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Abstract

Perturbation theory of multiphoton ionisation due to a classical electromagnetic field is modified
to allow for intermediate resonances with bound states. Complex energies, generally associated
with resonances, do not enter into this formalism. For a monochromatic field of frequency v,
a constant ionisation rate can then be defined unambiguously and only such continuum states
are excited which correspond to the absorption of energy in integral multiples of hv. As an
application, differential and total cross sections for the two-photon ionisation of hydrogen, for
frequencies below the n = 3 resonance region, are obtained in closed form. Existing data for
generalised cross sections, calculated numerically using the complex coordinate method, are
in good agreement with the present results. Finally, the mean fractional ionisation resulting
from a pulse of finite duration is estimated on the basis of the associated power spectrum.
For short pulses, the time dependence of ionisation exhibits a departure from that expected
of a time-independent rate.

1. Iﬁtroduction

Owing to a breakdown of the perturbation theory of transitions due to an
electromagnetic field when intermediate resonances with bound states occur,
theoretical studies of resonant multiphoton ionisation (RMPI) generally rely
on the notion that this phenomenon can be looked upon as the decay of a
nonstationary state with a complex quasi-energy, engendered by a non-Hermitian
Hamiltonian, which is either phenomenological (Beers and Armstrong 1975; Holt
et al. 1983) or constructed more formally (Faisal and Moloney 1981; Maquet
et al. 1983). Inherent in these formulations, as well as the resolvent operator
formalism (Gontier and Trahin 1979; Faisal 1987), is the assumption that the
interaction is turned on at time t = 0 and never switched off. Therefore, what
these calculations actually yield are the time-dependent occupation amplitudes of
the dressed states of the total (atom+field) Hamiltonian. On the other hand, if
ionisation is considered to be a transition from a bound state to a continuum state
of the atomic Hamiltonian under the influence of a transient electromagnetic field,
time-dependent S-matrix theory should be appropriate to describe this process.
However, as mentioned earlier, in the vicinity of an intermediate resonance, the
most common means of evaluating the S matrix, viz. perturbation theory, breaks
down even for a weak perturbation. We have shown recently (Unnikrishnan
1993) that, in the absence of a continuous spectrum, Floquet theory can be
adapted to prove that, for a monochromatic field of angular frequency w, the only
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nonvanishing S-matrix elements correspond to the absorption of energy in multiples
of hw, and that the amplitudes for such transitions can be expressed in terms of
certain parameters which may be calculated nonperturbatively. Transitions to a
continuum, however, present a peculiar problem, because of the fact that it is, in
general, impossible to find an exact solution of the Schrédinger equation for an
atom in an electromagnetic field, which reduces to a bound state in the absence
of the interaction. In fact, the eigenenergy corresponding to the unperturbed
initial (bound) state becomes complex, so that the resulting eigenvector cannot
belong to the usual Hilbert space. (A discussion of this and related issues may
be found in Prigogine 1992; see also Sudarshan 1994.) However, it is also well
known (Heitler 1954) that the interpretation of the imaginary part of the energy
as a decay rate, on which the non-Hermitian Hamiltonian methods ultimately
depend, is valid only in the limit when this part is much smaller than the real
part. Since, in perturbation theory, the imaginary part arises from terms with
vanishing denominators in the continuum sector of the spectrum, it is reasonable
to expect that as long as the continuum is treated to lowest order in perturbation
theory, an S-matrix approach should be feasible and also that the rates thus
obtained should agree with those estimated from the imaginary part of a complex
energy, whenever a transition rate can be defined at all. This paper presents
such an S-matrix approach to RMPI which involves no complex energies and is
free from divergences.

In the following section, we first describe in some detail a simple formalism
applicable to two-photon ionisation in the presence of a one-photon resonance.
The resulting expression for the transition amplitude is then shown to be derivable
from Floquet theory under certain approximations. This immediately leads to an
extension of the formalism to include any number of bound states exactly and
the treatment of RMPI of any order. Using the simpler formalism, closed-form
expressions for two-photon ionisation cross sections for hydrogen in the frequency
range below the n = 3 resonance are presented and evaluated as a function of w
to show the resonance structure near w = 3/8. (Atomic units are used in this
work.) In the non-resonance region, these expressions reduce to those of standard
second order perturbation theory, while near resonance they reproduce previous
numerical results based on the complex energy approach quite well. Finally,
the average fractional ionisation at the end of a rectangular pulse of duration
T is estimated on the basis of the associated power spectrum, which displays
a nonexponential behaviour for small T, but agrees with the usual exponential
buildup resulting from a constant ionisation rate corresponding to the mean
frequency, after several Rabi periods.

