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Abstract

This paper presents a comprehensive treatement of the problem of measurement in microscopic
physics, consistent with the indeterministic Copenhagen interpretation of quantum mechanics
and information theory. It is pointed out that there are serious difficulties in reconciling
the deterministic interpretations of quantum mechanics, based on the concepts of a universal
wave function or hidden variables, with the principle of contiguity. Quantum mechanics is
reformulated entirely in terms of observables, represented by matrices, including the statistical
matrix, and the utility of information theory is illustrated by a discussion of the EPR paradox.
The principle of contiguity is satisfied by all conserved quantities. A theory of the operation of
macroscopic measuring devices is given in the interaction repesentation, and the attentuation
of the indeterminacy of a microscopic observable in the process of measurement is related to
observable changes of entropy.

1. Introduction

In the introduction to his Waynflete Lectures, Born (1949) included among
the more important concepts of physics the principle of contiguity. This may be
regarded as denying the necessity, if not the possibility, of action at a distance,
and requiring a spatially continuous relation between any cause and effect. In a
relativistic context, it implies also a time-like relation between cause and effect,
communicated with a velocity not exceeding the velocity of light. Born contrasted
Newton’s theory of gravitation, formulated originally as a theory of action at
a distance, with Einstein’s general theory of relativity, a theory satisfying the
principle of contiguity. The principle is satisfied also by Maxwell’s formulation of
electromagnetic theory, and indeed by any field theory, subject to the condition
that the Lagrangian density depends only on local values of the field variables
and their derivatives.

Since wave mechanics can be formulated as a field theory, and there is an
established procedure for the quantization of field theories (Pauli 1941), it would
appear that there should be no difficulty in reconciling quantum mechanics with
the principle of contiguity. However, as Green and Triffet (1991) have pointed
out, quantum mechanics is the synthesis of a generally accepted dynamical theory
first formulated by Born and Jordan (1925), and a theory of the measurement
of microscopic quantities that is, even today, in a very rudimentary state. Most
accounts of the process of measurement appear to have been influenced by von
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Neumann (1955), by whom it was represented as the discontinuous change of a
state vector not necessarily localized in space. When translated into the terms
of wave mechanics, this ‘collapse’ affects the entire wave function, which may
extend over an arbitrarily large region of space. This violation of the principle
of contiguity obviously influenced Einstein’s objections to the quantum theory,
ultimately formulated in what is known as the EPR paradox (Einstein et al.
1935).

On the other hand, some authors, from Janossy (1952, 1953) to Stapp (1992,
1993) have been prepared to accept the ‘collapse of the wave function’ as a
physical event. As these authors readily acknowledge, this requires the acceptance
not only of action at a distance, but of the transmission of observable effects
with velocities greater than the velocity of light.

The validity of the concept of contiguity in quantum mechanics is closely
related to the interpretation given to the theory, and both are determined by
the theory of measurement. It is possible to distinguish between two major
interpretations that regard the future as predetermined, and an indeterministic
interpretation that is realistic in the sense that it assumes no more than our
present knowledge can justify.

The deterministic interpretations may be summarized as follows:

(1) The concept of a universal wave function (or state vector) that determines
past, present and future was essentially due to Schrédinger (1926). It was
Schrodinger’s view that not only light but atoms and indeed all other forms of
matter consist of waves, and the fact that they appear in discrete quanta was a
consequence of the mathematical properties of his wave equation. The existence
of a universal wave function has been assumed in many subsequent contributions
to quantum mechanics (such as Gottfried 1966, Zurek 1982 and Bell 1990).
Though, as a field theory, wave mechanics is clearly consistent with the principle
of contiguity, it suffers from the lack of a coherent theory of measurement. If one
rejects attempts, like Janossy’s, to account for the ‘collapse of the wave packet’
as a physical event, it seems necessary to adopt the many worlds interpretation
of quantum mechanics, introduced explicitly by Everett III (1957), and further
developed in a volume edited by De Witt and Graham (1973), in which Everett III
advocates a theory of measurement similar to von Neumann’s. The many worlds
theory is completely deterministic. It does not explicitly violate the principle
of contiguity, but assumes that every possible result of a measurement that is
allowed by quantum mechanics is actually realized, and that a separate universe
is evolved to accommodate each possibility. It concedes that an observer in one
of these universes can have no experience of his or her counterpart in the others.

It could be said that the many worlds interpretation requires the creation
of innumerable unobservable systems to account for our inability to predict the
behaviour of the one that is observed. It is by no means obvious that the principle
of contiguity is satisfied in the process of multiplication of worlds, because there
is no adequate description of this process.

(2) The interpretation of quantum mechanics in terms of hidden variables is
generally attributed to Bohm (1952). The wave function is supposed to represent
an ensemble of point-like particles, moving in accordance with deterministic laws,
and subject to forces that are partly classical and partly quantum mechanical.



Contiguity and the Quantum Theory of Measurement 615

Each particle has its own position and momentum, the hidden variables, both
of which can in principle be observed. By supposing that hidden variables can
also be associated with macroscopic measuring devices, apparent violations of
Heisenberg’s uncertainty principle and von Neumann’s proof that hidden variables
were incompatible with quantum mechanics are mitigated. However, the quantum
mechanical forces needed to accommodate this interpretation are highly artificial,
with singularities at all zeros of the wave function, and are incompatible with
the principle of contiguity.

These deterministic ideas are in sharp contrast with those advanced by Born
(1926), in his original papers on the theory of measurement. This theory accepted
that the result of any measurement made on a microscopic system could not be
predicted, in general, and that it was possible to determine only the probability
that any particular result will be obtained. It was therefore considered necessary
to abandon the determinism of the classical theories of Newton and his followers.
This view became the basis of what is generally known as the Copenhagen
interpretation of quantum mechanics. In the form advocated by Bohr (1928,
1933), it incorporated a subtle dualistic principle, according to which, at the
microscopic level, matter has both wave-like and particle-like properties either
of which may predominate, depending on the way it is observed. This principle
should not be understood as meaning that wave-like and particle-like properties
are mutually exclusive (Ghose et al. 1992; Mizobuchi and Ohtaké 1992). However,
it does exclude both of the deterministic interpretations outlined above.

