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Abstract

A general solution of the diffusion equation corresponding to an idealised swarm experiment in
infinite plane-parallel electrode geometry is given and the result is then specialised to the steady
state Townsend experiment. The role of the 'dispersion relation' generated by the diffusion
equation is discussed, and the physical meaning of its two zeros explored. It is found that
the smaller zero generally allows adequate representation of the electron density distribution
downstream of the source, but the larger zero must be found from the full Boltzmann eigenvalue
equation in order that the upstream region be represented even qualitatively correctly. The
results of a numerical calculation for electrons in water vapour are presented. The procedure
adopted by Tagashira et ale (1994) to obviate this difficulty is discussed.

1. Introduction

In this paper,' we wish to analyse the steady state Townsend (SST) experiment,
which may be idealised by the infinite plane-parallel electrode geometry shown in
Fig. 1. The source at z == Zo emits electrons continuously into a gas in equilibrium
filling the region between the electrodes. These electrons are accelerated by
an external electrostatic field to energies sufficiently high so that ionisation of
molecules may occur in collisions. Eventually, a steady state is reached where
the electrons drift and diffuse away from the source at the same rate at which
they are created at the source. We wish to analyse the density profile n(z) of
electrons both downstream and upstream from the source.

Thomas (1969) postulated the existence of an 'equilibrium region' downstream
from the source where the number density has a simple exponential growth rate

n(z) '" eK(z-zo) , (1)

where K is a constant. If equation (1) is substituted into the diffusion equation
[Huxley and Crompton (1974); see equation (3) below with the r.h.s. set equal
to zero, away from the source], there results a quadratic in K with solutions

W {[W]2 VI}!
K == K ± == 2D ± 2D - D ' (2)

* Refereed paper motivated by a presentation by H. Tagashira to the Third Japan-Australia
Workshop on Gaseous Electronics and Its Applications, held at Yeppoon, Queensland, in July
1994.
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Fig. 1. Idealised experimental arrangement in which an infinite
plane source at z = z0 lies between infinite plane electrodes
at z = 0, and R, the gap being occupied by a neutral gas of
number density no and temperature To.

where W, D and VI denote the electron drift velocity, longitudinal diffusion
coefficient and ionisation rate respectively. Both roots play a role for finite
geometry, as we demonstrate in this paper, although in the limit of infinite
geometry, only K _ enters the expression for n( z) downstream from the source.
A similar conclusion was reached by Thomas (1969) and Tagashira et al. (1977)
on the basis of a 'physical argument' and K _ is identified with QT, Townsend's
ionisation coefficient. On the other hand, upstream from the source, for infinite
geometry, the density profile decays exponentially at a rate governed by the larger
root K +, according to the solution of the diffusion equation. This is discussed
in Section 2. This is in accord with the results. of Standish (1989) and Tagashira
(1985, 1991).

An examination starting from Boltzmann's equation is also given, and this
could be expected to yield a more accurate description, especially in the case of
large gradients, where the diffusion equation breaks down. The corresponding
analysis is, of course, much more difficult (Standish 1989; Kondo and Tagashira
1990; Robson 1991; Sugawara et ale 1994), but certain key factors quickly emerge.
Thus, it turns out that in this picture there are two sets of eigenvalues of a
certain operator, {K~-)} and {K~+)}, where J1 == 0,1,2, ... is an index defining
the order within the respective sets, which determine the steady state density
profile. For infinite geometry, the smaller set, and in particular the fundamental
member K~-), controls the downstream behaviour, while K~+) controls the profile
upstream of the source.

We shall show in Section 3 that while K _ ~ K~-), and therefore the diffusion
equation can reasonably be expected to describe the downstream profile, K~+),
differs substantially from K+ in general, and therefore it is hopeless to try to
model the upstream behaviour using the diffusion equation.