2. Formalism

Consider a single active electron in a potential W(r) with a Hamiltonian
Ho = p%/2 + W having both discrete and continuum eigenstates ¢, such that
Hyd, = €ad,. Let the adiabatically switched electromagnetic field be represented,
in the dipole approximation, by E = Egexp(—n|t|)coswt (with 7 ultimately
tending to zero), so that the interaction potential may be written as

Eo .T

V(t) = 2Ve " coswt, V= 5 (1)
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As in Unnikrishnan (1993), we look for an ‘in’ state ; evolving from the initial
(discrete) state ¢;exp(—ie;t) of the general form

i = et e N0, L TR, £) - 61}, (2)
satisfying the Schrodinger equation
i = [Ho + V()¢ (3)

where F; can be chosen (Unnikrishnan 1993) to be the solution of (3) in the
limit 7 — 0 such that F; — ¢; as V — 0. As mentioned earlier, since Hq has a
continuous spectrum, such a solution will not generally exist (Prigogine 1992).
However, we shall show that, if the coupling to the continuum is weak enough
to be treated by perturbation theory, one can construct solutions possessing the
above property. [This is analogous to the case of the ordinary (d.c.) Stark
effect in hydrogen, where the Schriodinger equation admits of no true bound
states since the potential EFz+1/r has no lower bound as z — —oo, though one
can construct such states in any order of perturbation theory.] The essence of
the proposed method is quite simply brought out by considering the case of a
two-photon transition to the continuum when resonance with a bound state is
possible with the absorption of one photon.

(2a) Intermediate Resonance in Two-photon Ionisation

In the absence of any resonance, one may expand an eigenfunction 1 of the
total Hamiltonian as

p=) ar(t)e e, (4)

r=1

(where the summation also includes an integration over the continuum), and
determine a, by perturbation theory. To take into account the possibility of
a resonance between two levels, say ¢; and ¢o, we first determine a; and as
nonperturbatively and then use them to calculate a,., » > 3, by perturbation
theory. This procedure has been successfully employed to study electron—atom
scattering in a laser field (Unnikrishnan 1988) in a similar situation. In the range
of intensity where a perturbative treatment of the continuum is reasonable, the
two resonant bound states can be treated using the rotating wave approximation
(RWA). The required pair of solutions for a; and as which ensures that ¥ — ¢,
exp(—ie1t) as V — 0 may then be written as

a; =ae Bt (5)

as = /8 e—~i(61+A1+w—€2)t , (6)



838 K. Unnikrishnan

where
2—¢€ €+ 2 e+ 2
o = 20, ﬂ—_ 20) Al__ 9 ’ €<0’ (73.)
2+e€ 2—¢ 2—e€
a= 50 8= 50 A= 5 €e>0, (7b)

e=w—(e2—€1), 2=+/€+4|Vi2?,

and Vo, = (¢n|V|ék). Using the zeroth order approximation Y = 0, m > 3,

perturbation theory then gives

t
all) = —2i/ dt[a;e%m1 V1 + age'm2tV,,5] cos wt, (8)
— 00

where €nn = €5, — €,. Substituting for a; and ag from (5) and (6), we get

lee—i(w+A1+el—em)t Vm2e—i(2w+A1+el —€m)t

+6 : 9)

1) —
alt) =
m = WwH A +e —€m 2w+ AL +€ — €

Since, according to the discussion in the previous section, the function F of (2),
with 7 =1, is related to the 9 of (4) through

P =e it (10)

then F'1, correct to the first order, is given by

anle—-zwt IBVm2e—2iwt

+
w+Aj+e—€n 2wHA1+e—€n

FY = agy + e gy + Y [ m. (11)
m2>3

(It might be worth pointing out here that, since the resonant levels are treated
nonperturbatively, the term ‘order’ only refers to couplings with the remaining
states.) The S-matrix element for ionisation to a continuum specified by
momentum k may now be calculated by using (1), (2) and (11) in

o0

Sp1 = —1 lim0 e kAt (r| V (2)|91) (12)
’,]——>

—o0

where €, = $k°.
With the aid of equations (13) and (14) of Unnikrishnan (1993), we then get
the S-matrix element corresponding to the absorption of two photons as