Here we shall adopt the Copenhagen interpretation of quantum theory in essence,
but shall develop a more satisfactory theory of measurement in terms applicable
to both microscopic and macroscopic systems, the latter being distinguished only
by an extremely large number of independent degrees of freedom. Since this
approach is new, it will be developed in sufficient detail to show that it can also
provide a self-sufficient basis for the accepted results of quantum mechanics. The
theory may be regarded simply as an application of quantum mechanics to the
interaction of a microscopic system with a measuring device. In part, it may
also be regarded as the generalization of a theme developed previously by the
author (Green 1958; Green and Triffet 1991).

However, it also develops an idea, suggested by various authors from Brillouin
(1956) to Busch et al. (1991), that quantum mechanics should be regarded as
an extension of information theory. We shall make a point, moreover, of never
assuming more information than can be made available experimentally. This of
course forbids the introduction of hidden variables or a universal wave function,
and a fortiori the use of a single wave function or state vector to represent a
system of any kind. We are then committed to a version of quantum mechanics
similar to that inaugurated by Born and Jordan, and motivated by Heisenberg’s
(1925) proposal that quantum theory should not contain any numerical quantity
that cannot, in principle, be measured.

Incidentally, we shall show for the first time that the resulting indeterministic
theory is consistent with the principle of contiguity. In the process of measurement
of a microscopic observable, there are large changes of information on a time
scale characteristic of the measuring device, but there is no discontinuity in the
information or any other fundamental observable in the process of measurement.
Contiguity is secured by the definition of a density and a flux density for all
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such observables. It is an inevitable feature of the theory that, although it
becomes extremely tenuous, the thread connecting reality to ‘other worlds’ in
the acquisition of information is never completely broken. However, as Bohr
insisted, the theory has no result that is not consistent with common sense derived
from macroscopic experience, and paradoxes such as the EPR paradox can be
understood without invoking either action at a distance or superluminal velocities.

2. The Statistical Matrix in Quantum Theory

We wish to consider the measurement of some property of a system S, usually
of atomic dimensions; then it can only be detected with the help of a macroscopic
device, such as a counter or cloud chamber. From the present point of view,
the essential result of the detection of the system is an exchange of information.
The device must have some component that is initially in a metastable state,
but makes the transition to a stable state in the process of detection; this
transition will be characterized as an increase of entropy that is equivalent to
a loss of thermodynamic information. The loss of information concerning the
macrosopic device is compensated in part by the gain of information concerning
the microscopic system.

The detection of a microscopic system does not necessarily provide an observer
with more than evidence of its existence, and a very rough idea of its position
at the time. However, by a suitable experimental arrangement, usually involving
the placement of apertures and electromagnetic guides, it can be ensured that a
suitably chosen detector will interact with systems having only a certain value or
values of some observable or set of observables, such as momentum, energy and
helicity. By the use of a composite system of detection with several independently
functioning components, it may be possible to distinguish between different values
of the selected observables. The experimental arrangement that secures this
possibility also determines the type of information obtained by detection of the
microscopic system, and in the following discussion of quantum mechanics we
wish to provide the means to quantify this type of information.

In most existing theories of measurement, it is assumed that, before it
interacts with the detector, the microscopic system is in a pure state that can
be represented by a single wave function (or state vector). It is, however, a
feature of wave mechanics that if a system S consists of two sub-systems S’ and
S” in interaction, the wave function v of the joint system, supposing that there
is one, cannot be factorized in the form ¢'¢”, but is always a sum of such
products. There is, therefore, no unique wave function representing a system
that is or has been in interaction with any other system: there are no pure
states in nature, and it is not possible to create one. Of course there can be no
objection whatsoever to the use of wave functions for computational purposes,
in particular for the determination of the eigenvalues of physical observables and
transition probabilities. They may also have a role in the discussion of certain
ideal, as distinct from actual measurements. But in the theory of measurement,
and of macroscopic phenomena in general, it is important to recognize that it is
not possible to attribute a physical significance to any particular wave function.

On the other hand, there is always a statistical matrix for any system, and
in the theory of measurement it appears reasonable to suppose that this can be
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expressed as a sum of two terms, one representing the possibility that a given
system does activate a particular macroscopic component of a detector, and the
other representing the possibility that it does not. Moreover, as we have noted
above, it may be legitimate to conclude that, if it does activate the detector, one
or more observables of the system had values that are commonly attributed to a
pure state. An adequate theory of measurement therefore requires an explanation
of how it is possible for a statistical matrix to be reduced effectively to a sum
of two or more terms.

In this Section, we shall begin with a brief and uncontroversial account of how
quantum mechanics can be formulated without reference to wave functions or state
vectors. According to Heisenberg’s uncertainty principle, and Bohr’s principle of
complementarity, there are pairs of complementary observables associated with
any system, such that an experimental arrangement to measure one of the
observables accurately precludes the possibility of measuring the other. In Born
and Jordan’s (1925) quantum mechanics, this was provided for by representing
any microscopic observable by a matrix operator O, whose eigenvalues o, are the
possible values that may result from the measurement of the observable. The
subscript 7 in general denotes a vector (ry, ... rr), where R is the number of
degrees of freedom of the system, and if the eigenvalues are discrete, the matrix
O can be expressed in terms of a discrete set of matrices g,., with numerical
coefficients o,, thus:

0= Z Orgr. (1)

The g, are minimal hermitean idempotents or projections, satisfying

9rgs = bregs,  tr(g) =1, ) gr=1, 2)
T

so that o, = tr(Og,). Here and in the following, tr denotes the trace, or the sum
of the diagonal elements, of the matrix which follows, and, in a relatlon between
matrices, 1 denotes the unit matrix. If O and O represent two observables that
are complementary, in Bohr’s sense, or cannot be measured by the same detector,
then they do not commute: if O = Y s 0sgs, then 00 # 0O and 9rgs — Gsgr # 0
in general.

