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Abstract

The P3/2 optical absorption spectrum of boron impurity in silicon has been re-examined at high
resolution. The precise transition energies measured agree with energies previously reported.
In addition, energies for several previously unrecognised transitions are given as well as values
for the absorption strengths and line widths. The measured transition energies and absorption
strengths correlate very well with several recent calculations of binding energies and oscillator
strengths, respectively. This excellent agreement between experiment and theory motivates
a renumbering of the spectral lines which is not expected to require future modification.
High-resolution piezospectroscopy of the P3/2 series has also been undertaken. Small stresses
were used to minimise the effect of interactions and permit accurate determination of the
deformation potential constants. The deformation potential constants are found to be in
fair agreement with previous experimental values and good agreement with recent theory.
Experimental values for several of these are given for the first time, as are isotropic deformation
potential constants of several excited states relative to the ground state.

1. Introduction

For over a century, sharp lines arising from transitions of electrons between
distinct energy states have been observed in the spectra, both emission and
absorption, of hydrogen, the set of lines involving the state of lowest energy
being known as the Lyman series. An analogous Lyman series, appearing in a
solid-state analogue of hydrogen, boron-doped silicon, was observed forty years ago
by Burstein et ale (1951). Since then numerous photoexcitation lines, associated
with a range of impurities in a variety of semiconductor hosts, have been studied,
the work being successively reviewed by Fisher and Ramdas (1969), Bassani et ale
(1974), and Ramdas and Rodriguez (1981). In spite of much study, experimental
interest in the excitation spectra of Si(B) continues, Fischer and Rome (1983)
having reported the most comprehensive spectra to date. This continued interest
derives in part from advances in experimental technique but is also spurred on
by new detailed theoretical calculations of the energies of the acceptor states and
the strengths of the transitions, as demonstrated in the recent work of Pajot et
ale (1992).

The basic theory of shallow acceptor states in semiconductors, the effective
mass approximation, is a generalisation of the solution of the hydrogen Schrodinger
equation (Kittel and Mitchell 1954; Luttinger and Kohn 1955). The effective
mass approximation was rendered amenable to calculation by separating the
Hamiltonian into a dominant spherical term (Baldereschi and Lipari 1973) and
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a subsidiary cubic term (Baldereschi and Lipari 1974). Treating the cubic term
as a perturbation, unfortunately, is invalid for Si, where it is large; moreover
this method is independent of the chemical identity of the acceptor, so is not
well suited to Si(B). The calculations have been made apposite to Si(B) by
further refinement of the spherical model by introduction of the spin-orbit split-off
valence band, a dielectric screening function (Baldereschi and Lipari 1976; Lipari
and Baldereschi 1978), a semi-empirical short-range species-dependent correction
term (Lipari et ale 1980) and valence-band warping (Binggeli and Baldereschi
1988). The most recent calculations have yielded line strengths in addition to
energies and symmetries. Starting from the complete Hamiltonian and including
the split-off band and a dielectric screening function, Buczko and Bassani (1988)
have calculated line positions and strengths for the group III acceptors in Si.
Beinikhes et ale (1990) also took as their starting point the complete Hamiltonian
but used a nonvariational calculation to give the positions and intensities of the
Si(B), among other, states. This approach follows similar work for acceptors in
Ge (Kogan and Polupanov 1978) and donors in Ge and Si (Beinikhes et al. 1985;
Beinikhes and Kogan 1988).

Theoretical studies have also been made on the effect of external fields on
the energy states. In a magnetic field the hydrogen atom displays a much richer
spectrum as a consequence of the field bifurcating the energy states. This,
the Zeeman effect, also appears in the hydrogen atom's solid-state counterparts.
Unique to the solid state is the splitting of states due to another type of external
perturbation-applied uniaxial stress-the piezospectroscopic effect. [Further, the
concurrent application of a magnetic and an elastic field, known as piezo-Zeeman
spectroscopy, the theory of which was developed by Bir et ale (1963; see also
Bir and Pikus 1974) using perturbation methods, supplanted now by the exact
theory of Duff (Duff et ale 1988; Duff 1993), has been exploited by Freeth et ale
(1986, 1987) to interpret the Ge(III) spectra.] Piezospectroscopy of acceptors in
Si, including Si(B), was systematically undertaken by Onton et ale (1967) who, on
the basis of the polarisation features of spectra from samples under stress applied
in simple crystallographic directions, were able to deduce the symmetries of the
ground and several excited states. This work was extended by Chandrasekhar
et ale (1973) who applied stresses of known magnitudes and were thus able to
measure the parameters which characterise the stress splittings, the deformation
potential constants, for the ground and the first two excited states of boron, as
well as for states of other acceptors, in silicon. Piezospectroscopic measurements
of Si(B) at high stress have been reported by Cooke et al. (1978). In passing it
might be mentioned that Zeeman spectroscopy of Si(B) has been undertaken by
Merlet et al. (1975), however, piezo-Zeeman spectroscopic results for Si(B) have
not been reported.

The quantitative theory of the piezospectroscopic effect is a natural extension
of the effective mass approximation. The most recent calculations are those of
Buczko (1987). These follow on from analyses of the effect of uniaxial stress on
the acceptor ground states in Ge (Buczko et ale 1980), Si (Chroboczek et ale
1984) and both Ge and Si (Buczko and Chroboczek 1984).

The present paper reports an experimental investigation, particularly directed
to the little-studied higher energy states, of the spectra and piezospectra of Si(B),
and compares the results with the latest theoretical analyses. Experimental values
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of the positions, strengths and widths of a large number of lines in the unperturbed
spectrum are given as well as an estimation of the ground state binding energy.
The symmetries of many states are deduced by the stress behaviour of the spectral
components of the parent lines, confirming and greatly extending previously
published experimental work and generally confirming theoretical predictions.
Deformation potential constants have been determined for many more states than
previous experiments have allowed, the present results on occasion differing from
the earlier work, but being in good agreement with the theory. A brief account
of some of these findings has appeared previously in Lewis et ale (1988). In some
instances the present results differ slightly from the latter due to recalibration
of the spectrometer and other minor corrections.

2. Experimental Procedure

Six samples of dimensions in the ranges 4 to 6 mm wide, 1 to 4 mm thick
and 15 to 22 mm long were cut from the same Si(B) ingot of nominally 20 n em
room-temperature resistivity, three with the long axis along which force was
applied in a (111) direction, two in a (100) direction and one in a (110)
direction. The samples were cut with a wire saw (Model Number 850, South
Bay Technology, California), crystallographically aligned by the optical method
of Hancock and Edelman (1956) using a laser source, wedged slightly to minimise
optical interference between the front and back faces, and mechanically polished
to a 6 J-lm finish.

