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Abstract

One of the interesting features about field theories in odd dimensions is the induction of
parity-violating terms and well-defined finite topological actions via quantum loops if a
fermion mass term is originally present and conversely. Aspects of this issue are illustrated
for electrodynamics in 2+1 and 4+1 dimensions.

1. Introduction

There are. a few curiosities associated with field theories in an odd number of
space-time dimensions. The first is that the overall degree of divergence of an
integral possessing an odd mass scale cannot be taken at face value, since such
an integral behaves like the gamma function at half-integral argument values.
This is most easily seen by considering dimensional regularisation of the typical
integral as D tends to an odd integer (when r below is an integer),

I==-ij f(r)dDp == (-1)rf(r-D/2)
(p2 _ M 2 )r (41r)D/2 (M2)r- D/2 . (1)

A second noteworthy property is that in odd dimensions, one commonly
encounters couplings which are odd powers of mass. This can be understood by
considering a free-field theory in D space-time dimensions,

j dDx [((8¢)2 - p,2¢2)/2 + i[J(i-y.8 - m)'lj; - P"vP"v/4] , (2)

where typically ¢ is a scalar, 'l/; is a spinor and FI-£v == ol-£Av - ovAI-£ is a Maxwell
gauge field. The dimensionlessness of the action (in natural units) specifies the
mass dimensions of the fields,

[¢], [A] f'J M D / 2- 1,

whereupon interaction Lagrangians like

['l/;] f'J M(D-l)/2 ,

j dDx [ei[J".A'lj; + j¢3 +g¢i[J'lj; + >..¢4 +G(i[J'lj;)2 +...] (3)
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will have coupling constants with prescribed dimensions,

[e], [g] r"-' M 2- D / 2 , [I] r"-' M 3- D / 2 , [A] r"-' M 4 - D , [G] r"-' M 2- D • (4)

One then observes that in odd dimensions the couplings e, I,9 have odd VM
scales. That does not matter much for electrodynamics since we meet powers of
e2 in the perturbation expansion but for I, 9 we can potentially encounter single
powers of the coupling. In particular for three dimensions,

[I] r"-'M! , [e], [g] r"-' M! , [A]r"-'M, [G] r"-'M- 1 , (5)

telling us that electrodynamics, chromodynamics, A¢4 and Yukawa interactions
become super-renormalisable, while Fermi interactions remain unrenormalisable.
Combined with the first property, this has the effect of eliminating certain
ultraviolet infinities in theories such as A¢4; thus the tadpole graphs of order
A and higher are perfectly finite and the only infinity in that model is the
self-mass of ¢ due to the three-o intermediate state. For electrodynamics in 2+1
dimensions, the situation is even better-no infinities at all.

A third peculiar aspect of odd D dimensions stems from the algebra of the
Dirac 'Y-matrices

{'YP,,'Yv} = 21]p,v .

When D is even it is well-known that the 'Y have size 2D / 2 x 2D / 2 and there exists
a 'Ys matrix which is the product of all the different D'Y and which anticommutes
with each 'YP,; one can always arrange it to have square -1, like all the space-like
'Y (in our metric +,-,-, ...). It is not so well known that in one higher dimension,
the size of the 'Y remains the same-all that happens is that the ''Ys' matrix
becomes the last element of the D Dirac matrices.

For instance, in three dimensions one can take the two-dimensional Pauli
'Yo = 0"3, 'Yl = iO"l and simply append 'Y2 = ''Ys' = i'YO'Yl = -i0"2 to complete
the set, without altering the size of the representation. At the same time it
should be noticed that one can get a non-zero trace from the product of three
gamma-matrices, viz. Tr['Yp'Ya'Yr] = 2iEpar. Similarly, in five dimensions one can
take the usual four-dimensional ones and just append 'Ys == 'YO'Yl 'Y2'Y3 as the fifth
component; here as well the product of the full five 'Y gives a non-vanishing
trace: Tr['Yp,'Yv'Yp'Ya'Yr] = -4Ep,vpar. The lesson is that when D is odd, one should
be careful before discarding traces of odd monomials of gamma-matrices if there
are sufficiently many 'Y, since at least

Tr[ ] _ (2 ') (D- l )/ 2'YP,l 'YP,2 ···'YP,D - Z Ep,lP,2'''P,D'

