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Abstract

Near the ionisation threshold, the behaviour of the generalised oscillator strength (GOS) is
sensitive to the choice of the model atomic potential. In electron-impact ionisation, 'delayed
maxima' of the GOS often occur near the ionisation threshold due to centrifugal barrier effects.
In the present work, the sensitivity of this important effect of the centrifugal barrier to the
model atomic potential has been studied using two local density atomic potentials, namely,
the nonrelativistic Hartree-Slater potential and the relativistic RCB potential. Calculations
have been done for electron-impact 2p ionisation of atomic oxygen, neon, aluminium, argon,
iron and zinc. The GOS results for 2p ionisation of oxygen and aluminium are presented to
illustrate the results.

1. Introduction

Generalised oscillator strengths (GOS) of atoms are useful in estimating the
stopping power and total scattering cross sections for fast charged particle
collisions with atoms (Inokuti 1971). There has been substantial recent interest
in the determination of this quantity using refined experimental techniques (Li
et ale 1988; Takayanagi et ale 1990). We have recently made use of a relativistic
atomic model potential, known as the RCS potential, to determine the generalised
oscillator strengths for electron-impact-induced atomic excitations (Padma and
Deshmukh 1992) and for 2s subshell ionisation (Padma and Deshmukh 1994).
We have also used the RCS potential to estimate the optical oscillator strengths
from 'electron-impact photoionisation' (Padma and Deshmukh 1993).

In the low momentum transfer region, a phenomenon frequently observed in
the ionisation of various subshells of several atoms (McGuire 1968; Manson 1972;
Afrosimov et ale 1969; Amusia et ale 1970) is an increase in the GOS from threshold
up to a maximum, and a subsequent monotonic decrease for higher values of
the ionised electron energy. This 'delayed maximum' with respect to the ionised
electron energy is a consequence of the centrifugal barrier effect (Manson 1972a)
which prevents the continuum partial waves with nonzero angular momentum
(l#O) from penetrating the atomic core. In this paper, the sensitivity of the
delayed maximum to the choice of the atomic potential employed in the GOS
calculations is discussed.
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2. The Method

The GOS is an essential factor of the differential cross section in the first Born
approximation (Inokuti 1971). The generalised oscillator strength for ionisation
of an atom from an initial state 10) to a final continuum eigenstate IE) involving
a momentum transfer h.K is given by (Manson 1972a)

1 2
fo€(K) = (E€ - Eo) / T? \? IFo€(K)1 ,

where F Oe(K) is the inelastic scattering form factor,

Fo€(K) = (EI L exp (iK .rj)IO),
j

(1)

(2)

r j being the position vector of the jth atomic electron of the target. The energies
considered in this relation are expressed in Rydberg units. The wavefunctions
for discrete states are normalised to unity and the continuum functions are
normalised per unit energy range. The absolute square of the form factor for
the nl ~ el ' transition from a closed subshell, summed over final degenerate
magnetic substates m' and averaged over initial substates m, is given by

IFnl,€lI(KW = (2£' + 1)~(2A + 1)[R~I'€lI(K)121 (l~ ~ ~) 1

2

, (3)

where

R~I,€lI(K) = 100

Pnl(r)j),(Kr)P€lI(r) dr.

The choice of values for the summation over A in equation (3) is restricted to
the range from Il -l'l to l-i-l ' in steps of 2, since the 3j symbol vanishes for all
other values of A.

In the present calculations, the one-electron wavefunctions for the initial ground
state PnZ(r) have been obtained from the RCS method (Vijayakumar et ale 1989).
The radial wavefunctions for the final state corresponding to an ionised electron
in the continuum are obtained by solving a one-electron differential equation:

(
d2 l(l + 1) )

- dr2 + r2 + ~z(r) P€I(r) = EP€z(r) . (4)

The atomic potential V €I ( r) in (4) is determined using the RCS method. For
each value of E, P€f(r) is obtained by integrating equation (4) for the SCF-RCS
potential once (Cowan 1981).

The GOS for an initial state nl may be written as

00

E - EnZ ~ 2
!nl,€(K) = IT? )2 L IFnl,€l,(K)1 .

ao z'=o
(5)
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As is well known, the summation series in (5) is rapidly convergent since the
higher partial waves are excluded due to centrifugal barrier effects. In the small
momentum transfer region, the major contribution to the GOS comes from the
optically allowed continuum partial wave channels. With an increase in energy,
these partial waves overcome the centrifugal barrier and penetrate the atomic
core deeper, resulting in a greater overlap with the initial state wavefunction.
Hence the GOS increases, causing a 'delayed maximum' (Manson 1972a). For
still higher values of the ionised electron energy, the GOS decreases due to
cancellations in the transition matrix element resulting from rapid oscillations of
the continuum wavefunctions.