The cross-sectional area of each sample, required to calculate the stress from
the applied force, was measured in two ways: directly, by multiplying the width
and thickness, and indirectly, by dividing the mass of the sample by its length
and by the density of Si, the value of density used being that of Smakula and
Sils (1955). Salib et ale (1985) found the difference between these two methods
for Ge samples was always less than 0·75%. For the present samples the direct
method always gave a greater value, by 0·57% to 1·14%, an amount which
generally increased with sample size. No source of error could be found in the
measurement process itself and in reviewing the detailed data of Salib (1982) the
direct measurement was seen to give in every instance a greater value for the
area than the indirect method. The difference is attributed to rounding of the
sample edges in polishing and is consistent with an average radius of curvature
of 0·32±0·03 mm.

The samples were mounted in a cryostat of the type, and using the techniques,
described by Salib (1982) and were cooled using liquid He; this cryostat and
these techniques are modifications of those described by Tekippe et ale (1972).
The temperature of the sample, thermally connected to the He bath by a cold
finger, was not measured directly, but is believed to be in the range 5 to 10 K.
Uniaxial compression was applied in a simple fashion by resting calibrated lead
or brass masses on a push rod which transmitted the weight force to the sample.
This procedure gives the impressed force accurately and directly, and permits
the application of small, well-defined, stable forces. In converting the applied
force to stress, the cross-sectional area as determined by the indirect method
was used. The correction in sample area due to thermal contraction of Si is
negligible (Swenson 1983) and so was not applied. The local value of gravitational
acceleration given by Wellman et ale (1985) was used.
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The source of radiation was a globar, dissipating about 220 W, and the
radiation was modulated at 410 Hz by a mechanical chopper before being fed
by entrance optics into a single-beam double-grating monochromator (Model
Number 1402, Spex Industries, Metuchen, New Jersey) fitted with gratings blazed
at 31· O±O·3 /-lm (nominally 30 /-lm) and flushed with dry air to reduce the
partial pressure of water vapour. Polarisation was accomplished by a wire-grid
polariser on a polyethylene substrate (Perkin-Elmer Corp., Main Avenue, Norwalk,
Connecticut). The detector was a germanium bolometer (Unit #804, Infrared
Laboratories, Inc., Tucson, Arizona) furnished with a wedged sapphire filter,
cooled by liquid helium, the enclosure of which was usually evacuated to lower
the temperature and thus improve the signal-to-noise ratio.

Data were collected using a lock-in amplifier (Model Number HR8, Princeton
Applied Research Corporation, Princeton, New Jersey), digitised by a DVM
(Model Number AD-2008, Analog Devices, Norwood, Massachusetts) and stored
in an Apple II computer. They were subsequently transferred to a Macintosh SE
computer for analysis and plotting.

In converting the data from transmission to absorption, the refractive index of
Si given by Loewenstein et al. (1973) was used, as were the Si elastic compliance
coefficients of Hall (1967) in calculating the deformation potential constants.

3. Theory

The theoretical approaches which yield energies and oscillator strengths of
states associated with B in Si were briefly described in Section 1. The results
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Fig. 1. Allowed transitions and intensities from a rs ground state to rs, r7 and r6 excited
states of the double group Td for an applied force in the (111) or (100) directions. The
parameters u and v determine the relative intensities of the components arising from the rs
manifold of the ground state and that of a rs excited state. The values of u and v range
from 0 to 1, and from -! to !' respectively (see Rodriguez et al. 1972).
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of .recent calculations by Buczko and Bassani (1989), Binggeli and Baldereschi
(1989), and Beinikhes et ale (1990) will be presented as appropriate in Section 4.
For particulars of the method followed in each instance, the reader is referred
to Buczko and Bassani (1988), Binggeli and Baldereschi (1988) and Beinikhes et
ale (1990). Each of these treatments also classifies the various states according
to ···their symmetry.

In order to demonstrate how the piezospectra can reveal the symmetry of the
holestates, it is convenient to recapitulate the way the pertinent states split under
stress, and the optical selection rules governing transitions between the substates
for E 1I.F(EII) and E ...L F(E.l), where E is the electric field of the radiation
and F is the applied force. These are presented in Fig. 1, which also gives the
relative intensities of the allowed transitions from the ground state manifold to
each of the three types of final state manifolds, in terms of the parameters u and
v, as deduced by Rodriguez et ale (1972) from symmetry arguments, assuming
no interaction between any of the manifolds.

Theoretical values of the deformation potential constants have been given
by Buczko (1987). To determine the deformation potential constants from the
experimental energies of the components produced by the application of uniaxial
stress, the results of the theory following Pikus and Bir (1959) and Rodriguez
et ale (1972) are set out below.

(3a) Applied Force in a (111) Direction

For a tetrahedral semiconductor of elastic compliance coefficients Sjk under
a force applied parallel to (111), the hole energy for a Ts state, relative to an
arbitrary zero of energy, is given by

e. = Ei + ai(sll + 2S12)T ± (di / 2v3)S44T, (1)

where T is the stress (negative for compressive forces), a and d are the hydrostatic
and one of the deformation potentialconstants, respectively, Ei is the unperturbed
energy and the index i distinguishes states. The ground state of acceptors in
silicon (i = 0) is known to be a Ts state (Onton et ale 1967) and so follows this
equation. Under the relatively small stresses used in the present experiments,
the stress splitting, L1~i{l = (di/ v3)S44T, for any Ts excited state i, is much
less than the separation in energy of the ground and excited state, hu, = Ei - EO.

Denoting L1~20 = ai(sll + 2S12 )T , the energies of the four possible transitions
between the stress-induced substates of the ground and excited states are, as
may be corroborated from Fig. 1,

E - h A (i) A (0) 1 A (i) 1 A (0)++ - Vi + LlOOO - LlOOO + "2"-1111 + "2Ll111 ,

E h A (i) A (0) 1 A (i) 1 A (0)
+- = Vi + LlOOO - LlOOO + "2Ll l l l - "2Ll l l l ,

E h A (i) A (0) 1 A (i) 1 A (0)
-+ = Vi + LlOOO - LlOOO - "2Ll l l l + "2Ll l l l ,

E - h A (i) A (0) 1 A (i) 1 A (0)
-- - Vi + LlOOO - LlOOO - "2Ll l l l - "2 Ll l l l .

