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A method of summing diagrams in quantum field theory beyond the variational Gaussian 
approximation is proposed using the continuum form of the recently developed plaquette 
expansion. In the context of >-<j} theory the Hamiltonian, H[¢], of the Schrodinger 
functional equation H[¢]\II[¢] = E\II[¢] can be written down in tri-diagonal form as a cluster 
expansion in terms of connected moment coefficients derived from Hamiltonian moments 
(Hn) == !V¢VI[¢]Hn[¢JVd¢] with respect to a trial state VI [¢]. The usual variational 
procedure corresponds to minimising the zeroth order of this cluster expansion. At first 
order in the expansion, the Hamiltonian in this form can be diagonalised analytically. The 
subsequent expression for the vacuum energy E contains Hamiltonian moments up to fourth 
order and hence is a summation over multi-loop diagrams, laying the foundation for the 
calculation of the effective potential beyond the Gaussian approximation. 

1. Introduction 

There has been much effort over the years devoted to the problem of summation 
of diagrams in continuum quantum field theory defined in four-dimensional space­
time. Achieving a full non-perturbative solution in the continuum is usually 
seen as a hopeless task and has been totally abandoned by many in favour of 
Monte Carlo simulation of lattice regularised theories. The few long-standing 
methods that are capable of summing over particular classes of diagrams include 
renormalisation group, Schwinger-Dyson equations, 1/ N expansions and the 
variational principle. In each case the ability to extend the summation to larger 
classes of diagrams is severely limited and hence there are many efforts at finding 
alternative schemes. The requirements are simple to state-an approximation 
scheme is sought carrying out summation over classes of diagrams which can 
be improved systematically without impossible effort to achieve convergence of 
physical results. 

In this paper a candidate method satisfying these requirements is proposed. 
This method is based on the analytic cluster expansion property (Hollenberg 
1993) of the Lanczos tri-diagonalisation procedure formulated in the functional 
Schrodinger picture. The method reduces to the usual variational principle at 
zeroth order and thus represents a systematic improvement of the variational 
method. 
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2. The )..cjJ4 Theory in the Functional Schrodinger Picture 

To illustrate we will consider >..¢4 theory, the Lagrangian of which is given by 

£ = ~8J.L¢8J.L¢ - ~m2¢2 _ >..¢4 . (1) 

In the Schrodinger functional formalism the equal time commutation relation 
(Rosen 1968) 

[¢(x),7l'(y)] = i8(x - y) 

is satisfied by the replacement 

8 
7l'(x) -+ i 8¢(x) , 

so that the Hamiltonian becomes 

J 82 
H[¢] = dx{ -~ 8¢(x)2 + ~(\7¢(X))2 + ~m2¢(x)2 + >..¢(x)4}. 

(2) 

(3) 

(4) 

The functional operator H[¢] acts on state functionals \[J[¢] for which the functional 
Schrodinger equation is 

H[¢]\[J[¢] = E\[J[¢]. (5) 

The solution to the free theory vacuum in this formalism is simply the Gaussian 
functional 

\[J(A=O)[¢] = Nexp{-~ J dx¢(x)/m2 - \72 ¢(x)} , (6) 

where N is a normalisation constant. Traditionally, the variational treatment of 
the>.. =1= 0 theory starts with a Gaussian trial state (Barnes and Ghandour 1980) 

\[J F[¢] = NFexp{ -~ J dxdy ¢(x)F(x - y) ¢(y)} . (7) 

The function F(x - y) is determined by minimising the energy functional Evar[F] 
given by the expectation value 

Evar[F] = J D¢\[J F[¢]H[¢]\[J F[¢] , (8) 

The variationally minimised energy Evar[F] is a summation over all 'bubble' 
diagrams. The purpose of this work is to describe a method by which one 
can systematically sum over increasing classes of diagrams beyond that of the 
Gaussian approximation. 
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3. Lanczos Cluster Expansion in the Continuum 

In principle, the exact vacuum energy (and spectrum), summing over all classes 
of diagrams, can be obtained by diagonalisation of the functional Schrodinger 
equation. This task is of course beyond present means, however, it is useful to 
consider the solution of the functional Schrodinger equation by diagonalisation 
in the light of approximation methods for such problems in many-body theory. 
In particular, the recently formulated plaquette expansion method (Hollenberg 
1993) for approximately diagonalising lattice Hamiltonians in the infinite-volume 
limit is well suited to this problem. 

The application of this approximation scheme to the diagonalisation of the 
functional Schrodinger equation proceeds in the same manner as for the lattice 
many-body problem. Starting with an initial state Vr[1>] (e.g. V1[1>] = Wc>.=O) [1>] or 
V1[1>] = WF[1>]) a basis of states {Vn[1>]} is constructed according to the Lanczos 
recursion 

1 
Vn[1>] = - [(H[1>]- an-1)Vn- 1[1>]- ,6n-2 Vn- 2[1>]J , 

,6n-1 
(9) 

where an = jV1>Vn[1>]H[1>]Vn[1>] and ,6n = jV1>Vn+d1>]H[1>]Vn[1>]. At the nth 
iteration of this recursion the Hamiltonian matrix Tn is 

a1 ,61 
,61 a2 ,62 

Tn = I ,62 (10) 

an-1 ,6n-1 
,6n-1 an 

Diagonalisation of the matrices Tn for increasing n gives converging upper bounds 
to the energy spectrum of the original Hamiltonian. In terms of the initial state, 
the calculation of the exact matrix at the nth iteration requires calculation of 
the Hamiltonian moments up to (H2n-1) = jV1>V1[1>]H2n-1[1>]V1[1>]. This is the 
approach taken by Choe et at. (1988) in their application of the analytic Lanczos 
method to lattice field theory. Since Hamiltonian moments are in general difficult 
to calculate, one is limited to only the first few exact Lanczos iterations and the 
large-volume limit cannot be taken. Progress can be made via a cluster expansion 
of the Lanczos recursion which makes optimal use of the lowest moments. This 
is precisely the plaquette expansion, which relies on the fact that the connected 
Hamiltonian moments (Hn)c are extensive in the number of plaquettes Np (or 
volume) on the lattice, i.e. (Hn)c ex Np. One of the main points of this paper 
is that this extensive property of the many-body lattice problem carries over to 
the continuum field-theoretic problem and hence the Lanczos cluster expansion 
can be applied to the diagonalisation of the Schrodinger functional equation. 