Another property worth remembering in odd dimensions is that if one constructs
suitably normalised antisymmetric products of r matrices, 'Y[P,lP,2'''J.lr] (the total
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set of these from r = 0 to r = D generates a complete set into which any
2[D/2] X 2[D/2] matrix can be expanded), then there exists the relation

"V[ ] = i(D-I)/2€ "V[JLr+1JLr+2···JLD]/(D - r)'
'JLIJL2···JLr JLIJL2···JLD' •

This often helps in simplifying products of matrices.
Turning to discrete operations, a charge conjugation operator C with the

transposition property

C C- I - (_1)[(r+I)/2] ( )T'Y[JLl JL2···JLr] - 'Y[JLl JL2···JLr] (6)

always exists in even dimensions, but cannot be defined at the odd values
D = 5,9,13.... This is intimately tied with the existence of topological terms
in the action for the pure gauge field, as we shall see. As for parity P, it
corresponds to an inversion of all the spatial coordinates for even D, since that
is an improper transformation. However when D is odd, it should be regarded
as a reflection of all the space coordinates except the very last one, x D-I, in
order to ensure that the determinant of the transformation remains negative. It
is straightforward to verify that this corresponds to the unitary change

P1fJ(Xo, Xl, ... , XD-2, XD_I)P- l = - irJ'YO'YD-I1fJ(XO, -Xl, ... , -XD-2, XD-I)

=rJ'YI ... 'YD-21fJ(XO, -Xl, ... , -XD-2, XD-I) , (7)

where rJ is the intrinsic parity of the fermion field. In that regard, one can just
as easily check that a mass term like m{;1fJ in the action is not invariant under
parity for Dodd.

This potential to induce other parity-violating interactions in the theory forms
the subject of this paper. In Section 2 we shall examine the induction of a
Chern-Simons term in 2+1 electrodynamics from a fermion mass; the converse
process is considered in an Appendix. In Section 3 we generalise this to 4+1
QED and to higher D, with the converse effect also treated in the Appendix.
An explanation of why this is a pure one-loop effect is also provided. Finally we
discuss in Section 4 what happens when electrodynamics is purely topological
(no free p2 term in the Lagrangian) as this represents a system quite different
from what we are accustomed to.

2. 3D Electrodynamics

Turning to QED in 2+1 dimensions, we are blessed with a coupling with
positive mass dimension [e2 ] rv M, so we anticipate a finite number of ultraviolet
singularities. But in fact none exists thanks to gauge invariance. The standard
diagrams for photon polarisation, electron self-energy and vertex corrections are
all perfectly finite-barring infrared problems, which actually correct themselves
non-perturbatively through the dressing of the photon line, as first demonstrated
by Jackiw and Templeton (1981), although some doubts about the loop expansion
have been expressed by Pisarski and Rao (1985).
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Straightforward evaluation of the graphs produces the one-loop results

e
2 J a(1 - a)da

II/-,v(k) = (k/-'kv - k2'TJ/-,v) 271" Jm2 _ k2a(1 _ a)

e
2 J daA ,+ imEA/-,V

k
471" Jm2 - k2a(l - a)

2 J dw [e 4m]
S(P) = (T(if;(p)¢(O))) = 1~7I" wh.p - w) w - (w _ m)2 ,

(8)

(9)

where eis a parameter that fixes a Lorentz-covariant gauge (e = 0 is the Landau
gauge). The vertex corrections are obviously finite too, because 'Zl = Z2'. Higher
powers of e2 only serve to make the diagrams more convergent than they already
are in lowest order, since the series expansion of a physical amplitude will take
the form

[

e2 e
4

]T(k) = To(k) 1 + Cl m + C2 m 2 + ... ; c; = f(k/m),

where k signifies the external momentum variables. Broadhurst et ale (1993)
have calculated some of these coefficients for any D.

An important aspect of (8) is the induced parity-violating Chern-Simons
interaction, EAJ-tVA AFr", It is not surprising that it should have sprouted, since we
started with a fermion mass mif;1f; term which is intrinsically P-violating in odd
dimensions; but the value of that induced photon term is finite and disappears
as m -7 o. Note, however, that in the infrared limit it reduces to ie2EAJ-tvkA /47r
provided that m -# o.