(2)

(3)

(4)

(5)
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The subscripts on E correspond to the last two signs on the right-hand side of
the equation. The four transitions, when ordered according to increasing energy,
are normally labelled i.1, i.2, i.3 and i.4. The deformation potential constant
of the ground state, do, is obtained by subtracting equation (5) from (4) or
equation (3) from (2), giving

J3 J3
do = --(E_+ - E__ ) = --(E++ - E+_).

844 T 844 T
(6)

In a similar manner, the deformation potential constant of the excited state, di ,

is obtained by subtracting equation (5) from (3) or equation (4) from (2),

J3 J3
di = .--(E+_ - E __ ) = --(E++ - E_+).

844 T 844 T
(7)

While ao and a; are not attaintable directly, their difference is, either by adding
equations (2) and (5) or by adding (3) and (4):

E++ - E__ - 2hvi
ai - ao = ------­

2(811 + 2s12)T

E+_ + E_+ - 2hvi

2(S11 + 2812)T
(8)

If the excited state has F6 or F7 symmetry, it is not split by uniaxial stress but
merely undergoes a hydrostatic shift. In this case

Ei == Ei + ai (811 + 2s12)T . (9)

Consequently under stress there are only two transitions between this state and
the ground state,

(i) (0) 1 (0)
E+ = hu; + L1000 - L1000 + '2L1111 ,

(i) (0) 1 (0)
E_ == hu, + L1000 - L1000 - '2L1111 ,

denoted in order of energy as i.1 and i.2, from which

J3
do == --(E+ - E_),

844 T

E+ + E_ - 2hvi
ai - ao = .

2(811 + 2812)T

(10)

(11)

(12)

(13)

(3b) Applied Force in a (100) Direction

This analysis is identical to that for a (111) direction, with the shear deformation
potential constant b replacing d in every instance and 811 - 812 replacing 844/2J3.
Note that bi, bo and ao - a; can be determined from a Fs excited state, while
only bo and ao - a; can be found from a F6 or F7 excited state, under (100)
stress.
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The subscripts on E correspond to the last two signs on the right-hand side of 
the equation. The four transitions, when ordered according to increasing energy, 
are normally labelled i.1, i.2, i.3 and i.4. The deformation potential constant 
of the ground state, do, is obtained by subtracting equation (5) from (4) or 
equation (3) from (2), giving 

(6) 

In a similar manner, the deformation potential constant of the excited state, d i , 

is obtained by subtracting equation (5) from (3) or equation (4) from (2), 

(7) 

While ao and ai are not attaint able directly, their difference is, either by adding 
equations (2) and (5) or by adding (3) and (4): 

E+_ + E_+ - 2hvi 
2(S11 + 2S12)T 

(8) 

If the excited state has F6 or F7 symmetry, it is not split by uniaxial stress but 
merely undergoes a hydrostatic shift. In this case 

(9) 

Consequently under stress there are only two transitions between this state and 
the ground state, 

E+ = hVi + L1~~o - L1~~o + ! L1~~1 , 
E_ = hVi + L1~~o - L1~~o - !L1~~)1 , 

denoted in order of energy as i.1 and i.2, from which 

J3 
do = --(E+ - E_), 

S44 T 

E+ + E_ - 2hvi 
ai-aO= 

2(811 + 2812)T 

(3b) Applied Force in a (100) Direction 

(10) 

(11) 

(12) 

(13) 

This analysis is identical to that for a (111) direction, with the shear deformation 
potential constant b replacing d in every instance and 811 - 812 replacing 844/2J3. 

Note that bi , bo and ao - ai can be determined from a F8 excited state, while 
only bo and ao - ai can be found from a F6 or F7 excited state, under (100) 
stress. 
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(3c) Applied Force in Other Directions

The splitting arising from uniaxial stress in an arbitrary direction is given by
equation (15) of Chandrasekhar et ale (1973). Equation (28) of Chandrasekhar
et ale gives the specific relationship

4(Ll(i) )2 _ (Ll(i) )2+ 3(Ll(i) )2
110 - 100 111· (14)

Hence, if any two of Lli~o, Llii{o or Llii{l are equal in magnitude then all three
are, a situation termed by those authors as 'stress isotropy'.

4. Results and Discussion

(4a) Unperturbed Spectrum

The unperturbed spectrum of Si(B), the main features of which have been
reported by many authors, is shown in Fig. 2a. It consists of a series of narrow
absorption lines superimposed on a slowly increasing background.

The line labelling scheme employed here returns to the principle employed by
Colbow (1963) of numbering the excitation lines from 1 in order of increasing
transition energy. Colbow's original labels were adopted and extended by Onton
et ale (1967) and others, but the labels have become increasingly cumbersome
as additional features, unknown when the labels were first assigned, have been
discovered. A case in point is line 4 of Colbow (1963), for which he observed
a high energy shoulder; the shoulder was resolved by Onton et ale (1967) to be
a distinct line, labelled by them 4A; Skolnick et ale (1974) discerned another
line between these two, for which they appropriated the label 4A, relabelling
the former 4A as 4B; Jagannath et ale (1981) returned the label 4A to the high
energy line and used 4B for the intermediate one. It is not surprising that the
most unwieldy set of labels accompanies the most detailed experimental results:
for line 10, to maintain consistency with the old labels, Fischer and Rome (1983)
have resorted to labels lOA to 10D, with line 10 itself falling between lOB and
10C, and to emphasise similarities between the spectra of different impurities
in silicon these authors have relabelled the Si(B) line 7 as 8. In view of this
increasing complexity and diversity of notation, and also in view of the exact
agreement between experiment and present theory in the number of low energy
lines, it is appropriate to return to the simple numbering principle of Colbow
(1963) (see Table 1). In doing so, it is believed there will be no future change in
the labels 1-7 (lines 4, 5, 6 correspond respectively to 4, 4B and 4A of Jagannath
et ale 1981, and line 7 corresponds to line 5 of Colbow 1963), although label 8 and
those beyond may require revision as further detail in the spectrum is resolved.
[This relabelling was suggested by Lewis et ale (1988); the present lines 17, 18
and 25 were not included in that earlier work.] The small feature at rv39 meV
is due to phosphorus impurities in the sample (see Jagannath et ale 1981) and
is not accorded a number in the Si(B) series.