Any matrix C of the system S can be expressed in terms of products g,g, of
the idempotents of complementary observables:

C= Z crsgrasy Crs = tr(C§sgr)~ (3)

T8

If C is hermitean, it is also possible to write C = Esr c!,.Gsgr, where cl, is
the complex conjugate of c,s. The eigenvalues of C' are then real, but do not
necessarily form a discrete set, so that observables with continuous spectra can
be represented in this way. However, there is also a spectral decomposition
C = [ ¢,dE, of such observables, where formally E, = J " grdr, and the summation
in (1) is interpreted as an integration.
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For any system there is a special observable P, called the statistical matrix,
or the statistical operator in von Neumann’s (1955) terminology, that plays a
central part in quantum-mechanical information theory. In many applications,
even in the absence of any measurement, there is a relation between the statistical
matrix P of a microscopic system and what will be called selected observables.
There is a selected observable O*, whose eigenvalues p} (v =1,2...) determine
the probability p¥ that the measurement of O*, with a suitably chosen detector
D*, will yield the one of the values of (s =1,2...). We note that these values
are not necessarily all different from one another. If

oO* = Zo:g:, (4)
v
then the statistical matrix may be defined by

P=> pig; (5)

Since 3., p% =1, then tr(P) = 1. It will be noticed that P commutes with
the selected observable O*, but not, in general, with another observable O. As
already suggested, the nature of the selected observable may be determined by
an experimental arrangement designed to ensure that only the value o} of the
selected observable O* will be detected by a particular component of the detector.

According to Born’s theory of measurement, the probability that the measurement
of any observable O =}, 0,9, by a suitable detector D will yield the value o; is

pr=tr(g:P) =Y proPy,  Pro = t1(9rgy)- (6)
v

In view of the interpretation of p, and p} as probabilities, p., can be
interpreted as the probability of a ‘transition’, or the conditional probability that
the measurement of O will yield the value o, provided that it is certain that the
selected observable O* has the value of. It is obvious that the above formula
is correct if O and O* are the same, or commuting observables, but it is also
true if O and O* do not commute. In an adequate theory of measurement, this
proposition should not simply be assumed, but should be established on the basis
of the quantum mechanics of the interaction of the microscopic system with the
macroscopic detector.

In macroscopic physics, there is usually no experimental arrangement to measure
any observable, and the only information is of statistical, or thermodynamical
nature. The selected observables in such applications include the energy, or, more
generally, the derivative of the action with respect to time, which may depend
on several fundamental observables.

We shall next discuss briefly the definition of the matrices representing the
fundamental observables, such as the position, momentum, angular momentum
and energy of a system S, possibly but not necessarily a particle or set of
particles in the microscopic domain. This is a simple application of the theory
of Lie groups. We shall regard the observables as independent of the conditions
under which they are measured, or indeed whether they are measured at all.
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However, in general the probabilities pZ, and therefore the statistical matrix P,
obviously depend on the time, the spatial configuration and state of motion.of
the macroscopic detector D. Assuming that the latter is an rigid unaccelerated
body, a sufficient specification includes the position x of the centre of mass of
the detector at any time ¢, its orientation u, and its velocity v relative to some
other rigid unaccelerated body Do. If the detector of the microscopic system is D,
we denote the statistical matrix of the microscopic system by P = P(t,x, u, v).
But, if the detector is Dy, the statistical matrix is Py = P(0, 0, 0, 0). Because
of the interpretation of the eigenvalues of this matrix as probabilities, these two
statistical matrices must be related by a similarity transformation:

P(t,x,u, v) =U(t, x, u, V)PRU(t, x, u, v), U(t, x,u, V)U(t, x, u, v) =1,

(")

where 1 again stands for the unit matrix. In fact, as the statistical matrices are
hermitean, this is also a unitary transformation: U is not merely the inverse of
U but its hermitean conjugate.

If we consider a small change 6t in the time ¢ at which the measurement is
made, we may write

U(t+6t, x,u, v) = (1 — iH6t/R)U(t, x, u, v), (8)

where # is Planck’s constant and H is an hermitean matrix. It then follows that

oU opP
ih— = HU, ih— = HP — PH. 9
i 5t , i pe H H 9)

Thus the matrix U satisfies the same equation as the wave function in
Schrédinger’s wave mechanics. Adopting Heisenberg’s definition of the energy as
the agent of change with time (in suitable units with Planck’s constant equal to
1), we conclude that the observable H is the energy of the microscopic system.
So long as a microscopic system is free of external interactions, all probabilities,
and therefore the statistical matrix of the system, are independent of the time; it
then follows that HP = PH, and the energy is a selected observable, as defined
above.

There are similar definitions, analogous to Heisenberg’s definition of the energy,
for the momentum P, the angular momentum J, and the central vector K
(=MQ, where M is the mass and Q the position of the mass centre) of a
microscopic system, as the agents of change with position, orientation and velocity,
respectively. In consequence of these definitions, we have

ou ik %

—in?Z —pU
M ox ’ du

g, a%_kv-mqQu, (0
ov
and we may also write
U = exp(—iA), A=Ht-P.x—J.u+K.v. (11)

The last equation, together with (7), shows how the statistical matrix, and all
the fundamental observables of a microscopic system, are completely determined
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by the action A, regarded as a function A(t, X, u, v) of the set of parameters
introduced above. In the Lagrangian formulation of Newtonian mechanics, the
parameters are regarded specifying the system adopted by a particular observer
O relative to that of some other observer Op, and the interpretation given above
in terms of detectors is quite consistent with this idea. In quantum mechanics
and quantized field theory the action associated with a microscopic system is
treated as an observable and, for reasons already discussed, represented by a
matrix, but the derivation of the observables is unchanged. It is clear from (7)
that the statistical matrix P is completely determined by its value Py for t =0
and x =u=v =0, and the action A.