There has been some argument in the literature that this Chern-Simons term
may produce anomalies in some processes because it contains an E tensor specific
to three dimensions (in much the same way that the axial anomaly is connected
with the E tensor in four dimensions). This cannot be true because vacuum
polarisation to order e2 is perfectly sensible and finite when evaluated by any
reasonable regularisation. Anomalies only arise when a divergence multiplies an
apparent zero, as in the Pauli-Villars method, when a mass regulator contribution
M 2 multiplies an integral of order 1/M2 ; or in a dimensional context, when a
pole l/(D - 3) multiplies an evanescent zero (D - 3). But, as we have already
seen, the photon self-energy diagram contains no such singularity (Delbourgo and
Waites 1993). Thus an anomaly is indeed absent.

3. Electrodynamics in Higher Dimensions

A subject of debate has been whether the induced Chern-Simons term suffers
from higher-order loop corrections. There is a simple proof, presented later,
which says this cannot be, but before describing it, let us exhibit the induced
term for any odd D dimension, as it is a 'clean' result. We begin as before with
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massive fermion QED. For arbitrary D the induced topological term takes the
form of an n-point function,

C€J.tlJ.t2---J.tD AJ.tl FJ.t2J.t3 •• ·FJ.tD-IJ.tD; n = (1 + D)/2. (10)

Notice that this conforms perfectly with charge conjugation: when D = 3 and
C is conserved, the topological term involves an even number n = 2 of photons;
when D = 5 and [e2 ] f'V M:), we encounter three photon lines but then C is no
longer valid; when D = 7, C-invariance becomes operative again and the number
of photon lines is n = 4; and so on.

k,Jl

k',v

+

k',v

k,Jl

Fig. 1. One-loop induction of a Chern-Simons amplitude in five dimensions,

The result of the one-loop contribution to the topological term has already
been quoted in equation (8). Looking at the next odd dimension, D = 5, the
relevant one-loop graphs are shown in Fig. 1, leading to the induced vertex

r>..p,v(k, k') = -2ie3{(l5p Tr[-yv('y.p + m)'yp, (1'. (p + k) + m)'y>..('y.(p - k') + m)]
J' (p2 _ m 2) [(p + k)2 + m 2][(p _ k')2 _ m 2] .

Introducing Feynman parameters in the usual way to combine denominators
and picking out the term with five gamma-matrices in the trace, we end up with

k P k,a

j da d(3d'Y 8(1 - a - (3 - 'Y)€)..J.tvpa

r>..p,v(k, k') = - 16ie
3
m (l5p [p2 _ m2 + k2af3 + k,2'Ya + (k + k')2 f3'Y]3

__ e3m f.>..p,vpu kP k'u (I da df3 d'Y 8(1 - a - f3 - 1') . (11)

- 871"2 }Ovm2-k2af3-k,2'Ya-(k+k')2f3'Y

One can regard this amplitude as the five-dimensional description of the process
1t"0~ 2"1, because one of the indices (4) of the Levi-Civita tensor just corresponds
to the standard pseudoscalar and the residual four indices (0 to 3) are the normal
4-vector ones. Just as with 2+1 QED, we see that the induced term in 4+1
QED vanishes- with the fermion mass m. [Contrariwise, one can check that if
m = 0, but a term (10) is present from the word go, then a fermion mass term,
amongst other parity-violating ones, will arise. See the Appendix.]

We are now in a position to quote the topological vertex induced for arbitrary odd
D by the fermion mass term. Introduce n = (D + 1)/2 and Feynman parameters
ai, i = 1 ... n, for each internal line (Fig. 2). Call the momentum flowing across
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L
kij

''1~:

Fig. 2. One-loop induction of a Chern-Simons term in D dimensions.

each possible cutting of two lines k i j if those lines have parameters ai, aj. The
calculation then produces the result

r J-t 1/-£2'"J-tn ( k) ==
menin-1

2(21l"t- l E/-'1/-'2"""/-'D kr2
k~4 ... k~D

(12)

0(1- ~ak)
n

m 2
- L k;j aiaj

i<j=l

x t' IT dak---:::=======
io k=l

One may readily check that this collapses to the results (8) and (11) for D == 3
and D == 5 respectively. It corresponds to the Chern-Simons term (10) where
C == en /2n! (41r)n-l if one goes to the soft photon limit, always assuming m # o.

