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Abstract

Magnetic islands in toroidal heliac stellarator vacuum fields are explored with Hamiltonian
chaos theory and the associated area-preserving maps. Magnetic field line island chains
are examined first analytically, with perturbation theory, and then numerically to produce
Poincaré sections, which are compared with H-1 Heliac stellarator puncture plot diagrams.
Rotational transform profiles are chosen to permit the comparison of twist map and nontwist
map predictions with field line behaviour computed by a field line tracing computer program
and observed experimentally.

1. Introduction

The goal of this work is to examine the role of Hamiltonian chaos theory
and associated area-preserving maps in the prediction of field line behaviour in
a non-axisymmetric toroidal plasma containing device. We focus particularly
on profiles of the rotational transform leading to the violation of the twist
condition suggesting the application of nontwist maps. To the Heliac stellarator
H-1 described by Hamberger et al. (1990) we apply the Hamiltonian formalism
discussed by Gandy et al. (1993) for toroidal magnetic confinement systems
generally and for torsatrons in particular. From this Hamiltonian formalism,
following the discussions in Ott (1993) and of Lichtenberg and Lieberman (1992),
we obtain area-preserving maps providing a convenient tool for analysis of the
field-line dynamics. Fields with positive-definite shear have been well-studied
with twist maps, but nontwist maps have only recently been applied to those
with local minima or maxima (Hayashi et al. 1995).

A stellarator is a toroidal plasma containment device whose magnetic field
is mainly generated by currents in windings external to the plasma. These
external coils are designed so that, even with no plasma present, the magnetic
field lines wrap around inside a toroidal vacuum vessel in such a way that they
are everywhere tangential, or approximately tangential (Dewar et al. 1994), to a
family of nested topologically toroidal surfaces, called ‘magnetic flux surfaces’.

Stellarator puncture plots are ideal vehicles for the study of lé-degree of
freedom Hamiltonian systems, since any such magnetic field line system is a
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realisation of a perfectly dissipation-free Hamiltonian flow (Cary and Littlejohn
1983; Boozer 1983; Yoshida 1994). The phase space (plus time) of our Hamiltonian
system corresponds to the real space of the physical torus. A puncture plot
is a physically realised Poincaré section of that phase space. A puncture plot
is a plot of successive intersections, or ‘punctures’, by magnetic field lines of a
cross-sectional surface cutting the physical magnetic torus everywhere transverse
to the magnetic field. Puncture plots can be constructed directly from experiment
using low-energy electron beams, or calculated by computer programs modelling
stellarator field line behaviour either in the vacuum case or when perturbed by
currents in a plasma.

Typically there exists a unique closed field line, the ‘magnetic axis’, that
generates a fixed point on the puncture plot. This forms the centre of the family
of toroidal magnetic surfaces referred to above. In the special case that the
corresponding Hamiltonian system is integrable, the field lines within a finite
volume are all perfectly tangential to toroidal magnetic surfaces. In general, this
ideal case cannot be achieved precisely, but by careful design it can be arranged
that the field line Hamiltonian is close to (weakly perturbed from) an integrable
Hamiltonian. Then the Kolmogorov-Arnol’d-Moser (KAM) theorem (see e.g.
Lichtenberg and Lieberman 1992) can be invoked to argue that there will still
be a finite measure of perfect magnetic surfaces, with chaotic and island regions
sandwiched in between them.

C s

Fig. 1. Stylised flux-coordinate
system showing the relations between
the poloidal angle 6, the flux surface

u enumeration variable u, and the
time-like angle ¢ measured around
the principal axis.

When the field is integrable, a generalised toroidal angle ¢ measured approximately
parallel to the magnetic axis, a poloidal angle 6 period 27 measured about the
magnetic axis, and a flux-surface-labelling quantity u can be found so as to form
a canonical set of Hamiltonian action-angle variables. If one visualises an electron
following a magnetic field line around its path with unit toroidal angular velocity,
the toroidal angle ¢ period 27 is a measure of time, the poloidal angle 8 represents
the angle variable of the action-angle pair, and u plays the role of the action, the
momentum conjugate to 6 (see Fig. 1). The use of such a curvilinear magnetic
coordinate system has become a standard tool in the analysis of stellarator physics
(D’Haeseleer et al. 1990). Even when the field is not integrable, a canonically
conjugate pair (0, u) with a corresponding ‘perturbed’ Hamiltonian can be found
(Cary and Littlejohn 1983; Boozer 1983; Yoshida 1994).
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Our system of a variable 6, its conjugate momentum-like variable u, plus the
periodic time-like variable ¢, is said to form a Hamiltonian system of one and
a half degrees of freedom. The half degree of freedom is time, here an angle
variable in our three-dimensional (6,u,({) phase space.