The accuracy of the GOS results in the Born approximation calculations
depends on the choice of the atomic model used for describing the initial and
final states of the target atom. In the present work, the GOS has been calculated
using the nonrelativistic Hartree-Slater (HS) potential (Herman and Skillman
1963) and the relativistic RCS potential (Vijayuakumar et ale 1989).

Calculations have been done for 2p ionisation of several atoms: 0, Ne, AI,
Ar, Fe and Zn. Illustrative results of the GOS are presented for oxygen and
aluminium 2p ionisation.
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Fig. 1. Generalised oscillator strength per unit energy (in Rydberg)
for continuum transitions from the 2p subshell of oxygen for ionised
electron energies of 0, O·5, 1 and 2 Ryd.

3. Results and Discussion

We have performed spin-polarised calculations using the RCS method. For
open-shell atoms, this method provides slightly different wavefunctions for spin-up
and spin-down electrons. Hence for 2Pl/2 ionisation of aluminium, for example,
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the GOS has been obtained for 2Pl/2i and 2Pl/2! electrons from two separate
calculations. Similarly, the GOS for 2P3/2 ionisation has been obtained from
two separate calculations for the spin-up and spin-down electrons in the 2P3/2
subshell. Since the one-electron GOS results were almost identical in all these
calculations, they were summed to get the total GOS for 2p ionisation. The
GOS has been calculated for various values of momentum transfer from O·1 to 20
atomic units. To study the GOS behaviour as a function of the ionised electron
energy, the GOS has also been calculated for various values of ionised electron
energy from threshold to 10 Ryd.

The GOS results for 2p ionisation of oxygen are given in Fig. 1 as a function
of the square of the momentum transfer (KaO)2. The results are plotted for four
different values of the ionised electron energy, 0, 0·5, 1 and 2 Ryd. Results of
the RCS and HS calculations are shown for comparison. In the low momentum
transfer region, the GOS at O·5 Ryd is higher than that at the ionisation threshold,
in both RCS and HS calculations. This is due to the centrifugal barrier effect.
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Fig. 2. Normalised 2p and Ed wavefunctions in oxygen.

At threshold and also at 0·5 and 1 Ryd, the RCS value of the GOS is slightly
higher than the corresponding HS value. This may be attributed to the fact that,
while the bound state 2p orbital has an almost identical profile in the RCS and
HS potentials, the Ed orbital (which is the principal contributor to the GOS) is
more compact in the RCS potential relative to that in the HS potential.

Fig. 2 shows the radial 2p and the continuum d orbitals at threshold (E = 0)
and at E= 2 Ryd in oxygen. Only the radial 2Pl/2 orbital in the RCS potential
is shown. The 2P3/2 orbital is slightly more compact, but the difference is
insignificant and not perceptible on the scale shown. The spin-orbit splitting of
the continuum wave functions is ignored in the present work. At the ionisation
threshold, the compactness of the continuum d orbital in the RCS potential,
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At threshold and also at 0·5 and 1 Ryd, the ReB value of the GOS is slightly 
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HS potentials, the Ed orbital (which is the principal contributor to the GOS) is 
more compact in the ReB potential relative to that in the HS potential. 

Fig. 2 shows the radial 2p and the continuum d orbitals at threshold (E = 0) 
and at E = 2 Ryd in oxygen. Only the radial 2Pl/2 orbital in the ReB potential 
is shown. The 2P3/2 orbital is slightly more compact, but the difference is 
insignificant and not perceptible on the scale shown. The spin-orbit splitting of 
the continuum wave functions is ignored in the present work. At the ionisation 
threshold, the compactness of the continuum d orbital in the ReB potential, 



Near- threshold Behaviour 275

relative to that in the HS, provides an increased overlap with the ground state
2p orbital and consequently a higher value of the GOS in the RCS potential
compared to that in the HS approximation. However, at higher energies (e.g.
2 Ryd), cancellation of positive and negative parts of various elements of the
integrand over the range 0 ::; r < 00, arising respectively from the positive and
negative amplitudes of the continuum d wave, is more effective in the RCS model
than in the HS model. This causes a lower value of the RCS-GOS than the
HS-GOS. However, at higher momentum transfers, the GOS in the RCS model
at e = 2 Ryd, is slightly higher than the GOS from HS calculations. This is due
to the larger contribution from the 2p ~ ef channel in the RCS model than in
the HS model.
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Fig. 3. Generalised oscillator strengths per unit energy (in Rydberg) for
continuum transitions of the 2p subshell of aluminium for ionised electron
energies of 0, 0·5, 1, 2 and 4 Ryd.