SP = —omiT D6 (e), — €1 — 2w), (13)
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V me
TS = - [a >, B — BViz| . (14)

m>3€m—€1—w—A1

The differential cross section for the emission of an electron per unit solid angle
around k may now be calculated as in conventional perturbation theory. We know
that, according to second order perturbation theory, the formula corresponding
to (14) above is

T = —(Bo/2)*M, (152)
Z (Eo ~7')km(E0 ’I‘) , (15b)
— €1 —
and that the differential cross section is given by (Zernik 1964)
do 9
T = oo Mk (a3, (16)

where I is the intensity in W em™2, Iy = 7-019 x 1016 W em~2, ¢ = 137 and ao
is the Bohr radius. Since (13) has the same form as in second order perturbation
theory, (16) also gives the differential cross section in the present case, with |M]|
replaced by

(Bo-m)km(Bo-T)m, 48

M| =
|M] @ €m — €1 —w — A1 E0

Vk2 (17)

m>3

Notice that, since o and (3 are intensity-dependent, the cross section is no longer
proportional to I. Calculation of cross sections using the above formulae is carried
out in Section 3 for hydrogen. Before that, we shall show how (14) may be
derived on the basis of the Floquet theory of the S matrix, since this paves the
way for further generalisation.

(2b) Connection with Flogquet Theory

According to the Floquet theory of the S-matrix (Unnikrishnan 1993), if the
function F,(r,t) corresponding to the reference state ¢, can be expressed as

Fo=) e ™!y a2 ¢, (18)
72

n

the amplitude for the transition ¢; — ¢ with the absorption of n photons is
given by

TS = (A~ Ap)alialy, e =ei+nw. (19)
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Now, equation (11) for F; is indeed of the same form as (18), but does not

contain all the leading terms in exp(—2iwt). The first term on the right-hand

81de of (9) also contributes in the next order, which is readily calculated just as
). Collecting these terms, we get finally

1 Vi Vs

= UL Via| - 20

Y2k 2w+ Aq + €1 — € aZw+A1+€1—€m+ﬂ k2 (20)
>3

In the spirit of perturbation theory, we now set afof =1 and A 5 =0, where f
denotes the final continuum state. (This is equivalent to the assumption that,
if we start with the continuum state, its level shift and depletion due to the
interaction with the field are negligible.) Equations (19) and (20), together with
the energy conservation condition €, = €;+2w, then yield (14).

The generalisation of the formalism to treat any number of bound states
nonperturbatively is now obvious. Let us expand F; as

Z e~ inwt Z anu¢u + Z el(e1+A1)t ) ——z’e'ftd)y , (21)

n=-—00 neB

where B represents all the bound states of interest. If we neglect the second
term on the right-hand side, oy, and A; may be calculated without any further
approximation, as described in Unnikrishnan (1993). In the zeroth order, we
have al(,o) = 0. Higher orders can be calculated as before using perturbation
theory, and it may be verified that the resulting expression for F; will have the
required form (equation 18). The transition amplitude from ¢; to ¢ is then

given by Ajank, for ¢ such that €, = ¢;+nw.

3. Two-photon Ionisation of Hydrogen

‘We may now use the results of Section 2a to express the two-photon ionisation
cross section of hydrogen for frequencies across the 1s—2p resonance (w = 3/8),
but below the next (n = 3) resonance, in closed form. Though this can be done
retaining the level shift A; in the denominator of the first term on the right
of (17), in the intensity range where this simplified approach is valid, A; will
be much less than (e, —w) for all m > 3, and hence may be safely dropped.
This facilitates the use of the analytical results of Klarsfeld (1969) with only
minor modifications, as described below. Klarsfeld has evaluated the second order
matrix element in the radiation gauge which, in the dipole approximation, is

ME = 3 (k| Ao . p|m)(m|A.p|1) , (22)

m>2 €m — €1 —

where Ay = cEg/w. The transition matrix element in this gauge, corresponding
to (15a), is given by

Ao

TE = 22 MK (23)
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Since the on-the-energy shell T-matrix elements are gauge-invariant (e.g. Peticolas
et al. 1968), comparison of equations (15a) and (15b) with (22) and (23) enables
us to rewrite (17) (neglecting A;) as