Tagashira et ale (1994) have tried to corne to terms with this problem by
postulating different transport quantities W, D and VI in regions upstream and
downstream from the source. However, we believe that, while such an ad hoc
remedy is interesting, it is unsatisfactory in principle, and that the best way of
dealing with the upstream region is to bring to bear the full Boltzmann equation
eigenvalue analysis. This aspect, along with certain other physical arguments
which point to the inherent failure of the diffusion equation in the upstream
region, are discussed in Section 4. A numerical example is given for electrons in
water vapour.
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2. Diffusion Equation Analysis

(2a) Solution for Pulsed Source

We consider for simplicity an idealised swarm experiment conducted in the
plane-parallel electrode geometry shown in Fig. 1. A planar source at z == Zo
emits charged particles of charge e and mass m into a gas confined by infinite
plane electrodes at z == 0 and z == f. The particles drift, diffuse and react
with the gas molecules at rates governed by the drift velocity W, longitudinal
diffusion coefficient D and reaction rate VI respectively, in response to an external
electrostatic force a == eE/m per unit mass, and a gradient in number density
n(z, t) of the particles. The latter gradient arises from a combination of the
effects of source and boundaries. There is only one spatial variable z, directed
normal to the electrodes, to consider in this ideal arrangement, with all properties
assumed to be uniform in the x, y directions.

In this paper, we first analyse the problem phenomenologically, using the
diffusion equation

where

(Ot + L)n == S (z, t) ,

L == -Do; + WOz - VI

(3)

(4)

and S(z, t) is the source strength at position z and time t. If the source is
localised as shown in Fig. 1 and 0' particles are emitted in a pulse at t == to, then

S(z, t) == 0'8(z - zo)8(t - to) . (5)

Other modes of source operation can be dealt with by integrating the solution
over Zo and/or to as appropriate. Boundary conditions corresponding to perfectly
absorbing electrodes are assumed, i.e.

n(O, t) == 0 == n(f, t) . (6)

It is important to note in the context of the present discussion that the parameters
D, Wand VI are the same everywhere; in particular there is no distinction
between regions upstream and downstream of the source.

The diffusion equation analysis presented in this section is really a weak-gradient
theory, a point which should be borne in mind when considering the upstream
region in the SST experiment discussed below.

The form of the solution of (3) for the source function (5) and boundary
conditions (6) is given by

00

n(z, t) = ~ 8(t - to) L efl(>.+ikj)(t-tO)+A(Z-ZO)[e-ikj(z-zo) - e-ikj(Z+zo)j, (7)
j=-oo

where

O(K) == VI - WK + DK2
, (8)

A == W/2D, kj == j 7r / e (j == 1, 2, ...) , (9,10)



:~50

and 8(t-to) is the unit step function.
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(2b) Application to Steady State Townsend Experiment

In the SST experiment, the source in Fig. 1 emits electrons at a constant rate
into the gas and the field is sufficiently strong so that ionisation is appreciable.
Eventually a steady state is reached, where there is a balance between creation at
the source and by ionisation and a loss by drift and diffusion. The corresponding
density profile can be found by integrating the pulsed-source solution (7) over all
to, and then taking the limit t --? 00. The Poisson summation theorem (Robson
1985) may be used and we find after much algebra the following long-time
asymptotic expression for the density:

00

noo(z) _ ~ "" eA(z-zo) [e- A'12jf+z-zo\ _ e-,\'\2jf+z+zo l ]

2DA .Z::
)=-00

_0"_ eA(z-zo){e-'\'\z-zo\ _ e-A'(z+zo) + B[e'\'(z-zo) + e-'\'(z-zo)

2DA'

where

_ eA'(z-zo) _ e-A'(z+zo)]} , (11)

A' == (A2
,- VI / D) t , B == (e2A' f - 1)-1. (12,13)

The two zeros of n(K) are given by (2) and may also be written as

K± == A± A'.