GOS results for 2p ionisation of Al are shown in Fig. 3. Results from both the
RCS and HS calculations are shown for comparison. As can be readily inferred,
the delayed maximum is a prominent feature of the GOS in the HS results,
whereas the RCS results do not show such an effect. The difference in the RCS
and HS results can be traced to the different energy dependence of the 2p ~ Ed
channel which is the principal contributor in the two potentials, as can be seen
in Fig. 4 which shows the partial wave contributions to the GOS.

The spectral shape of the GOS near the ionisation threshold is thus sensitive
to the atomic potentiaL The RCS potential is more attractive than the HS
potential for the following reasons:

(i) unlike the HS method, the self-interaction contribution to the total
exchange interaction is calculated exactly in the RCS potential and the
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local density approximation is made only for the residual part of the
exchange interaction;

(ii) the inclusion of relativistic effects in the RCS potential results in stronger
binding of the atomic electrons.

Consequently, the RCS continuum wavefunctions shown, for example, in Fig. 2
for oxygen are more compact than the HS continuum wavefunctions. However,
this effect is not obvious in the 2p bound state wavefunctions obtained using
the respective atomic potentials, as can be seen in the same figure. This may
be attributed to the different boundary conditions satisfied by the bound and
continuum wavefunctions. The bound state wavefunctions vanish at infinity and
hence the difference between the RCS and HS potentials, which is mainly in their
asymptotic behaviour (Vaidehi and Gopinathan 1984), does not alter the bound
state wavefunctions. The asymptotic behaviour of the potential nevertheless
affects the continuum wavefunctions which are oscillatory in that region.
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Fig. 4. Partial wave contributions to the Al 2p GOS from the various continuum angular
momentum (El') channels for ionisation at (a) threshold (E == 0), and (b) E== 2 Ryd.

The stronger attraction of the RCS atomic potential permits the Ed wave (the
major contributor to the GOS for 2p ionisation) to penetrate the centrifugal
barrier region even at threshold, resulting in a significant overlap with the ground
state 2p wavefunction. The GOS results obtained using the RCS method are
thus higher than the HS results at the threshold, and any increase in energy
does not increase the overlap integral any further.

The GOS results for 2p ionisation of the other atoms mentioned above also
support these findings. In Ar 2p ionisation, no delayed maximum was seen in the
RCS calculations. In the case of oxygen, neon, iron and zinc, the RCS calculations
did show a delayed maximum which was, nevertheless, far less prominent than
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that found in the HS calculations. The stronger attraction of the RCS atomic
potential is thus manifest in all these cases.

It may be recalled that the experimental results of Afrosimov et ale (1969) on
rare gas atoms predicted a delayed maximum for argon.2p ionisation at ~O •44 Ryd,
whereas the HS results (Manson 1972b) predicted a delayed maximum at 2 Ryd
above threshold. The RCS results for Ar do not show a delayed maximum, as
mentioned earlier. It thus appears that the RCS potential may underestimate
the delayed maximum effect and the HS potential may overestimate it.

As reported earlier (Padma and Deshmukh 1993), the GOS in the K ~ 0 limit
corresponds to the photoionisation cross section. A comparison of our results
in the low momentum transfer region with the photoionisation cross section
calculated by McGuire (1968) showed the two results to be in excellent agreement.
The agreement between the photoionisation limit of the GOS obtained in the
present calculation for 0, Ne and Al 2p ionisation was found to be exact, which
is not surprising since the same model potential (Hartree-Slater) is employed in
both cases. The RCS results for oxygen agree with those of McGuire, whereas
for the other atoms the centrifugal barrier effect is not very pronounced in the
RCS model as noted earlier.

We find that it is not just the energy at which the delayed maximum occurs
above the threshold that is different in the two potentials, but the very occurrence
of this is not predicted by the RCS potential for some of the cases considered,
contrary to the HS predictions.

4. Conclusions

The present results reveal that the delayed maximum for 2p ionisation is
sensitive to the model potential employed in the calculation and the differences
may be not merely quantitative but also qualitative. Further experimental studies
of this phenomenon will be useful in developing a clear understanding of the
reliability and limitations of the RCS and Hartree-Slater atomic models.
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both cases. The ReS results for oxygen agree with those of McGuire, whereas 
for the other atoms the centrifugal barrier effect is not very pronounced in the 
ReS model as noted earlier. 

We find that it is not just the energy at which the delayed maximum occurs 
above the threshold that is different in the two potentials, but the very occurrence 
of this is not predicted by the ReS potential for some of the cases considered, 
contrary to the HS predictions. 

4. Conclusions 

The present results reveal that the delayed maximum for 2p ionisation is 
sensitive to the model potential employed in the calculation and the differences 
may be not merely quantitative but also qualitative. Further experimental studies 
of this phenomenon will be useful in developing a clear understanding of the 
reliability and limitations of the ReS and Hartree-Slater atomic models. 
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