ME® (k| Eo.7|2po) (2po| Eo . 7[1)
0.)2 €) — €] —W

M| = H ]_%wmo.rp) L4

Here M,gf‘f is already available in closed form (Klarsfeld 1969), and it is
straightforward to evaluate the remaining matrix elements analytically. The final
expressions are given below in terms of the following parameters (all quantities
in a.u.):

=2, (=01-27% gp=(@z-1)7V?,

PO ek 907

= 1+¢ ) ¢ = 2'0311_1(5/77)»

C =2"/me™/ T (1 — in), cos 0 = Eq . k,
52
MEt = —C[A + n—2R cosQO] , (25)

A=¢x2% e (2 )T Y1+ &) (2 -6 3+, 1 —in, 3—&; 2, z¢), (25a)

R =227 22 — &)~} (1 +&)~4(1 — in)(2 — in)

2
X [F1(2—€; 34im; 3 —in; 3—&; z, 2%) — (1_E> (2__5)

1+¢) \4—¢
xF1(4—¢& 3+in, 3—1in; 5—¢&; z,z*)] , (25b)
(2po|Eq . v|1) = 215/2/35 (26)
(k| Eq .7|2po) = C(A + Bcos®d) (27)
V2(2k — i) 1 k
= e — —tan ! ———— 27
A T+ a5 exp( % tan —k2+%)’ (27a)
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5o D2k -k —i)

(1+4k%)* (270)
Using these in (24), we may express |M| as
|M| = C(A; + Az cos?0), (28)
aA 210\/5 €2
A = ;—2— — A(ﬂ + 013—5m) , (28a)
Oé€2R 210\/2— &-2
A2=7727——B(’8+a 35 4_:—6_5), (28b)

Replacing |M| in (16) by |M|, we may express the differential cross section in
the same form as in second order perturbation theory (Klarsfeld 1970) as

j—;; = (A + Bcos® + Ccos0)I(a2/st), (29)

where cosf = E .k and the new (intensity-dependent) coefficients are given by

A=K|A?, B=2KRe(4}A,),

28370

C = K|As)? d K=——F——.
| 2| an 010(1—6_21"7)

Integrating over the angles, the total cross section is then given by

0=47r</i+§+%>[(a(2)). (30)

For comparison with existing data, one may also calculate the generalised cross
section, which is independent of the intensity in lowest order perturbation theory
(e.g. Faisal 1987), from

og = J—;)-(a.u.) = EIE x 4-36 x 107 ¥cm*s. (31)

Calculations using the above equations have been carried out for 0-3 < w < 0-41,
i.e. in the frequency range where the only resonance of consequence is due to
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the 2p state. [It may be explicitly verified that the residues of the first and
second terms on the right of (24) at the common pole w = % cancel exactly, so
that M has no singularity at this point, i.e. the perturbation theory has been
‘renormalised’ Faisal (1987).] Values of the coefficients governing the differential
cross section are given in Table 1, for several wavelengths around the 1s—2p
resonance, extending up to the nonresonance region. The values labelled ‘a’
are from Klarsfeld (1970) and represent second order perturbation theory. [As
is evident from equations (25) and (28), the functional dependence on cosf is
the same in both cases.]| Entries marked ‘b’ and ‘c’ refer to the present work
and represent the low and high intensity regimes respectively. The last column
gives the total cross section per unit intensity. As expected, far away from
resonance, the three calculations are in reasonable agreement with one another
and as exact resonance is approached, deviations from standard perturbation
theory set in sooner, the higher the intensity. Variation of the differential
cross section per unit intensity, which is independent of the intensity in second
order perturbation theory, with the scattering angle 6, is illustrated in Figs 1
and 2 at w = 0-36 and w = 0-374, respectively. [As is clear from (29) the
differential cross section is symmetric about 8 = 90°.] No other comparable data
for differential cross sections in the resonance region could be found in the
literature.