The derivation of the commutation rules satisfied by the fundamental observables,
which determine their matrix representations, will be discussed briefly in the
next Section. We conclude the present Section with an outline of the extension
of the above considerations to composite systems. It is sufficient to consider a
system S consisting of two subsystems S’ and S”. We assume that these systems
are disjoint, without any parts in common, and denote observables of the two
‘systems separately by O’ and O”. When these are regarded as matrices of
the composite system, however, they are expressed as direct (outer) products of
the form O =0’ ®1 and O® =1® 0" with idempotents ¢\ = g, ® 1 and
91(,2) =1®g,. By a generalization of (3), an arbitrary matrix C' of the joint
system can be expressed in terms of direct products ‘

C= 2 Crs,vwgr.as ® GuGw, Crs,vw = tr[C(asgr ® ’g\wgv)] (12)

T,8.V,W

of matrices g.gs and g,g, of the subsystems.

Of course there is a statistical matrix P for the composite system, but it is
also always possible to define statistical matrices P’ and P” for the separate
subsystems as partial traces of P, thus:

P' =% 4:G:tr[PGagr ®1)],  P'=) gGutt[P(1®%ug)].  (13)

7,8 v,w

If O' =3 ,0.9, is an observable of the first subsystem, the probability p;,
that a measurement of O’ will yield the value o, according to (6), is tr'(g.P’),
and this is the same as tr(gz(Ll)P), as required, since tr[gy(grgs)] = Our-

If the two subsystems of the composite system are not interacting and have
not interacted, directly or indirectly, in the recent past, they are statistically
independent of one another, and the joint probability that the measurement of
selected observables O’ = 3~ olg, and O” = Y 0/gy of the subsystems will
yield the values o} and of must be the product, ps = pipy, of the separate
probabilities. From (5) it can be seen that this condition for independence implies
that the statistical matrix P of the composite systems is the direct product of
the statistical matrices P() and P® of the subsystems:

P=P®P". (14)

It can also be seen from (5) that a unitary transformation U of the type
considered that there must, subject to the same restriction, also be a direct
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product: U =U'®U"”. It follows from (11) that the action observable A is
additive in the sense that A = A() + A®) and the same is true for all the
fundamental observables:

H=H®W 4 H® P=P0 4 p?, J=J0 4 3@
K=KV 1+K®  M=MD4M2>D, (15)

However, (15) and (16) apply only as long as the systems have had no
interaction, and with interaction we must write

H=HMY 4+ H® 1V, (16)

where V is the interaction energy. Often, V is a scalar function of the relative
position Q®® — Q)| and the observables P, J, K and M are still simply additive.
To generalize (15), it is necessary to make use of the theory of the interaction
representation, and this will be done in Section 5.

3. Contiguity in Quantum Mechanics

The differential equations (9) and (10) determine the way in which the outcome
of any measurement made with the device D will depend on the a set of ten
parameters (t, 1, ®2, 3, U3, U2, U3, U1, U2, v3), where the subscripts denote
cartesian components of the vectors. The parameters are those of the Galilei
group of non-relativistic physics or the inhomogeneous Lorentz group of relativistic
physics. The matrix U is an element of the group, and the observables H, Pj,
P, P3, Ji, J3, J3, K;, Ko and K3 are the elements of the corresponding Lie
algebra, for which we have adopted a matrix representation. The mass M is
an invariant, and in the non-relativistic formulation, it can be regarded as an
additional fundamental observable and an element of the Lie group, associated
with the parameter x - v; however, as it commutes with all the other matrices it
may be treated as a numerical multiple of the unit matrix.

The commutation relations satisfied by the observables are easily derived from
the geometrical and kinematical relations between the parameters of the group
(as in Cornwell 1984) and in the Galilean approximation include the well known
results

M(QxH — HQ,) = ihPy = iMQ,

Q)\Pp - PyQ)\ = ih&/\ﬂ (17)

of Born and Jordan. The complete set of commutation relations can be used to
determine the form of the matrices representing the observables unambiguously,
apart from a similarity transformation. We note that 2M H — P2 is an invariant
of the enveloping algebra of the Lie algebra.

Let P be the statistical matrix of any system S, and C be any conserved
observable, so that, according to (9),

mg(%P—) = H(CP) — (CP)H. (18)
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We define the density p(x,t;C) and the flux density o(x,t;C) of C by

plx.,0) = CPE(x— Q)| = s [ w(CPelip- (x - Q).
a(x,t;C) = tr[(QCP + CPQ)é(x — Q)] . (19)

Then, from (9), (10) and the commutation relations, we verify the macroscopic
conservation law

9p(x,t; C)

T +V.o(x,8C)=0 (20)

(where V = 9/0x). The validity of the principle of contiguity for any conserved
observable C is thus established.

Where the system S consists of two disjoint subsystems S’ and S”, we write C =
CW 40 where CM) = C'®1and C® = 10C", and MQ = MW QW + M Q?;
then a similar construction can be given for the densities p(x,t,C’) and p(x,t,C")
of the conserved quantities associated with the subsystems. The existence of the
corresponding flux densities o(x, ¢, C’) and o(x,t, C"’) demonstrates the validity
of the principle of contiguity also for the subsystems.

If C =1 (the unit matrix), the density p(x,t,C) is of course the probability,
per unit volume, that with a suitable detector, the system will be found in
the neighbourhood of the point x at time ¢, and Mo(x,t,C) is the expectation
value of the momentum per unit volume associated with the system. Similar
considerations apply if C is the energy, momentum, or angular momentum, but
also if C is any function of the statistical matrix P itself. From the definition of
information in (22) below, it will be evident that when C' = —log(P), p(x,t,C) is
the density and o(x,t,C) the flux density of information. Since the principle of
contiguity is satisfied, it is completely unnecessary to suppose that the transfer
of any conserved observable is accomplished by action at a distance.