In Section 2 we develop the Hamiltonian formalism for stellarators, following the
discussion of Gandy et al. (1993) for monotonically increasing rotational transform,
and then extend the formalism to the zero-shear case. From the Hamiltonian
formalism, we develop the general theory of the corresponding area-preserving
maps in Section 3. In Section 4, we obtain the twist map (a form of the standard
map) appropriate for the non-zero shear case and, in Section 5, the appropriate
map for the nontwist case, one form of which is the standard nontwist map.
Section 6 is the Conclusion. The Appendix discusses a useful transformation.

2. Hamiltonian Formalism

A time-independent N-degree of freedom Hamiltonian system is integrable if
it has N independent global constants of the motion, one of which can be taken
to be the Hamiltonian itself. This requirement implies the trajectory in phase
space is restricted to an N-dimensional torus. Our Hamiltonian is given by the
toroidal component of the vector potential of the magnetic field. Ideal stellarator
field coils are designed to produce a toroidal magnetic field forming a compact
set of uniform flux surfaces nested around the magnetic axis. Invariance of the
surface integral of the flux through cross sections of the flux surface as we follow
it around the toroidal axis is analogous to time-invariance of the Hamiltonian.
Our system has N = 1. In augmented phase space, the two-dimensional torus
to which ideal field-line motion is restricted for a particular Hamiltonian value
is a tubular flux surface. Once a field line punctures a poloidal cross section of
the physical torus on the flux surface for a particular Hamiltonian value, that
field-line’s successive punctures while orbiting the torus are restricted to the
closed-curve intersection of the flux surface with the poloidal plane.

Our investigation begins with a nested set of ideal magnetic flux surfaces, closely
approximated by design in actual stellarators (Shats et al. 1994). Any quantity
constant on each surface and increasing monotonically from the magnetic axis
outward can be used as a flux surface label u, though usually with u =0 at the
magnetic axis. With careful choice of coordinates we can write an unperturbed
action-angle Hamiltonian (Gandy et al. 1993) as

H(uvev C) :HO(u)a (1)

that is, the Hamiltonian is constant everywhere on the flux surface labelled u, is
independent of the angle #, and is autonomous (independent of time). Note that
we are not assuming the system to have any particular symmetry in physical
space—the ‘unperturbed’ system may be strongly non-axisymmetric. Hamilton’s
equations of motion for a field line are here

du OH
d0 OH
— =t(u). (3)

d_C=8u
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(The toroidal frequency is, by definition, unity.) In the dynamical systems
literature ¢ is more commonly called the rotation number or winding number.
The rotational transform ¢ is the time-like derivative of 6 and therefore represents
the natural poloidal frequency of the unperturbed system at a given u. For a
given value of u, the variable 6 increases by ¢ = 27t each (-period. The increase
is linear with (; hence 6 and { are called straight field line coordinates. Plotted
in the (¢, ) plane, field lines appear as straight lines.

In an integrable system, the magnetic field lines form a uniformly dense (with
respect to #) compact set on a given flux surface, and the tubular flux surfaces
are densely nested between the magnetic axis and the plasma edge. A given
flux surface can be characterised as rational or irrational by the value of the
rotational transform . In general, ¢ is a continuous single-valued function of the
flux-surface parameter u. If ¢ is irrational at a particular surface, one field/flux
line will cover the surface with arbitrary density as it travels around the toroid
an arbitrary number of times. If ¢ for a given surface, labelled u,, has the
rational value,

o(ur) = =, 4)

a resonance occurs when the head of a field line returns to its tail after m cycles
around the toroidal axis with n twists around the magnetic axis. Covering the
flux surface to an arbitrary density will require a number of separate field lines
equal to the line integral of the density around the circumference of the flux
surface divided by n times the density.

Because such surfaces are not structurally stable, in an actual stellarator,
magnetic islands (centred on stable orbits) and regions of chaos exist, reflecting
a less than ideal design or construction of the machine or the effect of currents
arising spontaneously in the plasma. We assume here the imperfections produce
small perturbations to the ideal Hamiltonian and hence to the ideal nested flux
surface system. So the total Hamiltonian is the sum of the Hamiltonian for ideal
nested surfaces and perturbations periodic in § and ¢,

H(u,6,¢) = Ho(w) + 3. ermn(u) cos(mf — n¢ — fun(u)), (5)

m,n

where €,,,,, and 7,,,, are the perturbation Fourier amplitudes and phases respectively.
Since the perturbation has an explicit time-dependence, the perturbed system
is non-autonomous and, in general, non-integrable. Resonance occurs when the
frequency of the driving perturbation coincides with the natural frequency of the
unperturbed Hamiltonian, that is, when the ratio of the summation indices n/m
equals the value of ¢ at a rational surface.