These figure prominently in the following discussion.
Downstream from the source, z > zo, and (11) gives

(14)

noo(z) = 2~A' [eK-Cz-zo) (1 - e-2A'ZO)(1 - B) + BeK+Cz-zo)(l - e2A'ZO)]. (15)

Obviously both zeros K ± contribute for finite geometry. However, for an
unbounded medium, f --? 00, B --? 0 and (15) reduces to a simple exponential
form

noo (z) f'.J eK - (z-zo)

On this basis, we would like to identify

QT == K_

(16)

(17)

as the Townsend primary ionisation coefficient. Clearly only the smallest zero
K _ of n(K) == 0 contributes for infinite geometry. This result follows directly
from the general expression (15), without appealing to any 'physical' arguments
(Thomas 1969; Tagashira et al. 1977). Equation (15) also demonstrates however
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that both zeros K ± must be retained for finite geometry, downstream of the
source.

Now consider regions z < Zo upstream from the source, also in the limit f --)- 00.

Equation (11) becomes

anoo(z) == __ e-.\Iz-zol [e-.\'Iz-zol -.\'(z+zo)]
2DA' - e ,

and if the source is far from the boundary at z == 0, we have

noo(z) rv e-K+lz-zol

(18)

(19)

in the neighbourhood of that source and upstream from it. That is, the largest
zero K + of ~1(K) == 0 controls the upstream behaviour. Again, this result is in
accordance with other studies (Standish 1989; Tagashira 1985, 1991), but follows
from the general expression for finite geometry in a natural way.

Finally, we emphasise that other experiments could be analysed using equation
(7). For example, for the time-of-flight (TOF) experiment, which can be modelled
as a pulse of swarm particles injected into an infinite gas, the density profile
reduces to the familar travelling pulse for z » Zo:

( t) a8(t-to) (( ) [z-zo-W(t-to)]2)
n z, == 1 exp VI t - to - .

[41TD(t - to)] 2" 4D(t - to)

For later reference, we note from (8) that the following identities hold:

VI == n(O), W == -n'(O), D == ~n"(O)

(20)

(21)

and that the TOF experiment determines all these quantities, at least in principle.

Oil
Il=O 1 2

'1-
2

1~2\. 1~1~ I~K~) ex a/ 2 ~;y K(Y (+)

I 1 _~2L K

Fig. 2. Dispersion relations n~ (K) for the Fokker-Planck collision model operator (Standish
1987), where the intercepts on the K-axis are given by equation (26).

3. Boltzmann Equation Solution

We consider firstly an instantaneous source of electrons activated at time
t == to. The electron phase space distribution function f(z, c, t) is governed by the
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Boltzmann equation, from the solution of which we obtain the number density
(Robson 1991):

n(z, t) Jde f(z, e, t)

2 CX)

8(t - to)--'::' L L Aj1(Kj ) exp[nj1(Kj )(t - to)
I! . 1J-L J=

+ A(z - zo)] sinkjzosinkj z , (22)

where

kj == j7f/I!, Kj=A+ikj (j==1,2, ...),

A == aa2/ 2, a 2 m/kTo ,

(23)

(24)

To is the gas temperature and -OJ-L(K) are eigenvalues of !VI+Kcz, and where
!VI == J+a8cz , i.c,

(!VI + Kc; + nJ-L)VJJ-L(cIK) == o. (25)

The index J-L orders these eigenvalues, with 0 0 > 0 1 2: 0.2 2: .... The amplitudes
AJ-L(K) are given by certain velocity integrals over the eigenfunctions VJJ-L(cIK).
A typical family of 'dispersion' curves 0J-L(K), generated by solving (25) with a
model collision operator J, is shown in Fig. 2. Note the intersections on the 0
and K axes, for these have particular physical significance. The intercepts on
the K -axis for this model are given by

K~±) == ~a2a ± [(~a2a)2 + a 2v
m(J-LV m - VI)]! , (26)

where V m is the momentum transfer collision frequency. It is emphasised that
the following discussion is, however, independent of the details of J, and the
results are therefore quite general.

If the source in Fig. 1 operates in a continuous mode, the corresponding
solution may be found by integrating over all to. In the asymptotic time regime
t -+ 00, a steady state density profile nCX)(z) is attained in which both zeros K~±)

of nJ-L appear in exponential growth terms, exp[K~±)(z-zo)]. In the limit when
I! -+ 00, however, only the lower zero K~-) plays a role downstream from the
source z > Zo, i.e. the expression for nCX)(z) consists of a sum of exponentials

(27)(z > zo),nCX)(z) == L B~-) exp[K~-)(z - zo)]
J-L

where B~-) are constants. The fundamental velocity mode J-L == 0 dominates the
sum for large downstream distances z-zo, since K~-) > Ki-) > K~-) .... Thus
we have asymptotically at large z-zo, nCX)(z) rv eaT(z-zo), where aT = K~-) is
again identified as the Townsend primary ionisation coefficient.