The experimental spectrum of Fig. 2a may conveniently be compared with
the main features of some recent theoretical results presented in spectral form in
Figs 2b, 2c and 2d, corresponding to the calculations of Binggeli and Baldereschi
(1989) for Si(B), Binggeli and Baldereschi (1989) for Si(III), and Buczko and
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Bassani (1989) for Si(III). The theoretical calculations based on the method
of Baldereschi and Lipari (1973) use the notation stemming from Oh to label
the states, rather than that of Td utilised in the group-theoretical treatment.
Reference to calculated states will adhere to the former notation. The label
Si(III) means that these calculations were for group III impurities in general. The
zero of hole energy has been set, for the purpose of this figure, to a transition
energy of 45· 86 meV. The ordinate ranges displayed have been chosen so that
the strongest line (2Ts-) is approximately equal in height in Figs 2b, 2c and 2d.
It can be seen that the main features, in terms of line positions and strengths,
agree well.

In examining the unperturbed spectrum of Si(B) our chief purpose has been
to gather information about the weak and little-studied lines that crowd the high
energy end of the spectrum. To facilitate this, samples offering high absorption,
not well suited to measuring the intense low energy lines, have been prepared.
Nonetheless, the transition energies of lines 1 to 3 have been remeasured and are
given in Table 1. The original data points are equally spaced in wavelength and
so the errors involved in determining the line energies are energy-dependent. The
digitisation error is negligible «0·0005 meV). The calibration of the spectrometer
against the known wavelengths of water vapour (Cole 1977; see also Guelachvili
and Rao 1986) is the chief uncertainty, the standard error from this source being
estimated at 0·003 to 0·005 meV for lines 1 to 3. The reciprocal linear dispersion
of the spectrometer multiplied by the slit width employed, rvO· 017 meV, the
diffraction limit of 0·007 to O·010 meV, and the grating resolving power of
0·010 to O·013 meV, are closely matched. The energy of an isolated line can
be determined to at least one-tenth of these limits, and so they make only a
small contribution to the overall uncertainty. It is seen in Table 1 that the
energies of lines 1 to 3, for which the error is estimated to be 3 to 4 times
less than that of Fischer and Rome (1983), agree within error with the latter's
values. While an energy is listed for line 4 it is to be understood that this will
represent a composite of lines 4 and 5, which have not, due to the deliberately
high absorption of the samples used, been resolved in the present measurements.
In summary, measurements of the positions of lines 1, 2, 3 and 6 have been
made and agree with the most recent published data.

Fig. 3a shows the experimental spectrum for lines 7 and beyond, while
Fig. 3b presents the theory of Binggeli and Baldereschi (1989) for Si(B) for
comparison. The experimental data were obtained by adding 17 separate runs
in order to increase the signal-to-noise ratio. In detail Fig. 3a is comparable,
or slightly superior, to the spectrum shown as Fig. 4 of Fischer and Rome
(1983).

To extract line positions in a region where many lines overlap, a curve-fitting
program was used to analyse the spectrum. The curve-fitting program also gave
line intensities and widths. It was assumed that each line can be described by a
Lorentzian profile (see Jagannath 1980) and 20 of these profiles were adjusted to
minimise the difference, in the least squares sense, between the experimental data
and the computed fit to these. A constant underlying absorption background
value of 0 ·17 cm- 1 was also included in the computation. Fig. 3a shows the 20
Lorentzian profiles, and the sum of these and the constant offset (dashed curve),
which follows closely the experimental data. The energies, intensities and widths
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obtained from this curve-fitting procedure are listed in Table 1. The errors given
are the estimated standard errors arising in the fitting procedure. In the case of
the energies, no other error source adds significantly to the standard error, the
calibration error over this small wavelength range being <0·001 meV; that the
uncertainties in transition energy for lines 7 and above are generally less than
those for lines 1 to 3 reflects the smaller uncertainty in the calibration and the
curve-fitting, giving less error in ascertaining the peak position than the estimate
used before for this of one-tenth of the spectral slit width.

In comparing the present line energies with those of Fischer and Rome (1983),
the following remarks might be made. Lines 7, 8, 9, 10, 11, 13, 14, 15, 20, 21, 22
and 24 match, within experimental error, the Fischer and Rome lines 5, 6A, 6B,
6, 7, 8, 8A, 9A, lOB, 10, 10C and 10D, respectively. Although slightly outside
the range of error estimates, it is probable that lines 16 and 19 correspond to
their 9 and lOA respectively. We report several lines not recorded by Fischer
and Rome: line 12, the low energy shoulder to the original line 7; lines 17, 18
and 23, small high energy lines; and line 25, which is included to account for
the ionisation background. On the other hand, Fischer and Rome reported two
lines which do not correspond to any in the present spectrum: the prominent
line 11 and its small companion lIB. In short, these two most detailed sets of
experimental line positions are in substantial agreement.

In order to compare the experimental results with theoretical calculations it is
necessary to reconcile the experimental transition energies with the theoretical
binding energies. In principle, these should sum to give the ionisation energy of
the ground state, as the transition energies are measured in hole energy above
the ground state, and the binding energies are measured in hole energy below the
series continuum. In the event that the ionisation energy is not certain, which
is the case, the transition and binding energies are usually pinned at a single
energy-usually that of a strong isolated line (see e.g. Ramdas and Rodriguez
1981). However, it has been noted previously (Lewis et al. 1988), and is evident
in Figs 2 and 3, that the energy scaling may differ between the experimental
and theoretical energies-in the language of geometry, not only is the intercept
non-zero, but also the gradient is non-unity, of the locus of energies plotted on
the theory-experiment plane. Hence a method of fitting a curve to the data
pairs consisting of the experimental transition energy, hu, and the theoretical
binding energy, Eb, for each of the lines 1, 2, 3, 7 and 10 is adopted. Using the
data of Binggeli and Baldereschi (1989) to represent the theory, it is found that
the point given by line 2 is slightly removed from the straight line given by the
other four, and so is discarded for the correlation. The remaining four points lie
on a straight line (correlation coefficient O·999998) and yield

Eb(exp) = 47 ·32 ± 0·05 - (1·038 ± O·OOl)hv. (15)

This equation is used in Table 1 to convert the experimental transition energies
to experimental binding energies. A similar calculation was carried out using the
theoretical data of Beinikhes et al. (1990), yielding an intercept of 47· 21±0 ·19,
gradient - (1 .035±0 .005) and correlation coefficient O·99997. In fitting to these
data, line 3 does not quite fall on the straight line given by the other points and
so only lines 1, 2, 7 and 10 were used.
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used before for this of one-tenth of the spectral slit width. 