4. Information Theory in Quantum Mechanics

The theory of measurement in quantum mechanics may be regarded as an
application of information theory. In the classical theory, due to originally to
Shannon (1949), the information gained by observation of any event is defined
as the expectation value of —log(P), if P is the probability of a particular
outcome of the event. But in statistical mechanics, according to Boltzmann,
the macroscopic entropy associated with any system is the expectation value
of —klog(P), where k is Boltzmann’s constant and P is the probability that
the system will be found in a particular state. When an extremely small unit
is chosen for the absolute temperature, then k = 1, and in a thermodynamical
context there is therefore no difference between information and entropy.

In quantum mechanics, it is easy to generalize the definition of information
in the following way. Again we consider the measurement of a microscopic
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observable with the help of a detector. The information I to be gained from the
measurement of any observable O = Y _org, of a system S by a suitably chosen
detector D is

I=-Y p,log(p,), (21)

where p, is the probability that the measurement will yield the value o,; this is
given by p, =tr(g-P), according to Born’s hypothesis, as formulated in (6) above.

It is evident that the information depends on the observable. If O* = 3" o} g}
is a selected observable, then it commutes with P, so that P =) _p}g; and the
information to be gained by measuring the selected observables, including O*, is

I" = = pllog(pt) = —tr[Plog(P)] = —(log(P)), (22)

where the logarithm is defined by log(P) =", g7 log(p}). In the last Section, it
was shown how to define a density and a flux density for conserved macroscopic
quantities of this kind, and there is no doubt that it satisfies the principle of
contiguity.

But I* is in general different from and in fact less than the information I to be
gained from the measurement of the observable O, and it is therefore meaningless
to speak of the information to be gained by observation of a microscopic system
without reference to the detector or what is being measured. In this respect,
there is an important difference between the classical and quantum mechanical
theory of information. Moreover, it is by no means evident that the information
defined in (21) always satisfies the principle of contiguity. That will be made
evident in the following Sections of this paper, but for the present we shall state
a view consistent with the Copenhagen interpretation of quantum mechanics, but
based essentially on macroscopic experience.

When information is first gained concerning a microscopic system, it is localized
at the detector or detectors, where it may possibly be recorded, coded, and
transmitted elsewhere by electromagnetic or by other physical means. However,
the detection is generally distributed over an extended region of space. Let
us consider, for instance, a pair of complementary observables, such as the
momentum P and the position Q of the centre of mass of a system S. The
momentum of the system can only be measured, even approximately, by the
detection of wave-like properties of the system over an extended region, and
the information gained in this way is extensively non-local. The position may
be measured approximately by the observation of particle-like properties, for
instance by placing a detector immediately behind a small aperture through
which the system must pass; the information gained in this way is localized at
the detector. Bohr’s discussion of complementary measurements made the point
that one of these measurements excludes the other. But, as already pointed out,
Bohr’s ‘principle of complementarity’ should not be interpreted as meaning that
the wave-like and particle-like properties of matter are mutually exclusive (Ghose
et al. 1992; Mizobuchi and Ohtaké 1992). In such experiments, information
concerning particle and wave-like properties is gained by detecting coincidences
or anti-coincidences and is at least partly non-local. We shall show below that
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information theory is useful in resolving paradoxes, such as the EPR paradox,
that were originally formulated with the intention of raising doubts concerning
the indeterministic (Copenhagen) interpretation of quantum mechanics.

We suppose first that the measurement of a selected observable O* by a detector
D*, possibly a component of a larger system, can yield only the eigenvalue of.
There are three different ways in which this can be reconciled with our earlier
observation that there are no pure states in nature:

[1] One possibility is that, in an actual measurement with the detector D*,
a system for which the eigenvalue of O* is different from o} cannot interact
with D*. The state of any system interacting with the detector is not pure, and
there is information, not exceeding I*, to be gained from the measurement of
O*. This is one of the possibilities taken into account in the considerations of
the following Sections.

[2] It is also possible that, in an actual measurement with the detector D*, the
eigenvalue of the selected observable O* (e.g. the spin of the system) is certain
to be o}, because, for very many values of r, o} = o}, while for other values
pr =0. Then the state of any system interacting with the detector is not pure,

but the information gained by a measurement of O* alone is zero.

(3] In an ideal as distinct from an actual measurement, a system interacting
with the detector may not have interacted previously with any other system, and
it is then possible for the system to be in a pure state in which the eigenvalue
of the observable O* is o}. It follows that p} = 6,,, that the statistical matrix
P for the system reduces to a single idempotent g}, and that the information
gained from a measurement of O* is zero. But if O does not commute with P,
the information I to be gained from the measurement of O is given by (1) and
has a value limited only by the accuracy of the measurement.

The third possibility listed above has often been discussed in the literature,
and is not excluded in the following discussion, which however is also consistent
with the more realistic options. A typical application is to the EPR paradox
(Einstein et al. 1935), which concerns a composite system S consisting of two
microscopic subsystems S’ and S” that are not in interaction but have interacted
previously. The statistical matrix P for the composite system is not simply a
direct product of the statistical matrices P’ and P” of the separate subsystems,
and these statistical matrices are certainly not idempotents. If O’ =3} og-
is any observable of the first subsystem, and O’ =" 0.g, is a complementary
observable of the same subsystem, the statistical matrix P can always be written
in the form

pP= Zgrgs ® Drs (23)

7,8

where the p,; are matrices of the second subsystem. Because P is not a single
direct product, the p,.; cannot have the same value for all values of r and s.
According to (13), the statistical matrices of the subsystems are

P =3 "g:gutr"(prs),  P"=) tr'(9Guw)Pow - (24)
v, w

T8
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Let us now suppose that O’ = 2 -0.g- is a selected observable of the first
subsystem; then P’ =" plg,, where p). is the probability that a measurement
of O’ will yield the value o/.. This is only possible if Prs has the same value p/.g,
for every value of s, so that if the measurement of O’ yields the value of,, then
the measurement of O” = Y o/g, must yield the value 0. The information
gained from the measurement is given by (22), with p} = p... On the other hand,
if 0" is the selected observable, P’ = Y s DsJs, so that p,, must have the same
value p.g, for every value of r, and if the measured value of O’ is 0.,, then the
measured value of O” is 9]]. The information gained from the measurement is
still given by (22), but with p} = ... It is not possible to measure complementary
observables in the same experiment, and the probabilities p). are in general quite
different from the p/. .