On the other hand, upstream from the source (which is assumed far removed
from the boundary at z == 0), we find that only the larger zeros K~+) contribute:

nCX)(z) == L B1+) exp[-K~+) [z - zol] ,
J-L

(28)
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the Bh+) being constant amplitudes. The fundamental mode J-t = 0 again dominates
asymptotically. Note that an important result of the eigenvalue analysis is that
(Robson 1991)

K(+) = 2A - K(-)
J.L J..L '

(29)

where A is defined by (24). When To ~ 0, then A ~. 00 and the larger zeros
Kh+) become infinite. This is in contrast to the corresponding result for the
diffusion equation, obtained directly from (14),

K+ = 2A-K_, (30)

where A is given by (9) and remains finite as To ~ o. The situation is depicted
schematically in Fig. 3.
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Fig. 3. Schematic representation of 'dispersion curves' for the diffusion equation (3) and the
fundamental mode of the Boltzmann eigenvalue problem (25). The lower intercepts on the
K · I . K K(-) b K(+) K-axis are c ose, i.e. - ~ 0 , ut 0 » +.

While the lower roots are nearly the same for both Boltzmann and diffusion
equation solutions, as might be expected since the coefficients of the diffusion
equation are effectively chosen to produce an accurate, small-K representation of
Oo(K), i.e,

(-) -K_ ~Ko =aT, (31)

the upper root is not even closely represented by the diffusion equation value,
with

K+ «: K(+)o (32)
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at lower gas temperatures. Calculations for a specific case are reported below.
We shall discuss this startling difference and its ramifications from another angle
in the next section.

For practical purpose, the SST experiment can therefore be dealt with by
solving the eigenvalue problem (25) with OJL set equal to zero, i.e.

(M + K cz)'l/J == 0 . (33)

Now K can be considered to play the role of an eigenvalue. In solving (33),
we expect to find two spectral sets {K~-)} and {K~+)}, of which only the
first plays any role if downstream regions are being considered and boundaries
negelected. In fact, if the K~-) are known, then K~+) can be found from (29), if
upstream/finite geometry situations are under examination. Of these, only the
fundamental model J.L == 0 need be considered in asymptotic regions.

Table 1. Estimates of eigenvalues K ± and K~±) from the diffusion equation (14) and the
Boltzmann eigenvalue problem (33), respectively, for an electron swarm in water vapour at
To = 293 K, using the cross-section data set of Ness and Robson (1988). The reasonably good
agreement between K - and K &-) is in stark contrast with the enormous disparity between

K+ and K~+)

Elno (Td) K-Ino K&-)Ino K+lno K&+) Ino
(10- 2 1 m2 ) (10- 20 m2 )

200 0·93 0·94 6·54 7·92x102

300 3·10 3·10 6·40 1·19x103

400 5·70 5·58 5·43 1· 58x 103

500 8·41 8·14 4·55 1·98x103

600 11·2 10·3 3·89 2·38x103

The general Boltzmann eigenvalue problem (25) and the reduced problem (33)
specific to the SST experiment have been solved for electrons in water vapour
(Robson and Ness 1990), using the cross-section set of Ness and Robson (1988).
Estimates of eigenvalues found from the diffusion equation result (14) and from
(33) are shown in Table 1 for E / no over a range where ionisation is appreciable.
(Note 1 Td == 10-17 V cm2 . )

The fairly good agreement between K _ and K~-) shown in the first two columns
supports the approximation (31), at least in this case. However, K + is several
orders of magnitude less than K~+). Thus, while the diffusion equation offers
a reasonable way of modelling downstream density, it is not even qualitatively
correct upstream.