In comparing the present line energies with those of Fischer and Rome (1983), 
the following remarks might be made. Lines 7, 8, 9, 10, 11, 13, 14, 15, 20, 21, 22 
and 24 match, within experimental error, the Fischer and Rome lines 5, 6A, 6B, 
6, 7, 8, 8A, 9A, lOB, 10, lOC and lOD, respectively. Although slightly outside 
the range of error estimates, it is probable that lines 16 and 19 correspond to 
their 9 and lOA respectively. We report several lines not recorded by Fischer 
and Rome: line 12, the low energy shoulder to the original line 7; lines 17, 18 
and 23, small high energy lines; and line 25, which is included to account for 
the ionisation background. On the other hand, Fischer and Rome reported two 
lines which do not correspond to any in the present spectrum: the prominent 
line 11 and its small companion lIB. In short, these two most detailed sets of 
experimental line positions are in substantial agreement. 

In order to compare the experimental results with theoretical calculations it is 
necessary to reconcile the experimental transition energies with the theoretical 
binding energies. In principle, these should sum to give the ionisation energy of 
the ground state, as the transition energies are measured in hole energy above 
the ground state, and the binding energies are measured in hole energy below the 
series continuum. In the event that the ionisation energy is not certain, which 
is the case, the transition and binding energies are usually pinned at a single 
energy-usually that of a strong isolated line (see e.g. Ramdas and Rodriguez 
1981). However, it has been noted previously (Lewis et al. 1988), and is evident 
in Figs 2 and 3, that the energy scaling may differ between the experimental 
and theoretical energies-in the language of geometry, not only is the intercept 
non-zero, but also the gradient is non-unity, of the locus of energies plotted on 
the theory--experiment plane. Hence a method of fitting a curve to the data 
pairs consisting of the experimental transition energy, hv, and the theoretical 
binding energy, €b, for each of the lines 1, 2, 3, 7 and 10 is adopted. Using the 
data of Binggeli and Baldereschi (1989) to represent the theory, it is found that 
the point given by line 2 is slightly removed from the straight line given by the 
other four, and so is discarded for the correlation. The remaining four points lie 
on a straight line (correlation coefficient 0·999998) and yield 

€b(exp) = 47 ·32 ± 0·05 - (1·038 ± O·OOl)hv. (15) 

This equation is used in Table 1 to convert the experimental transition energies 
to experimental binding energies. A similar calculation was carried out using the 
theoretical data of Beinikhes et al. (1990), yielding an intercept of 47· 21 ±O . 19, 
gradient -(1. 035±0· 005) and correlation coefficient 0·99997. In fitting to these 
data, line 3 does not quite fall on the straight line given by the other points and 
so only lines 1, 2, 7 and 10 were used. 
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In general terms, many more theoretical states have been calculated than
observed, but many states in common can be identified with most of the
experimental data lying within o· 02 meV of the corresponding theoretical data.

In comparing in detail the experimental and calculated line energies and
strengths the following is observed. Lines 1, 2, 3, 6, 7, 10, 11 and 12 can be
identified with transitions to the 1rs, 2rs, 3rs- , 4rs- , srs-, zr;; 7r; and
3r6- states, respectively, in each of the theoretical analyses. Line 4 corresponds
to 1Ti and line S to 1r6- , according to Buczko and Bassani (1989) and Beinikhes
et al. (1990), the reverse of the ordering given by Binggeli and Baldereschi (1989).
Similarly the results of Buczko and Bassani (1989) and Binggeli and Baldereschi
(1989) suggest line 8 corresponds to 2T6- and line 9 to 6Ts- , while Beinikhes
et al. (1990) have the reverse ordering. Piezospectroscopic measurements can,
in principle, reveal the order of the states in dispute. However, in the .present
measurements, the line 4-S-6 complex has not been studied, and indeed is
formidable, having up to eight stress-induced components, although in a similar
case, the C-line of Ge(Ga), ten components, including even parity states, have
been successfully identified (Vickers et al. 1988). Recently Piao (1992), on the
basis of piezospectroscopic measurements on Si(In), has concluded that lines 4
and 4A in that system have symmetries of 1ri and 1Ti respectively. The
piezospectroscopic results for lines 8 and 9 are discussed later. Thus, of the first
12 lines, the ordering of two pairs is in doubt, and eight are clearly identified
with theoretically calculated states.

Beyond line 12 the agreement between theories, and between theory and
experiment, is not as complete. Considering both the energies and strengths
of the various lines in comparing with the theory of Binggeli and Baldereschi
(1989), one can identify lines 13 to 24, in sequence, with states 3ri, 8rs,
4T6- , 4ri, none, 10rs , 11rs- , sr6- , sri, none, 6r6- and 7ti . The theory of
Buczko and Bassani (1989) gives the same outcome, except for the identification
of line 22 with 13rs- and 24 with lSrs. It is possible that state lOrs-could be
associated with line 17, to which it is closer in energy than to line 18; however,
the identification has been made on the basis of the slightly greater strength of
line 18, leaving no theoretical state for line 17. In the theory of Binggeli and
Baldereschi (1989) no state corresponds to line 22, unless line 21 is 13rs- and
22 is sri, which is untenable on the basis of the oscillator strengths. Many
calculated transitions are not seen in the experimental spectrum-18 are missing
when the comparison is made with the calculations of Binggeli and Baldereschi
(1989) and lS for Buczko and Bassani (1989). All of these unobserved transitions
have very small strengths, except for 10r6- and 9ri, which both lie close to
line 11 of Fischer and Rome (1983).

Alternatively, beyond line 12, one can use the theory of Beinikhes et al. (1990)
to identify successive experimental lines as 4ri, 8rs- , sri, 11rs- , sr6- , 12rs- ,
13rs, 6r6, et>, 14rs, 7T6- and st>. This assignment is quite different
to that based on the other two theories. It does, however, assign a state to
every line. The above assignment differs in some instances with how Table 1 of
Beinikhes et al. (1990) identifies the lines of Fischer and Rome (1983), replacing
the second '8' in that table with '8A' (the first '8' being the present line 13)
and interchanging the first '9' with energy 2·60 meV in that table, the present
line lS (Sri), and '9A', with energy given as 2·S2 meV, the present line 16
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In general terms, many more theoretical states have been calculated than 
observed, but many states in common can be identified with most of the 
experimental data lying within 0·02 me V of the corresponding theoretical data. 

In comparing in detail the experimental and calculated line energies and 
strengths the following is observed. Lines 1, 2, 3, 6, 7, 10, 11 and 12 can be 
identified with transitions to the 1rs-, 2r;, 3rs-, 4rs-, 5rs-, 2ri, 7 r; and 
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measurements, the line 4-5-6 complex has not been studied, and indeed is 
formidable, having up to eight stress-induced components, although in a similar 
case, the C-line of Ge(Ga), ten components, including even parity states, have 
been successfully identified (Vickers et al. 1988). Recently Piao (1992), on the 
basis of piezospectroscopic measurements on Si(In), has concluded that lines 4 
and 4A in that system have symmetries of 1ri and 1F6" respectively. The 
piezospectroscopic results for lines 8 and 9 are discussed later. Thus, of the first 
12 lines, the ordering of two pairs is in doubt, and eight are clearly identified 
with theoretically calculated states. 