Table 1. Differential cross section parameters (equation 29) and total cross section per unit

intensity for two-photon ionisation of hydrogen: a, second order perturbation theory; b and

¢, renormalised perturbation theory at intensity I = 8-77x10° and 5-48x10'2 W cm—2
respectively (numbers in parentheses represent power of ten)

X (A) A B ¢ o/I (cm* W™1)
1122 a 2.310 (—35) ~3.113 (=35) 5-709 (—35) 3.034 (—34)
b 2.311 (—35) —3-115 (—35) 5-712 (—35) 3.035 (—34)
c 2-290 (—35) —3-642 (—35) 6-545 (—35) 2.998 (—34)
1200 a 5-616 (—33) —2.790 (—32) 4.152 (—32) 5-803 (—32)
b 5-591 (—33) —2.778 (—32) 4133 (-32) 5-778 (~32)
c 1-412 (—33) —6-642 (—33) 9-870 (—33) 1-473 (—32)
1210 b 5-310 (—32) —2.771 (—31) 4-146 (—31) 5-486 (—31)
c 2-595 (—33) —1-281 (~32) 1-916 (—32) 2-710 (—32)
1215 b 1-385 (—29) ~7-361 (~30) 1-104 (—29) 1-431 (—29)
c 3-372 (~33) ~1-604 (—32) 2.539 (—32) 3.526 (—32)
1220 b 1-129 (—31) —6-109 (—31) 9.178 (=31) 1-167 (—30)
c 5-037 (—33) —2.805 (—32) 4-214 (—32) 5-170 (—32)
1230 b 1-336 (—32) —7-418 (—32) 1-118 (=30) 1-382 (—31)
c 3-868 (—32) ~2.184 (—32) 3-290 (—32) 3.982 (—32)
1250 b 3.419 (—33) —1-967 (~32) 2.977 (=32) 3-542 (—32)
c 2:317 (—33) —1-341 (—32) 2.029 (—32) 2.304 (—32)
1300 a 1-239 (—33) ~7.413 (-33) 1-126 (—32) 1-283 (—32)
b 1-240 (—33) —7-415 (~33) 1-127 (—32) 1-283 (—32)
c 1-147 (—33) —6-868 (—33) 1-043 (~32) 1-186 (—32)
1450 a 8-307 (—34) —4.948 (~33) 7.372 (-33) 8-240 (—33)
b 8-309 (—34) —4.950 (~33) 7.375 (—33) 8-243 (—33)
c 8-217 (—34) —4-893 (~33) 7.288 (-33) 8-146 (—33)
1700 a 1-230 (—33) —6-592 (—33) 8-907 (—33) 1-024 (—32)
b 1.231 (—33) —6-594 (—33) 8-910 (—33) 1.024 (—32)
c 1-226 (—33) —6-568 (—33) 8-872 (—33) 1-020 (—32)
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Fig. 1. Differential cross section per unit intensity as a function of the scattering angle at
w = 0-36. Full curve, second order perturbation theory; dashed curve, renormalised theory
at [ =5-48x10'2 W cm™2.

(1/h(do/dQ) (cm4 W-1 sr-1)

0.0 20.0 40.0 60.0 80.0
0 (degrees)

Fig. 2. Differential cross section per unit intensity as a function of the scattering angle at
w = 0-374. Full curve, second order perturbation theory; dotted curve, renormalised theory at
I =8-77x10° W cm~2; and dashed curve, renormalised theory at I =5-48x10'2 W cm™2.
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Fig. 3. Generalised cross sections for two-photon ionisation of hydrogen
as a function of the photon angular frequency w, for the three values of
Erms = Eo/v2 (a.u.) shown.

Fig. 3 shows o as a function of w for three field amplitudes, Frys = 0-0005,
0-01 and 0-025 where Erwmsg is the root mean square amplitude, Fryvs = Eo/ V2.
Maquet et al. (1983) have also estimated o numerically for these cases, from
the imaginary part of the energy of the dressed 1s state. A comparison with
their graphical results shows that both calculations are indeed in good agreement
with each other [though at Frys = 0-025, the effect of the energy shift A; is
already perceptible in the results of Maquet et al. (1983) close to resonance, but
not in the present ones, since we have neglected A; in (17) while making these
calculations].

4. Ionisation by a Pulse of Finite Duration

In practice, the quantity of interest is the fraction of atoms ionised at the end of a
pulse which lasts for a finite time. For astrictly monochromatic radiation of frequency
w, the transition rate W = oI /w has the usual statistical interpretation, viz.