To conclude this section, we observe that the eigenvalue equations shown here
have appeared many times before in the literature, although the true nature of the
problem has not always been recognised (Robson 1991). It would seem that the
role played by equation (25) in the kinetic theory of swarms was first recognised
by Kumar (1984). Standish (1989) adapted Kumar's theory to SST. Our results
are essentially in accord with his observations, although the remarkable difference
in general between the upper roots K + and K~+) of the diffusion equation and
Boltzmann equation dispersion relations, O(K) and Oo(K) respectively, is lost for
the particular collision model chosen by Standish: For the Fokker-Planck model,
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flo(K) is a quadratic in K, identical to fl(K) and hence A == A and K+ == K~+)
in that case.

4. Discussion

Although we have focussed on the SST experiment, it is worth a reminder
that other experiments can also be analysed in terms of these dispersion curves
appearing above (Robson 1991). Thus while SST effectively determines the
intersections on the K -axis, the TOF experiment measures the intersection on
the fl-axis and the slope and curvature at small K (see equations 20 and 21).
Apart from the upstream behaviour in SST, it is the small -K properties of
flo(K) which are generally sampled in experiment. The significance of this is
that the diffusion equation could then be expected to be useful in analysing
these experiments, since it is essentially a weak-gradient (small-K) model of
reality. Put another way, fl(K) ~ flo(K) for small K (cf. Fig. 3). The large
gradientjlarge-K situation is, however, quite different and the total inadequacy of
the diffusion equation in the region upstream of the source in the SST experiment
is an example of this.

A brief digression from the mathematics to consider a physical picture will
serve to further highlight the qualitative inadequacy of the diffusion equation.
Firstly, note that the diffusion equation (3) contains only an integrated source
strength: There is no information as to how the particles actually enter the
gas upon creation. No matter whether they are created at rest, or with an
isotropic or anisotropic distribution of speeds, only the total strength a appears.
This detailed information must, of course, be specified when solving Boltzmann's
equation, but at the level of the diffusion equation only the value integrated
over all velocities enters the calculations. Thus, the diffusion equation cannot
discriminate between the details of various types of sources and, consequently,
neither do the expressions for density resulting from it, e.g. equations (18) and
(19) for the upstream profile. The gas temperature To plays a very important
role in this upstream distribution, as we illustrate in the following example,
but does not enter into the diffusion equation or its results except implicitly
through the transport coefficients. On the other hand, To appears explicitly in
the Boltzmann equation formalism, through equation (24).

To understand how To plays such an important role, consider a situation where
the particles are created at rest and assume a cold gas, To -+ o. This means
that the particles drift and diffuse downstream only and can never gain energy
and momentum through collisions with neutral molecules to diffuse upstream
against the field. That is, the density n(z) must be identically zero upstream
and (18) and (19) are simply wrong in this case. On the other hand, if K + in
(19) is replaced with the Boltzmann K~+) given by (29), then as To -+ 0, we
see that K~+) -+ (X) and the density vanishes everywhere upstream, as required
by the above physical considerations.

Tagashira et at. (1994) have recognised the shortcomings in the diffusion
equation upstream of the source in the SST experiment, but have attempted to
come to terms with this problem by effectively introducing a different diffusion
equation for the upstream region with different coefficients W', D' and VI',

resulting in different zeros K ±. Such an ad hoc recipe is, however, at odds with
the functional premise that the coefficients in (3) are constants, determined solely
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by the field, gas properties (density, temperature) and fundamental collision cross
sections. That the real diffusion equation may fail hopelessly upstream is not
grounds for replacing it with an artificial one. In fact, if an artificial transport
equation is to be introduced, there is no good reason that it should be a parabolic,
second order differential equation like the diffusion equation: Any equation of
arbitrary order would do, as long as it produced the same upper exponent K~+) !
Of course, the only correct transport equation, producing true values of both
exponents K~+-), is the Boltzmann equation. For these reasons we feel that the
only tenable alternative is to solve the full Boltzmann equation, along the lines
reported in Robson (1991) or by other means (Sugawara et ale 1994).
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