Beyond line 12 the agreement between theories, and between theory and 
experiment, is not as complete. Considering both the energies and strengths 
of the various lines in comparing with the theory of Binggeli and Baldereschi 
(1989), one can identify lines 13 to 24, in sequence, with states 3r7-, 8r;, 
4F6-, 4ri, none, lOrs-, 11rs-, 5r6-, 5ri, none, 6r6- and 7 ri. The theory of 
Buczko and Bassani (1989) gives the same outcome, except for the identification 
of line 22 with 13rs- and 24 with 15r;. It is possible that state 10rs- could be 
associated with line 17, to which it is closer in energy than to line 18; however, 
the identification has been made on the basis of the slightly greater strength of 
line 18, leaving no theoretical state for line 17. In the theory of Binggeli and 
Baldereschi (1989) no state corresponds to line 22, unless line 21 is 13rs- and 
22 is 5r7-, which is untenable on the basis of the oscillator strengths. Many 
calculated transitions are not seen in the experimental spectrum-18 are missing 
when the comparison is made with the calculations of Binggeli and Baldereschi 
(1989) and 15 for Buczko and Bassani (1989). All of these unobserved transitions 
have very small strengths, except for lOr6- and 9ri, which both lie close to 
line 11 of Fischer and Rome (1983). 

Alternatively, beyond line 12, one can use the theory of Beinikhes et al. (1990) 
to identify successive experimental lines as 4r7-, 8rs-, 5ri, 11rs-, 5r6-, 12rs-, 
13r;, 6r6-, 6ri, 14rs-, 7 r 6- and 8ri. This assignment is quite different 
to that based on the other two theories. It does, however, assign a state to 
every line. The above assignment differs in some instances with how Table 1 of 
Beinikhes et al. (1990) identifies the lines of Fischer and Rome (1983), replacing 
the second '8' in that table with '8A' (the first '8' being the present line 13) 
and interchanging the first '9' with energy 2·60 me V in that table, the present 
line 15 (5ri), and '9A', with energy given as 2·52 meV, the present line 16 
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(llrs- ). Hence lines 17, 18 and 23, not observed by Fischer and Rome (1983),
are assigned. As with the other theories, there are many lines calculated but not
observed; none of these has a very large oscillator strength.

Apart from the energies of the individual transitions, it is of interest to
establish the series limit, which is the binding energy of the ground state. This
may be done in several ways. First, as already mentioned, a theoretical binding
energy can be added to the experimental transition energy of a chosen line.
Recently, for example, Yu et ale (1989) added their value (42·16±0·01 meV)
for our line 10 to the binding energy given by Lipari et ale (1980) to deduce
the ground state binding energy to be 45·83±0·01 meV. A problem with this
approach, as intimated above, is that different lines give different results. This
has suggested a second method since the difference is systematic and can be
expressed in a form like equation (15). Solving this for zero binding energy
yields 45·57±0·01 meV and solving for zero transition energy, 47·32±0·05 meV;
fitting instead to the theory of Beinikhes et ale (1990) gives these energies as
45·62±0·05 and 47·21±0·19 meV respectively. The values given by this hybrid
of experiment and theory might be compared with the estimate of Beinikhes et
ale (1990) of 45·79 meV. Thirdly, Fischer and Rome (1983) have proposed that a
spectroscopic feature indicates the ionisation edge, which they give as 44·39 meV.
However our spectra, and others published, do not show this feature. Moreover,
Yu et ale (1989) claim to have observed discrete lines at energies higher than
this, and thus infer that the ionisation energy is >44· 39 meV.

In relation to the ionisation energy, a remark might be made about modelling
the rising background on which the distinct absorption lines are superimposed.
This background is evident in all of the reported spectra of Si(B). That the
background is not due to the lattice or otherwise intrinsic to Si is evident from
a variety of experiments: it appears only at low temperatures (Colbow 1963);
it does not occur in samples containing principally other impurities [e.g. Si(As),
Jagannath et ale 1981, and Si(Li), Jagannath and Ramdas 1980], although such
samples exhibit their own absorption increase at the high energy end of their
series. Hence, the background is attributable to the doping. To model this
background, made of an infinite number of therefore closely spaced transitions of
low intensity, a single additional Lorentzian peak was chosen, line 25 in Table 1.
A Gaussian profile might have been the preferred shape, but the difference this
would make to curve fitting would not be large (Posener 1959); alternatively, a
polynomial expression might have been used, presumably with comparable error.
While not suggesting that this final peak corresponds to the series limit, it is
of interest to compare its energy, 44·41 meV, with the value for the ionisation
energy suggested by Fischer and Rome (1983), namely 44·39 meV.

The full widths at half height for lines 7 to 23 are given in the final column of
Table 1. These fall in the range 30-90 {leV, with most in the range 40-70 {leV.
No comprehensive measurement or theoretical predictions of these line widths
are known.

(4b) Piezospectroscopy

Figs 4 to 14 and Table 2 give the experimental results for the piezospectroscopy
of lines 1, 2, 3, 7 and 10. The normal pattern is to first present spectra
showing the splitting pattern, then a fan diagram showing the behaviour of the
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(nrs-)' Hence lines 17, 18 and 23, not observed by Fischer and Rome (1983), 
are assigned. As with the other theories, there are many lines calculated but not 
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Apart from the energies of the individual transitions, it is of interest to 
establish the series limit, which is the binding energy of the ground state. This 
may be done in several ways. First, as already mentioned, a theoretical binding 
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In relation to the ionisation energy, a remark might be made about modelling 
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background is not due to the lattice or otherwise intrinsic to Si is evident from 
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While not suggesting that this final peak corresponds to the series limit, it is 
of interest to compare its energy, 44· 41 meV, with the value for the ionisation 
energy suggested by Fischer and Rome (1983), namely 44·39 meV. 

The full widths at half height for lines 7 to 23 are given in the final column of 
Table 1. These fall in the range 30-90 /-LeV, with most in the range 40-70 /-LeV. 
No comprehensive measurement or theoretical predictions of these line widths 
are known. 