All actual experiments have so far confirmed the validity of these predictions
of quantum mechanics. But if the second subsystem, in an experiment of the
type just considered, is far removed from the first, it may not be easy to see how
the choice of a selected observable for the first subsystem can affect the form of
the statistical matrix, and the result of a measurement performed on the second
subsystem. It was this paradox that led Einstein to conclude that quantum
mechanics was an incomplete theory. We have referred to proposals that there is
some form of action at a distance that allows a measurement made in one place
to affect a distant system. This in fact seems inevitable if quantum mechanics
is interpreted either in terms of a universal wave function or in terms of hidden
variables. But when the EPR and similar quantum mechanical paradoxes are
interpreted in the light of indeterministic information theory, the problematic
concept of action at a distance will be found unnecessary.

The first point to be made is that, as we have shown above, it is no surprise
that measurements made in different places should be correlated. Consider, in
the interests of clarity, an idealized composite system for which the commuting
observables P(M) + P2 (the resultant momentum) and Q® — QM (the relative
position) of two subsystems have definite eigenvalues p and r. It is not surprising
that if the measurement of P() yields the value p, a distant measurement of
P® should yield the value p — p®, or that if, alternatively, the measurement
of Q) yields the value q(¥), a distant measurement of Q®@ should yield the
value r + q). As we have pointed out above, this is a valid prediction of
the theory. But measurements of the complementary observables P(1) and Q®
are mutually exclusive and yield different information, and it is important to
avoid the assumption that a suitable experiment could yield precise information
concerning the values of both p — p() and r+ qM, or that either was already
determinate, in some sense, before any measurement was made.

The second and more essential point is that the information gained from
the measurement of momentum is associated with an extended region of space;
on the other hand, the information gained from the idealized measurement of
relative position is also non-local. Whatever its nature, it is not necessary to
suppose that information is transmitted by action at a distance. The laws of
quantum mechanics, and especially the conservation laws and the principle of
contiguity, satisfied by the fundamental observables are sufficient to ensure that no
surprising discrepancies should be found between information concerning the same
system, acquired in different ways. There are certainly serious problems if the



626 H. S. Green

information obtained from a measurement on a microscopic system is supposed
to be predetermined, but, viewed from the point of view of indeterministic
information theory, quantum mechanics offers no affront to common sense.

In the following, we shall analyse the requirements for the realistic detection
of a microscopic system in more detail, and so obtain a better insight into the
mechanism by which, in the process of measurement, an indeterminate observable
acquires a definite value.

5. The Interaction Representation

When two systems interact, there is in general an exchange of both energy
and information, and while the total energy is unchanged, there may be a loss
of total information over a period of time. This applies in particular in the
interaction between a microscopic system and a macroscopic detector, which
will be considered later. In quantum mechanics the technique of the interaction
representation is very useful in dealing with such problems

Let us consider a composite system S consisting of two subsystems S’ and S”,
and suppose that the statistical matrix of the composite system at some initial
time t = 0 is Py. As shown in (13), the statistical matrices of the subsystems
at the initial time are P} = tr’(Py) and Py = tr'(FPo), but Py can only be
expressed as the direct product of Fj and Py when the subsystems have not
been in interaction up to that time. It follows that the information to be gained
concerning the composite system is the same as the joint information to be
gained from the two subsystems only if they have not interacted previously.

We choose an observational frame of reference so that the centre of mass of
the composite system is at rest (v = 0) and is appropriately oriented (u=0) at
the origin of coordinates (x = 0). Then, according to (7) and (11) and (16), the
statistical matrix P of the system S at time ¢ is given in terms of its value Py
at the initial time by

P-URU, U=exp(—iHt/h), H=HY+H®+V. (25)

Here H, HV and H (?) are the energies of the composite system and the two
subsystems, respectively, and V' is lhe interaction energy; also, U is the hermitean
conjugate of U, which satisfies UU = 1. It is obvious that the unitary matrix U
satisfies

m%% =(HD+H?P+V)U, (26)

and if we write
Up = exp[i(HD + H®)t/h],
U = exp[-i(HV + H®)t/WT =T,T, (27)

it follows from (26) that the unitary matrix T' = T(t) (the S-matrix for large t)
satisfies the equations



Contiguity and the Quantum Theory of Measurement 627

<

oT ~ —
ih— =VT V=UyVU,,
? ot ) 0 0

T(t)=1—i /o V(r)T(r)dr/h, (28)

of which the last can be solved by iteration or otherwise. The expression given
in (25) for the statistical matrix can then be rewritten in the form

P=TU,PU,, P=TRT, (29)
where P is the statistical matrix in the interaction representation and satisfies

m% _VB_ BV, (30)

The expectation value (O) of an observable O at time ¢ is tr(PO), where P
obviously depends on the time, so that although, in the Heisenberg representation,
O is independent of the time, its expectation value (O) varies with the time, as
it should. However, it follows from (29) that

(0) = tr(PO) = tr(PO), O = U,0T,, (31)

where O is the observable in the interaction representation. It is evident that, in
principle, the last result, together with (28), provides a method for the calculation
of the expectation value of any observable of the composite system, as a function
of time. The interaction representation is in fact used extensively in quantum
field theoretical calculations.