Specifically, given an appropriate trial state Vd1>] whose connected Hamiltonian 
moments (i.e. cumulants) scale with the volume 0 as (Hn)c = cnO, the Lanczos 
recursion admits expansions for an and ,6n of the form (Hollenberg 1993) 
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an = OCI + (n - 1) [C3] + ~(n _ l)(n _ 2) [3C~ - 4C2C3C4 + C~C5].!. 
C2 2c~ 0 + ... , 

(3~ = nC20 + ~n(n _ 1) [C2C~- C5] 

+ ~n(n _ l)(n _ 2) [-12C~ + 21c2c5c4 - 4c~c~ - 6C~C3C5 + C~C6] 1 24 n+ .. ·· 
(11) 

It can be seen immediately that the connected moment coefficients en, derived 
from the Hamiltonian moments (Hn) = !ViPV1[iPlHn[iP]Vl[iPj, correspond to 
diagrams of increasing complexity and hence the expansion systematically includes 
larger classes of diagrams weighted appropriately with the volume. Diagonalisation 
of the tri-diagonal matrix in this approximate form sums over the classes of 
diagrams represented by the expansion order. This is a converging procedure 
in the limit 0 --+ 00, as has been explicitly demonstrated for various lattice 
examples. Systematic increase in the class of diagrams is achieved by increasing 
the order of the expansion. 

Here we are interested in the analytic insight one may glean from summation of 
diagrams beyond the Gaussian approximation and so the numerical possibilities, 
important as they are, will not immediately concern us. At our disposal is the 
fact that the tri-diagonal matrix at first order in the expansion (i.e. up to the 
1/0 term) can be diagonalised analytically. In the large-volume limit the lowest 
eigenvalue (i.e. the vacuum energy if the appropriate trial state has been used) 
is given by (Hollenberg and Witte 1994) 

Eo = 0 [Cl + ~ 2 { J 3Cf" - 2C2C4 - C3}] . 
C2C4 - C3 

(12) 

The presence of the C4 term indicates that the above expression represents 
a summation over diagrams up to and including those contained in (H4). The 
exact class of diagrams summed over depends on the trial state used. 

For renormalisation purposes, the preferred option might be to calculate 
moments with respect to a shifted Gaussian (Barnes and Ghandour 1980) 

W4>o[4>l = Nexp{ -! J dxdy (4)(x) - 4>o)F4>o(x - y) (4)(y) - 4>o)}, (13) 

from which the Gaussian effective potential (Stevenson 1984, 1985; Barnes and 
Ghandour 1980) is calculated as 

v.,~auss\4>o) = min[J V4>W4>o[4>lH[4>lW4>o[4>l] . (14) 

The Gaussian effective potential coincides with ffilmmlsmg the zeroth order of 
the Lanczos cluster expansion, calculated from the shifted Gaussian trial state, 
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with respect to the function Fc/>o (x - y). Since the first-order expression from the 
Lanczos cluster expansion, Eo, sums over a larger class of diagrams, it is much 
closer to the ground state energy than the variational result. Hence, one would 
expect that the effective potential would be much better approximated by the 
Lanczos effective potential which we define as 

v.,<;anczos)(¢o) = v.,~auss)(¢o) + n C2(¢0)2 h/3c3(¢0)2 - 2C2(¢0)C4(<!>0) - C3(¢0)] 
C2(¢0)C4(¢0) - C3(¢0)2 ' 

(15) 

where the connected moments cn(¢o) (suppressing dependence on the bare 
parameters m and A) are calculated with respect the minimised shifted Gaussian 
trial state; i.e. the first moment is 

( ~ ) = ~ V(Gauss) (~ ) 
Cl 'Po n eff 'Po . (16) 

The advantage of calculating in the framework of the effective potential is the 
relative ease with which renormalisation of the bare parameters, A and m, can 
be carried out~as has been shown to be the case for v.,~auss) (¢o) (Stevenson 
1985). 

Table 1. First-order Lanczos cluster expansion approximation, Eo(>"), for the ground state of 
the anharmonic oscillator, H = -~ d 2 /dx2 + ~ x 2 + >..x4 

loglOA 

o 
1 
2 
3 
4 
5 
6 

Variational 

0·8125 
1·5313 
3·1924 
6·8280 

14·6871 
31·6317 
68·1434 

EO(A) Exact 

0·8037 0·8038 
1·5040 1·5050 
3·1286 3·1314 
6·6877 6·6942 

14·3838 14·3980 
30·9775 31·0103 
66·7338 67·0993 

The calculation of the moments to fourth order in A¢4 field theory is a 
reasonable algebraic challenge and is currently being undertaken. However, an 
indication of the improvement over the variational calculation which might be 
obtained is given in Table 1 for the case of the anharmonic oscillator (Hollenberg 
et al. 1993). The variationally minimised Gaussian trial state is used as the 
trial state for the Lanczos cluster expansion. The accuracy of the first-order 
Lanczos cluster expansion is typically a factor of ten better than the variational 
calculation. It is hoped that this significant improvement of the variational 
calculation carries over to the field-theoretic case. 
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