( 4b) Piezospectroscopy 

Figs 4 to 14 and Table 2 give the experimental results for the piezospectroscopy 
of lines 1, 2, 3, 7 and 10. The normal pattern is to first present spectra 
showing the splitting pattern, then a fan diagram showing the behaviour of the 
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Table 2. Deformation potential constants (eV) of states of boron in silicon 

Line (i) Authors <111> direction <100> direction isotropic 

do dl bo bi 8 i .. °0 

Present -4.02±O.08 -1.76±O.05 -1.34±O.02 -0.055±O.01O -0.4 I ±O.07 

(Chandrasekhar et at. 1973) -2.3I±O.25 0.20±0.15 

(Buczko 1987) -1.84 -0.025 

2 Present -3.93±O.10 1.36±O.07 -1.98±O.08a 1.53±O.12a 0.86±O.l0 

(Chandrasekhar et 01. 1973) -4.46±O.1O 2.64±O.25 1.61 b 

(Buczko 1987) 2.04 1.09 

3 Present -4. IO±O. 10 -2.I±O.3c -1.42±O.03 O.03±O.lOc -2.17±O.13c 

(Buczko 1987) -\.70 0 

7 Present -3.82±O.ll -2.1±O.2c -1.27±O.04 0.Ol±O.14c -1.0±0.7c 

(Buczko 1987) -1.65 0 

10 Present -3.70±0.09 none -1.28±O.04 none 1.\±O.7c 

all Present (lines I, 2, 3, 7, 10) -3.91±O.07 -1.46±O.\3 

(Chandrasekhar et at. 1973) -4.50±0.15d -1.61±O.07d 

(Buczko 1987) -4.17 -1.39 

"Magnitude deduced from <Ill> and <110> data; sign as given hy Buczko (1987). bEstimated as being equal in magnitude to 

the ground state splitting. cSecond order polynomial fit. dOeduced from 2p' data. 

energies of the various components as a function of stress, then the differences of 
the energies of components that permit the determination of the shear deformation 
potential constants, and finally an addition of components that permits the 
determination of the relative difference between the hydrostatic deformation 
potential constants of the ground and excited states. 

The data for stress in the (111) direction are given first. As may be seen from 
Fig. 1 the polarisation pattern in this direction is, in general, slightly simpler 
and without the ambiguity that is present for the (100) direction, admitting 
a maximum of five rather than six transitions between any two states. The 
results for the (100) direction are given next. Using stress in this direction it is 
possible to distinguish r6 and r7 states, which give identical polarisation features 
under (111) stress (see Fig. 1). For line 2 only, which exhibits little splitting for 
F II (100), results are presented for F II (110). 

It has been shown (see Onton et al. 1967) that the ground state is of ra 
symmetry and that under (111) compression the n substate is of lower energy 
than the r 5+6' Under (100) compression, the ordering of the substates of the 
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36 I' 1.5 
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Fig. 5. (a) Stress dependence of the energies of the components of line 2 under (111) 
compression. (b) Stress splitting of the ground and· excited states as deduced from the 
components of line 2 under (111) compression. 

ground state is taken to be that predicted from the known behaviour of the 
valence band edge; thus the r7 substate is of lower energy than the r6 (see 
e.g. Buczko 1987). The symmetry of each state, and the relative magnitudes of 
the ground and excited state splittings, will be deduced using the information 
summarised in Fig. 1. The ordering of the substates of a given unperturbed 
state determines the sign of the deformation potential constants. 

(i) Force applied in a (11i) direction. For F II (l11), the spectrum for line 
1 (Fig. 4a) is similar to that shown in Fig. 17 of Onton et al. (1967) with all 
three allowed components for E.l.. and a fourth component for Ell' Chandrasekhar 
et al. (1973) reported a similar spectrum (their Fig. 6) but without data for 
component 1.1. From the selection rules (Fig. 1) it is clear that the orderings of 
the ground and excited states are the same and the component 1.2, missing for 
E.l.., must be a r5+6 ---+ r5+6 transition. The absence of component 1.3 for Ell 
suggests that the intensity parameter Ul f'V 1. (The subscript corresponds to the 
line number.) From the stress dependence of the intensities of the components, 
it is deduced (see Onton et al. 1967; Chandrasekhar et al. 1973) that both the 
components 1.1 and 1.2 originate from the upper substate of the ground state 
and thus the upper substate is the r5+6 state. 

In Fig. 4c, straight lines have been fitted to the appropriate differences in 
components that yield the stress splitting of the ground and excited states. The 
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Energy States of Boron in Silicon 349

symbols indicate which pairs of components have been used in obtaining each
datum point, but the complete set is employed to find the line of best fit. (The
zero stress point is shown for reference, but it is not used in the curve-fitting.) The
values thus deduced for do and d1 are given in Table 2, which also contains the
values obtained experimentally by Chandrasekhar et al. (1973) and theoretically
by Buczko (1987). It is seen that the previous experimental value of d1 is
approximately 30% higher than the present value, while the theoretical value is
about 5% higher. Both these differences are beyond the standard error estimate
arising from the fitting of the present data with straight lines.

The spectra for line 2 under (111) stress reveal that component 2.1 occurs for
Ell only, components 2.2 and 2.3 appear for E.l.. only, while 2.4 is observed for .both
polarisations. This accords with ·the spectra of Onton et al. (1967), and hence
with the ordering (opposite to that for the ground state) and magnitude (smaller
than that for the ground state) of the excited state splitting deduced by them for
line 2. The weak component, 2.4, for E.l.. is predicted to have a relative intensity
of U2/2 (see Fig. 1) which suggests U2 rv 0 and accounts for the robustness of the
other four components. As before for line 1, the slopes of straight lines fitted to
the stress splitting data (Fig. 5b) are used to calculate the deformation potential
constants which are given in Table 2. Again the present values are smaller in
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magnitude than those given in the previous work, being about half the value
obtained experimentally and about two-thirds of the calculated value.

The quantitative piezospectroscopy of line 3 has not been previously reported,
although Onton et ale (1967) noted that the polarisation pattern is identical
to that of line 1. This is in accord with the present observations, with the
exception that component 3.3, while weak, is observed here for Ell (Fig. 6a). The
assignment of symmetry and the remarks made above concerning the intensities
of the components of line 1 apply to line 3 also. In fitting the data of the excited
state splitting (Fig. 6c) a second-order, rather than first-order, polynomial was
required. The resultant .deformation potential constant (given in Table 2) is close
to that calculated by Buczko (1987).

A spectrum for lines 7 and beyond is shown in Fig. 7a. The behaviour
of line 7 follows the same pattern as that of lines 1 and 3, with the same
ordering. As was the case for line 3, a parabolic fit is made to determine
the excited state splitting (Fig. 7c), with an identical result to that for line 3.
This compares well with the calculations of Buczko (1987) which also show that
d7 ~ d3 .