The matrix U in (31) is the direct product U'@U”, where U’ = exp(iH't/h) and
U" = exp(iH"t/h) are unitary matrices of the separate subsystems. The explicit
evaluation of these matrices requires only the determination of the eigenvalues
of H' and H”. This can be done by Schrédinger’s method, which involves
the discussion of the solutions of differential equations with special boundary
conditions, but, as Green and Triffet (1969) have shown, matrix methods are
generally much simpler.

The theory of the interaction between two systems is somewhat simpler if
they have not experienced any interaction at the initial time # = 0. Then the
statistical matrix P, of the composite system at that time can be expressed as
a direct product Pj® Py of the statistical matrices of the subsystems, so that
the result (29) can be written

P=T(P,® P))T, (32)

where, for instance, we may write By =Y, pigl, if p* is the probability that
any selected observable O* = >, 0sg: of the first subsystem has the value o} at
the initial time.

There is an obvious generalization of all these considerations to a system
consisiting of any number of subsystems in interaction. In the following, we do
not in fact exclude the possibility that one of the systems (S’) is microscopic
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and the other is a macroscopic system, such as a measuring device, constructed
from any number of disjoint macroscopic components Sy, ... S4, each consisting
of a very large number of microscopic subsystems. Very special instances of this
type with d = 1 and d = 2, respectively, were considered previously by Green
(1958) and Green and Triffet (1991).

It is in fact sufficient to consider the possibility of the interaction of S’ with a
single component. For if d > 1, the components must be chosen so that they are
well separated. The statistical matrix of the measuring device is then a direct
product of the statistical matrices of its components. The interaction energy in
(30) will then be a sum of terms: V = >; Vi where V; is the interaction with the
jth component of the measuring device, and has no significant effect on factors
of the statistical matrix corresponding to other components.

The question of interest is then whether S’ either interacts or does not interact,
with a particular component S”. In the many worlds scenario, both possibilities
are realized, though they exist in different worlds. An alternative view sometimes
expressed is that neither possibility is realized in the absence of a conscious
observer. Here, however, we shall develop a reasoned argument that macroscopic
events, irrespective of their cause, cannot remain indeterminate to any significant
extent. It will follow that, in an efficient measuring device, the unique component
of the measuring system that interacts with S’, though itself indeterminate until
the measurement is made, determines the measured value. We still have to
show that this conclusion, consistent with observation, is also consistent with a
theory of measurement based on application of information theory and quantum
mechanics to the interaction of a microscopic system with a measuring device.

We shall express the T-matrix of a particular microscopic system (S") which
may interact with the detector (S”) in the form

T=Yg+@Ts+) 9r-®1 (33)

T+ r—

in which the g, and g,— are minimal idempotents of an observable O of S,
corresponding to the eigenvalue o;. (usually degenerate), and other eigenvalues,
respectively. Then it follows from (32) that

P=Piy+Py_+P +P_, Piy= 9 Piges ®T1 FToy,
4,5+
P, = Z 9r+Pogs- ®Tr+P(,)l’ P__= Z gr—P(;gs— QP , (34
r4,8— r—,8—

and P_, is the hermitean conjugate of P,_. The statistical matrices of the
separate subsystems S’ and S” are P’ and P, respectively, given by

P=P, +P _+P  +P_, o= Y (T BT )9r4+ P »
r+,s+
= S w (T P)gre P, PLo= D 9-Poge- (35)
r+,8— T8
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P = P~,|-, + Pi,a -I|-I = Zp:'+(T"+P6’T7‘+)1 p:-+ = tr,(g1‘+P(;) ’
+
P!=(1-p)P, p-=) pl.,. (36)
r+

Here p; is identified as the total probability that measurement of the observable
O’ at time t should yield the value o}, with contributions given by

o= Phubls  Phy=tr' (Y grigl), (37)
v r+

where pj; is the probability that a selected observable O* of S’ has the value o}
and, as in (6), p,., is the probability for a transition between states represented
by the idempotent g¥, and any of the gr+. Of course 1 —p, is then the total
probability that the measurement yields some other value, or that the microscopic
system is not detected. These results are entirely consistent with Born’s statistical
interpretation of quantum mechanics. The fact that the statistical matrix (36) is
expressed as a sum of two terms (non-trivially, when T+ # 1) implies not the
existence of more than one world, but that, following the interaction, additional
information may be gained from examination of the component S” of the measuring
system. -

However, the nature of the information is coded in the statistical matrix P’
of the system S’, and it should be expected that, with an efficient measuring
device, this also reduces effectively for large ¢t to the sum P, + P__ of two
terms, since the component P, _ of P’ is a measure of the residual indeterminacy
of the measurement of the value o/, + of O'. From (35) it is evident that this
component is given by

Py_= Z Cr+(9r+Pogs-), Cry =t"(Tr4 By, (38)

r+,8—

where the coefficients C, are determined by the interaction of the microscopic
system with the measuring device. The evaluation of these traces is carried out
in the following Section.

6. Measurement and Observation

We are concerned with the quantum mechanics of the interaction of a microscopic
system S’ with another system S”, designed to measure the observable O’ of
S’. The second system must then be a measuring device, or a component of a
such a device, characterized as a detector, from the operation of which it should
be possible to determine whether the observable has one or more of the values
0}, and so gain information that can be acquired by a conscious observer. We
shall first enquire into those properties of the detector that are essential for this
purpose.

We again consider an experiment designed so that a particular component of
the measuring system will function when and only when one particular value
o, of the observable O’ of the microscopic system is realized. This can be
accomplished by an arrangement of guides and channels such that only systems
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distinguished by the value o} can enter a particular channel and interact with
the rth subsystem of the detector. A composite detector may detect any of a
number of eigenvalues, and it is also possible that some eigenvalues may escape
detection. There are, however, two important requirements:

[1] Since only macroscopic phenomena can be observed directly, some macroscopic
feature of a detector must change rapidly and significantly as a result of the
interaction. It is obviously necessary that the detector should itself be a macroscopic
object. It is also necessary that the interaction with the microscopic system S’
should result in an appreciable change in the expectation value of a selected
observable O” of some component S” of the measuring device, corresponding to
the eigenvalue o, affecting very many (R) of the disjoint microscopic components
from which S” is made. If O” = —P"log(P"), where P" is the statistical matrix
of S”, the expectation value is the information I” associated with S”, or the
entropy in suitable units. A significant change in the entropy can result, for
instance, if S” is in a thermodynamically unstable or metastable state.