Resonance produces magnetic island chains at the location of the unperturbed
rational surface, though in a well-designed stellarator the individual islands in
a high-order chain are numerous but small, so it can be difficult to distinguish
a chain of islands from a smooth surface. While n/m = 2/1, 4/2, and 6/3 all
represent the same value of ¢, they represent different Fourier components with
different phases and strengths produced by different deviations from ideal design
of the field coils of an actual machine. Each will have a different number of islands
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in its chain given by the denominator m. Less pronounced higher-order chains
with the same n/m are presumably swallowed up by pronounced low-order chains,
the higher n and m components merely producing small harmonic distortions on
the basic island structure. Thus, unless forbidden by symmetry or removed by
careful design, the dominant n and m will be the lowest, mutually prime, pair
satisfying equation (4).

The number of islands in a chain and the value of ¢ determine the value
of the numerator n by equation (4), and n reflects the stellarator’s physical
symmetry. In a 3-fold symmetric helical stellarator the magnetic torus itself is
designed to wind about the magnetic axis three times, and the numerator n of a
rational-valued ¢ is divisible by 3. Experimentally-observed island chains whose
number of islands m and z-value imply an n-value not divisible by 3 are due
to error fields. The H-1 Heliac has 36 toroidal field coils evenly spaced in a
helix about the central conductor, so we can also expect chains of islands whose
m-number is given by 36 divided by <.

Close to a rational surface at u,, we can expand Hy in a Taylor series about
Up:

H=H +t,(u—u)+3sp(u—u )2+ 3to(u—u)?+...

+ ) €mn,r cos[(mé — nC) — fmn,q] (6)

mn

where the subscript r indicates evaluation at the surface u = u,, s, =1¢/(u,) is
the shear parameter, and ¢, = #/(u,) measures the rate of change of the shear
at the surface. Note the need to distinguish carefully between ¢, and ¢.. The
analogue of the classical mechanics level of potential, Hy does not affect the
perturbation dynamics and can be ignored.

We here perform a canonical transformation from the old canonical variables
(0, u) to new canonical variables (0, J) with the generating function F (9, J,()
= (0—t¢)(J+u,). We obtain, then, the relationships between the old and new
coordinates as J = u—u, and § = ©—(.

We first consider the case where the shear parameter is not zero. We assume
the third and higher order terms are small compared with the second order term
of equation (6) and confine our interest to the latter plus the Fourier expansion
terms. With a redefined u,, our perturbation Hamiltonian can be written:

15r(u—u)? + D emn,r c0S[MO — (0 — t,m)¢ — Npm,r] - (7)

mn

Note that the time-like dependence vanishes for the subset of n and m values.
We will set the new phase angle to agree with experiment below.

A particular (n,m) resonance geometry results from the fundamental or first
harmonic mode of our Fourier expansion when field lines twist n times around
the magnetic/poloidal axis while winding around the toroidal axis m times at the
surface with rational + = n/m. For a given n-fold symmetry, the effects of higher
order harmonics, specified by (2n,2m), (3n,3m), etc., will be masked by the
lowest order term. Off-harmonic terms will not excite the n/m resonance. We
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can limit the perturbation to the lowest order term in the expansion consistent
with the conditions imposed by the symmetry of the stellarator and the value
of ¢ at a particular flux surface.

Keeping only the lowest order Fourier term of equation (7), then we obtain
the standard Hamiltonian for a pendulum,

%srjz + €m,rcos(mO +1'), (8)

with period 27/m in ©. We here choose the phase to produce an elliptical
stability point (‘O’ point) at © = 0 and, for computational convenience, pick the
reference level of potential to re-write our perturbation Hamiltonian as

K=1sJ%+€nr(1 —cosmO). (9)

From this we can plot the contour diagram shown in Fig. 2 for m = 5. Each level
curve in © and J represents a different value of K. The partial Hamiltonian K
is similar to that of a particle in a potential well. The separatrix is the level
curve at the top of the well for which the total Hamiltonian value equals that
of the unperturbed integrable flux surface. The oval-shaped contours within the
separatrix are level curves for values of K less than that of the separatrix, the
most negative of which, K = —2¢, occurs at the elliptic periodic points at the
centres of the islands.

We began with a time-dependent and therefore non-integrable perturbation
Hamiltonian. By restricting the terms to lowest and transforming away the
time-dependence, we have arrived at the Hamiltonian for a pendulum, which is
integrable with constant value contour levels.