To finish off this section let us explain why this one-loop answer (12) is
all there is. In three dimensions, the Lagrangian EAJ-tvAA Fi'" will change by
a pure divergence under the gauge transformation, 8A ~ aX, so the action
remains invariant for all normal field configurations that vanish at 00. However,
a fourth-order interaction like

EAJ-tvA Ar-:FpaFpa

will not be invariant under the gauge change; thus it is not permitted. More
generally, in odd D dimensions the interaction

E A J-t l FJ-t2J-t3 FJ-tD-lJ-tD (F Fpa)N.
J-tlJ-t2'''J-tD • • • pa, N2::1, (13)

and ones like it, are forbidden by gauge invariance and thus cannot be produced.
On the other hand a two-loop contribution to the fundamental topological term
can be regarded as an integration of (13), with N == 1, over one of the photon
momenta. Since we have just concluded that (13) must be absent, we deduce that
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the induced topological term (10) cannot receive any two-loop (or higher-loop)
quantum corrections. In this respect, it is a pristine result similar to the
Adler-Bardeen theorem for the axial anomaly; nevertheless it is only of academic
interest in as much as QED becomes unrenormalisable (cf. the dimensions of
e2 ) when D 2: 5, unless the space-time is compact, e.g. in some Kaluza-Klein
geometries.

4. Topological QED

SO far we have considered models where the initial Lagrangian contains the
normal free gauge kinetic energy FJ-tvFJ-tv term, and seen what transpires as
a result of parity violation primarily through the fermion field. Now we shall
consider what happens when the initial Lagrangian has no gauge field kinetic
energy but starts off life instead with a Chern-Simons piece such as (10). In
2+1 dimensions, this still means a bilinear term in the gauge field capable of
launching a propagator,

o.; == [iE/WAe, _~kp.kv]
J-Lk2 k4

'
(14)

where we have taken account of gauge-fixing, with parameter F, (The very same
expression can be obtained by adding a conventional kinetic term -ZFJ-tvFJ-tv14
and taking the limit Z ~ 0.) Evaluating the fermion self-energy now yields

~(p) == e2 j {Pk "(p.("(.p - "(.khv DP.V(k) = -e2 [ ~"(.p + J _p2] , (15)
(p - k)2 16J_p2 8J-L

which contains a mass-like term where none previously existed. In the same vein,
we may compute the vacuum polarisation correction to (14) and arrive at

( - k) e2
II (k) _ 0 2Tr j J3 1J-t1·P1v1·P ==(-k2n +kkv ) ,(16)

p.v - ie p p2(p _ k)2 '/p.v p. 8J-k2

which has the effect of leaving D(k) rv 11k. In higher orders of perturbation
theory we may expect that

(
e2 e

2
) (e2

e
2

)~(p) == "t-P j --, - + J-p2 9 --, - ,
J-p2 J-L J-p2 J-L

(
e

2
e

2
)n.; = (-k

2'T/p.v + kp.kv) IT J-k2' j; ,

where t, 9 and 1r are scalar functions of their arguments. It is fascinating to
speculate on the full form of those functions by applying some non-perturbative
method of solution.

The situation is radically different in 4+1 dimensions since the Chern-Simona
term is trilinear in the gauge field and alone cannot engender a propagator.
Rather, one must resort to quantum corrections to get something of that ilk;

Induced Parity Violation 471 

the induced topological term (10) cannot receive any two-loop (or higher-loop) 
quantum corrections. In this respect, it is a pristine result similar to the 
Adler-Bardeen theorem for the axial anomaly; nevertheless it is only of academic 
interest in as much as QED becomes unrenormalisable (cf. the dimensions of 
e2 ) when D ;:::: 5, unless the space-time is compact, e.g. in some Kaluza-Klein 
geometries. 

4. Topological QED 
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where we have taken account of gauge-fixing, with parameter~. (The very same 
expression can be obtained by adding a conventional kinetic term -ZFJ.'vFJ.'v 14 
and taking the limit Z -+ 0.) Evaluating the fermion self-energy now yields 
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we may compute the vacuum polarisation correction to (14) and arrive at 

II (k)=ie2Tr!(f3p'YJ.''Y·P''(v'Y.(P-k) = (_k2 +k k) e2 (16) J.'V 2( k)2 'TfJ.'v J.' v r--;7; , 
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where f, g and 7r are scalar functions of their arguments. It is fascinating to 
speculate on the full form of those functions by applying some non-perturbative 
method of solution. 