[2] It is also necessary to ensure that, if the observable O is measured, the
statistical matrix P’ appearing in (35) should reduce to the form Py, + P__
after the interaction with the detector has occurred. This condition is rigorously
satisfied if and only if the traces Cr4 in (38) are zero whenever there is some
significant change in the information I” associated with the component S” of the
measuring device. But to meet this requirement in fact poses an essential difficulty,
since, as already mentioned, the C,, are coefficients in the expression P,_,
which can be interpreted as a measure of the indeterminacy of the microscopic
observable O’ following the interaction with the detector; moreover, in quantum
mechanics the indeterminacy associated with any finite system is never zero. We
must therefore be content with the demonstration that the Cy are immeasurably
small, and thus effectively zero, under the conditions stated.

To formulate these requirements, we first express the statistical matrix P§ of
S” at the initial time in terms of the idempotents g%, . (m =1, ... R) of its
microscopic subsystems, thus:

P” = szlgisl ® P81’ P81-~~3m—1 = szl...smg:n,sm ® P31~-~Sm' (39)
Sm

S1

Here the coefficient p;  ,  Is a conditional probability, and Ps,..s, is the
reduced statistical matrix for the part of the detector excluding the first m of
its microscopic subsystems. As foreshadowed in Section 2, the subscript s+
that labels the states of the detector is being treated as an R-component vector
(s1,---8r). In the absence of interaction with S’, the statistical matrix P@ of
S” at time t and also any selected observable 0® of S” can be expressed in
the same way. However, at time t the statistical matrix of S” in the interaction
representation is given by (36), in which the unitary matrix T, can be written

Tr+ = Z trlgl,rl ® Tr1’ Trl..ur,,,._l = Ztrl...rmgm,rm ® Trl...r,n s (40)

(2% Tm

where the coefficient tr,..r, is a complex number of modulus 1, and Ty, .. r, is
unitary. All of these vary with the time.
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Assuming that the detector functions, the change in entropy, or information
can be determined from the components T, PyT,, of the statistical matrix,
which may be developed with the help of (39) and (40), thus:

T’I‘+PO”T’I‘+ = szlgl,rlgislgl,n ® Tr1P31Tr1 s (41)

S1

etc. The trace of any function of this or similar matrices can be evaluated in
terms of the traces

crmsm = tr(gmy"'mg:;l,.S,n) ) (42)

and these are the only time-dependent factors. Thus a macroscopically significant
change in the entropy requires a significant change in a large number of these
transition probabilities. In fact, at time t =0, T,, = 1, and Imyrm = e, s
so that the c,, .. all reduce to 1; but for ¢ > 0, when the above requirements
(1] and [2] are met, very many of them must rapidly deviate from their initial
values. A particular example of this, in which the detector was modelled by a
set of coupled oscillators in a metastable state, was given in the author’s original
paper (Green 1958), but the present discussion is very much more general.

It is now easy to obtain an explicit expression for the indeterminacy coefficient
Cry, as defined in (38), by a similar method. Again with the help of (39) and
(40), we have

R
CT+ = H t"‘l«n"'m szl...smc'ﬁnsm N (43)
m=1

Sm

The transition probabilities ¢, s, are always non-negative real numbers not
greater than 1, and for ¢ > 0, under the conditions stated, many of them will
have values significantly less than 1 (typically %) This is therefore true also
of the statistical averages Zsm Dsy...8mCrms,,- The coefficients t,,. . under the
product of (43) are of modulus 1. If R is sufficiently large, therefore, the products
under the summation are all immeasurably small in absolute magnitude. Thus,
the effect of the measurement is to reduce the indeterminacy coefficients of the
observable O’ in (38) to a completely negligible level.

The statistical matrix P’ of S in (34) is thus reduced effectively to the form
P, +P,

~

P~P +P_, (44)

and as tr'(P} ) = p/, the information to be gained concerning the system from
the operation of the detector — Y~ p/ log(p.). This has a maximum value, related
to the accuracy of the measurement, when nothing is known initially concerning
the microsopic observable O’, and is only zero when the value of this observable
is already known. In summary, the essential features of the detector were
its macroscopic character, to ensure that the amplitudes C,; were completely
negligible, and the metastability of the functional components of the detector,
to ensure a sufficiently rapid and readily observable change in entropy following
the detection of the microscopic system.
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The fact that the C,, are not rigorously zero, however, is of some interest,
in showing that at the microscopic level there is always a tenuous link with
‘other worlds’ of the many worlds interpretation of quantum mechanics. This
link, however, is negligibly weak with a macroscopic measuring system, due to
the amount of information transacted during the detection of the microscopic
system.

When quantum mechanics is interpreted in the light of information theory
there is no reason to accept the many worlds interpretation. For the information
gained from a measurement of the type described is objective in exactly the
same sense as the macroscopic change of entropy in any other irreversible process
in nature is objective, and has nothing to do with the presence of a conscious
observer. But the phenomenon of consciousness would be unintelligible in any
deterministic theory, such as the many worlds theory, since it could have no effect
on the course of events. In an indeterministic theory, it is left to the conscious
observer to make the information gained by the measurement, in a certain sense,
his or her own. As Green and Triffet (1991) have noted, the conscious process
of noticing the result of the measurement is quite comparable with the action
of a detector in making the measurement. However, the microscopic system
involved is then not inanimate but, very probably, a component of the potential
in the cortex of the observer. The information gained by conscious observation is
usually in exact correspondence with some external macroscopic event, and may
correspond to the information gained from the measurement of a microscopic
observable.
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