Line 10 shows only two components and is identified as either a T6 of T7 state,
neither of which splits under stress. It cannot be a Ts state, as comparison of the
possible splitting patterns (Fig. 1) and the experimental data (Fig. 8) indicate.

Of the higher energy lines, 12 to 16 follow the same pattern as line 10. Line 8
probably corresponds to either a T6 or T7 state. There are no clear data for line
11 and those lines beyond 16. The greatest problem in interpreting the higher
energy experimental piezospectroscopic data is that there are more components
evident for Ell than there are for E-t, a pattern not consistent with any transition
scheme shown in Fig. 1.

The analysis of Buczko (1987) gave a value of do = -4 ·17 eV for one of the
ground state deformation potential constants, while Chandrasekhar et ale (1973)
estimated this to be -4· 50±0 .15 eV from the stress splitting of the 2p' line
and -4· 46±0 . 10 eV from the splitting of line 2. The ground state splitting
has been computed from the present data using linear fits to data from each of
lines 1, 2, 3, 7 and 10-detailed results are set out in Table 2-and combining
the data for these leads to do = -3·91 ± 0·07 eV, close to Buczko's value and
about 90% of the Chandrasekhar et ale value but not, within error, agreeing with
either.

(ii) Force applied in a (100) direction. The spectra for line 1 for F II (100)
are shown in Fig. 9a. Evidently the transitions for the two polarisations almost
coincide, but closer inspection reveals that the components for Ell bracket those
for E-t; this small but distinct separation is also evident in the spectra and
fan charts of Onton et ale (1967) and Chandrasekhar et ale (1973). As the two
components for Ell (1.1 and 1.4) are the extreme ones, the ordering of the excited
state must be the same as that of the ground state, in agreement with Onton
et al., but in contrast to Chandrasekhar et ale who, in a numerical comparison
with the splitting of the 2p' line, concluded that the ground and excited states of
line 1 are ordered oppositely. The ground and excited state splittings are shown
in Fig. 9c. The very small splitting of the excited state is evident, resulting in
a deformation potential constant close to zero, in agreement with the value of
Buczko (1987) (see Table 2).
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Fig. 12. (a) Stress dependence of the energies of the components of line 10 under (100)
compression. (b) Stress splitting of the ground state as deduced from the components of line
10 under (100) compression.

The stress splitting of line 3 is measured here quantitatively for the first time
(Fig. 10). Its symmetry and ordering are deduced to be the same as those of
line 1. The intensities also follow the pattern of line 1, in that the two components
for EJ.. are approximately equal in intensity; however, for Ell, component 3.1 is
about 8 times the intensity of component 3.4. The polarisation features indicate
a negative value for b3 , but the second-order fit to the data (Fig. 10c) gives a
positive value. The value determined from this graph, b3 = (0·03 ± 0·10) eV,
embraces the value of zero computed by Buczko (1987).

For line 7, in contrast to lines 1 and 3, the components for EJ.. bracket those
for Ell (Fig. 11a), and hence the splitting of the excited state is in the opposite
order to that of the excited states of lines 1 and 3. As for line 3, line 7 shows very
little excited state splitting, and the value given in Table 2 for b7 is consistent
with the value of zero given by Buczko (1987).

Line 10 shows the 'classic' pattern of a split r 6 or r 7 state, with the more
energetic component for EJ.. being rv3 times the intensity of the less energetic
(Fig. 12a). These data establish that line 10 has r 7 symmetry, thus verifying
the theoretical assignment for this state (see Table 1).

Of the higher lines, 11 to 14 appear to be rs, r6 , r7 and r s respectively,
but this is not well established. Even less certain is the assignment of lines 8, 9
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compression. (b) Stress splitting of the ground and excited states as deduced from the
components of line 2 under (110) compression.

and 10. Once again, a dearth of components for E.L inhibits the interpretation
of the experimental data.

As for (111) stress, an experimental determination has been made of the ground
state deformation potential constant using data from each of the lines 1, 2, 3, 7
and 10; the results are listed in Table 2. The final value of bo = -1· 46 ± 0 ·13 eV
agrees, within error, with the calculation of Buczko (1987) and is about 90% of
the value of Chandrasekhar et ale (1973), again in agreement, within the error.

(iii) Force applied in a (1,10) direction. For F II (110), line 2 follows the
polarisation pattern shown in Fig. 20a of Onton et ale (1967). The stress
splitting of the components is shown in Fig. 13a. The ground and excited state
stress splittings are shown in Fig. 13b. The values of bo and b2 determined
by combining these data and the (111) data using equation (14) appear in
Table 2.

(iv) Isotropic stress. As discussed in the theory section, by appropriate
summation of the energies of the stress-induced components, for stress applied in
either the (100) or (111) direction, the difference between the excited and ground
state hydrostatic deformation potential constants, a, - ao, can be determined,
but for no direction of applied stress can a; or ao be determined independently.
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Data for a; - ao for lines 1, 2, 3, 7 and 10 are given in Figs 14a to 14e
respectively, and in Table 2. As might be expected the relative differences are
small (of the order of o· 1 meV) over the range of stresses covered and generally
increase with decreasing binding energy. No previous theoretical or experimental
determinations of these deformation potential constants are known.

5. Conclusions

The spectrum of boron in silicon has been re-examined. Transition energies
have been determined with a greater precision than previously and some new
transitions have been identified. Excellent agreement with recent theory and
previous experiment is obtained. Oscillator strengths and line widths have been
measured for many lines, the former being in good agreement with theory.
Spectra are shown in Figs 2 and 3 and the detailed data derived (as well as
the experimental and theoretical results of others for comparison) are given in
Table 1.

Piezospectroscopy has been performed using forces applied in the (100), (110)
and (111) directions. Piezospectra, fan diagrams and energy splittings and shifts
are shown in Figs 4 to 14, and the values of the deformation potential constants
obtained are given in Table 2. The values of the ground state deformation
potential constants bo and do have been estimated using five spectral lines.
The values are close to those given by Buczko (1987) and somewhat smaller in
magnitude than those of Chandrasekhar et ale (1973). Excited state deformation
potential constants bi and d; have been measured for lines 1, 2, 3 and 7 and
are generally in agreement with the results of Buczko and smaller in magnitude
than those of Chandrasekhar et al., where these are given. It might be noted
that the deformation potential constants for group III acceptors in germanium
as calculated by Buczko (1987) are close to those observed experimentally (see
Freeth et ale 1987). Relative isotropic deformation potential constants a; - ao
have been given for lines 1, 2, 3, 7 and 10.
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