak¢(z) + 8kn~(z) = 0, (32) 

rP¢(z) 2 - -b _ 
--2- = (k + l)¢(z) + ne (z) - nJz). (33) 

[}z 

Eliminating all other variables in favour of ¢ we get 

(34) 

Solving this equation with the boundary condition ¢ = 0 on z = 0 and z = b, we 
arrive at the sixth-order dispersion relation 

0, 

where the coefficients are 

Ao 30"IW6 - 30"8, 

Eo 60"lwow, 

Co - 8(1 + a) + ILV6(1 + a) - 30"a + 8w2 - J-lV6 w2 

- 30"8(1 + n 2Jr2 jb2 ) + 30"J-l(1 + n 2 Jr2 jb2 )v6 , 

Do 2/LVo(1 + a)w - 2J-lvo w3 + 60"J-l(1 + n 2 Jr2 jb2 )vo W, 

Eo J-l(1 + a)w2 + aw2 + 8(1 + n2 Jr2 jb2)w2 

- J-l(1 + n 2Jr2 jb2 )v6 w2 + 30"(1 + n 2 Jr2 jb2)J-lW2 , 

(35) 

We have solved equation (35) numerically and have observed the variation of a 
particular mode of k for a fixed value of w. Here also we looked at the variation 
with respect to a. The variation of k shows sharp discontinuous changes near 
values of a where we observe a peak in the amplitude of the soliton (see Fig. 7). 
So here again we are observing the resonance phenomenon in another guise. 

5. Discussion 

In our analysis we have studied an interesting resonance phenomenon between 
beam electrons and plasma, from the point of view of both linear and nonlinear 
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theory. The analysis shows that the phenomenon is greatly influenced by the 
dimensions of the containment system and other plasma parameters. It also 
indicates the fact that the streaming velocity has an important role to play in 
the enhancement of the phenomenon. 
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