. n

where N is the number of atoms in the initial state, of which n are ionised per

unit time. The mean fractional ionisation after time T is then given by
P=1—exp(-WT). (33)

Let us now consider a rectangular pulse of duration T'p, which may be represented

by the function
f(t) = Epsinwot, [t|<T

—0, it > T, (34)



846 K. Unnikrishnan

where T = T,/2. The power spectrum corresponding to this pulse can be
calculated by Fourier analysing f(t) (Sommerfeld 1949):

f@) = /0 ” sinwt b(w) dw, (35a)

b(w) = ;21_—/)00 (&) sinw€ d€. (35b)

To simplify the algebraic expressions, we follow Sommerfeld (1949), and consider
only T such that woT =27n, n=0,1.... Then we have

2wg sin wT
b(w) = —5——, 36
(w) ﬂ,(wz — wg) (36)
and the normalised power spectrum is given by
I(w)dw = |b(w)|? dw / / |b(w")|? do’ . (37)
0

Thus, for a pulse of radiation of frequency wqo which lasts for a time period 2T,
the average ionisation rate is

W= / W (@) I (w)dw, (38)

Wmin

where, theoretically, wpax = 00 and Quin = 0-25 for for two-photon ionisation of
hydrogen though, in practice, the range of integration can be restricted further,
depending on the bandwidth of I(w). The mean fractional ionisation at the end
of the pulse is then

Pol-e T, (39)

In practice though, I(w) can be obtained in closed form from (36) and (37),
W has to be determined by quadrature, and the exact expression for I(w)
is not well-suited for this purpose, being highly oscillatory. Now, as shown
by Sommerfeld (1949), I(w) has a smooth envelope, whose full width at half
maximum (FWHM) is equal to 2v/2/T. We may therefore approximate the power
spectrum by a Gaussian distribution, having the same FWHM, i.e.

I(w) — e—(w—w0)2/2ch , (40)

2mo?

oy = FWHM _ 1-201 . (a1)
2-355 T




Renormalised Perturbation Theory 847

It is readily verified that, in the important region (w—wp)T < 1, where b(w) is
large, the exact expression is well represented by a Gaussian with o3 = v/1-5 /T,
which agrees well with (41).

E°.0.001
Q=7.45x10"*

Fractional ionisation

3

10° 10 10° 10 10

Time (QTy)

Fig. 4. Ionisation as a function of pulse length T,. Curves represent
values expected on the basis of a constant rate W(wo); points refer to the
full calculation.

The fractional ionisation P calculated in this manner is shown in Fig. 4 as
a function of T, in units of the Rabi frequency {2 at resonance. The field
amplitude is chosen to be Ey = 0-001, which corresponds to an intensity of
3-51x10'® W ecm~2. Two situations are illustrated, wo = 0-375 (exact resonance,
open squares) and wg = 0-3754+Q (off-resonance, solid triangles). In each case,
the ionisation due to a strictly monochromatic field of frequency wq [given by
P =1—exp{—W(wo)Tp}| is also shown as full line and broken curves respectively.
Using a phenomenological model having only the two resonant states and a
non-Hermitian Hamiltonian, Holt et al. (1983) have also estimated the ionisation
probability for the same field parameters. However, what they actually calculated
was the time dependent probability that the two bound states are not occupied
in the presence of the full interaction, whereas Fig. 4 shows the mean fraction of
the initial atoms that are left in the ionised state after the radiation is switched
off. The time development shown in Fig. 4 is therefore not quite the same as that
predicted by Holt et al. (1983), though in both cases the approach to saturation
is faster at resonance. In the initial stages, the ionisation is seen to be less than
that predicted by a time-independent rate W{(wp). The latter holds good after
about 20 Rabi periods. At exact resonance, P approaches P from below, while in
the off-resonance case, P first exceeds P at QTp = 2 before finally approaching
P. This behaviour can be understood by referring to Fig. 3. At exact resonance,
W is maximum and therefore any spread in the frequency can only decrease the
ionisation rate. In the other case, however, W increases towards resonance and



848 K. Unnikrishnan

decreases away from it, so that depending on the bandwidth, P may be more
or less than P.

In conclusion, the formalism developed in this work provides a natural extension
of the conventional perturbation theory, which allows for intermediate resonances
with bound states. The only restriction is that the coupling to the continuum
should be small enough for it to be treated perturbatively which, in any case,
is a requisite for a constant transition rate to exist. It is worth stressing here
that, saturation due to a sufficiently long pulse is always possible, even if the
ionisation rate is small.
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