The situation is radically different in 4+1 dimensions since the Chern-Simons 
term is trilinear in the gauge field and alone cannot engender a propagator. 
Rather, one must resort to quantum corrections to get something of that ilk; 
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the vacuum polarisation graph (initially from massless fermions) produces a hard
quantum loop contribution:

_ (_ 1]/-LV k/-Lkv) 51271" _ t/J.tkv .
DJ.tv - k 2 + k4 3e2 J -k2 k4 (17)

Taken with the trilinear gauge interaction, this can produce a vacuum polarisation
effect from the gauge field itself, namely

IT - i(5121rC)2 J J5k' E kQ v" E p(ry/j k k'
/-LV - 3e2 [k,2 (k _ k')2]~ /-Lpua{3 V ~ 8

or

IT/-LV = (1]/-LV k2 _ k/-Lkv) (512C) 2 J-k
2

3e2 12·

c

Fig. 3. Induction of a fermion mass term through a topological interaction.

Interestingly, (17) does not give birth to a mass-like fermion self-energy at
the one-loop level-five gamma-matrices are needed to obtain that. This means
we have to consider two-loop effects, either to order e4 or to first order in
the Chern-Simons coupling C, as sketched in Fig. 3. Quite generally in 4+1
dimensions we may anticipate that

~(p) = ~.p f(e2J -v', C /e3
) + J _p2 g(e2J _p2, C /e3

) ,

IT/-LV = (-k21]/-Lv + k/-Lkv) 1r(e2J-k2,C/ e3
) .

However, we must be on guard that higher-order contributions in e2 and Care
very likely unrenormalisable now and possibly of academic interest only. Still,
our discussion does indicate the nature of such parity-violating contributions in
these models and how they spring from just one source.

If we could trust some non-perturbative method for resumming the Feynman
diagrams then we might be able to estimate the quantum effects associated with
the dimensional couplings e2 and C. The same of course applies with even
greater force to pure Chern-Simons theory in higher odd dimensions.
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Appendix

Here we shall examine the converse of Sections 2 and 3, in as much as we
deal with massless electrodynamics (A and 'ljJ) but introduce the parity violation
through a primary Chern-Simons term, not a fermion mass. Our treatment is to
be contrasted with that in Section 4, where a kinetic term for the photon was
absent. In the present circumstances,

£, = {;/.(i8 - eA)'ljJ - Fl-tvFI-tV /4+ C€l-tlI-t2 ... I-tD Al-tlFI-t21-t3 ••• FI-tD-lI-tD,

we can be certain the gauge field will propagate at the bare level in any dimension
D. It so happens that when D = 3 the Chern-Simons piece is also bilinear and
can be incorporated with the standard F 2 term to give the initial two-point
function,

D - -'TJJ.LV + kJ.Lkv/k
2

i Jl£J.LVAe" _t;,kJ.Lkv

J.LV - k2 _ J-t2 + k2(k2 - J-t2) k4 ·

Parity-violating terms then arise through quantum corrections in other Green
functions.

Probably the most significant of these is in the fermion self-energy,

E(p) = e
2"(.p

[p4 - J-t4 in (jj + p) _2(p2 - J-t2) + rrp2FiJi _ 2rrt;,../_p2]
167rp2 jj2p jj _ P jj J-t2 2

+~ [p2 - J-t2 in (J-t + p) _ 2jj + 7r../_p2] .
8jj7r P jj - p

We should notice that in the limit of small u; this expression reduces to

E(p) = e
2"(.p [!!:- _ 37reFiJi] + e

2J-t
.

47rp2 2 8 8../_p2

and could have been directly evaluated by regarding €AF as an interaction, rather
than combining it with the bare photon propagator as above. (It will disappear,
of course, when jj -+ 0 in the Landau gauge.)
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D. It so happens that when D = 3 the Chern-Simons piece is also bilinear and 
can be incorporated with the standard p 2 term to give the initial two-point 
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Parity-violating terms then arise through quantum corrections in other Green 
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Indeed this is the only sensible treatment for higher dimensions D since the
Chern-Simons term is no longer bilinear. For D = 5 to first order in CEAFF,
one engenders the mass term (and no kinetic' term)

~(p) = _ ie3C J JP k JPk' f.I-'VAG:/3 kG: k'/3 ,,(I-'"(.(p - k - k')"{v "(.(p - k)"{A
k2k,2 (k + k')2 (p - k - k')2 (p - k)2

_ 3f(3 - D) p4e3C
- (16)37I"4 ;

unfortunately this is divergent as D -+ 5, which is not too surprising. There is
likewise a two-loop contribution of the same type to the photon self-energy, but
this cannot add a parity-violating part to II because such a term would violate
gauge invariance for D = 5, as we have already explained in Section 3.
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