To obtain the ratio of the half-width (or half-height) to half-length of an island
inside the separatrix, we first note at a given K that J will have a maximum
value when the cosine contribution is unity (© = 0):

K =1s.(67)%. (10)
Similarly the maximum angle 6@ will occur when the J contribution is zero:
K = ¢(1 — cosmbO), (11)
where € = €, ,. Thus
1 1
2 — 60\ 2
S (_Q_K_)z _ (25(1 cosm )) ’ (12)
Sr Sp

or, dividing by 60,

57 [M] ' (13)

56 57(60)2
which approaches m(e/s,)¥ as 6@ — 0.

The full-width of the island chain can be defined as the maximum full-width
of the separatrix (when © =0 and mé© =),

AJ =267 = 4(i)% . (14)

Sr
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The width is proportional to the square root of the perturbation strength, in
agreement with Gandy et al. (1993).

To better show that the perturbation Hamiltonian equation (9) represents a
chain of islands, the contour diagram of Fig. 2 is replotted in the polar diagram of
Fig. 3a. For easier comparison with actual puncture plots and the plots produced
by field-line tracing programs, we incorporate a chain of islands predicted by this
simple model into a nest of flux surfaces plotted in the shape of a bean using a
parametrisation scheme (discussed in the Appendix) in Fig. 3b and compare it
with a field line tracing program puncture plot in Fig. 4.

XXX

Fig. 2. Hamiltonian 5-island chain.

(@) (b)

Fig. 3. Island chain of Fig. 2 plotted in a circle (a) and transformed into a bean shape (b).

When the rotational transform ¢ has a maximum or a minimum, its first
derivative, the shear coefficient, vanishes. The Hamiltonian expansion (6) then
has no second order term. Expanding the Hamiltonian about u, and keeping
only the lowest-order perturbation terms again, we have

H = Ho, +to(u —u,) + 3t (u — u)3 + ..+ €, cos(mf — n(), (15)

which is odd in (u —wu,). Again we can define away the first two terms and
neglect fourth and higher order terms, but we keep the third order term to obtain
a perturbation Hamiltonian
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K=1%t.J% — €, (1 — cosmO). (16)

Contours of this Hamiltonian are plotted in Fig. 5 for K = 0 and are consistent
with the reconnection scenario for the logistic twist map of Howard and Hohs
(1984) and the nontwist map of del-Castillo-Negrete and Morrison (1993).

(a) (b)

Fig. 4. Bean-shaped island chain of Fig. 3b with reduced perturbation

parameter embedded in nested flux surfaces (a) for comparison with puncture
plot (b).

NV NV NV NV NV
\\/\/\/\/\/

Fig. 5. Reconnected 5-island chain when the Hamiltonian has zero shear.

3. Area-preserving Maps

The discretised versions of Hamilton’s equations (2) and (3) for the perturbed
Hamiltonian of equation (9) are

Au  Upyy —Up

AC o = —esinmb,, , (17)
AO Oppy— 6,

— = (upa). 18
AC o #(Un+1) (18)

Note the time-sequence subscript n here is not the same as the n of the rational
number n/m, and we have dropped the now unnecessary r-and m-subscripts from
€. Without perturbation, u is constant and # increases linearly with time.
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The above equations can be recast in the form of a map by writing them as,
respectively,

Uptl = Up — 2mesinmby,, (19)
9n+1 = 6‘n + 27Tt(’un+1) . (20)
The Jacobian of the map defined by equations (19) and (20) is

aun+1

00,,41/06r, 00n41/0un
00y,

6un+1/80n y 8un+1/8un

aun-{—l

20 |~ 27t (Un+1)

= [1 + 27t (unt1)

1. (21)

Il

Thus the map is, quite generally, area preserving.

For computational simplicity we re-define the poloidal angle 6 to have period
one-revolution about the magnetic axis, and re-define the perturbation parameter
¢ dividing it by 2r. We then rewrite equations (19) and (20) as

Upil = Up — €sin2mmby,, (22)

Ont1 = On +t(Uni1) - (23)

We can subtract u, from both sides of equation (22) and replace u —u, on both
sides by J to obtain

Jnt1 = Jn —€sin27mmé . (24)
Similarly we can expand ¢ about u = u, to obtain

Oni1 = O +t(ur) + ¢ (ur) Jnp1 + 5 (un) T2 + .

On +tr +8Tnp1 +BI2 1+ .0 (25)

where we have defined s =¢(u,) and 8= "' (u,).

4. Twist Maps

Assuming ¢ is roughly linear with a non-zero slope (s non-zero), equations (24)
and (25) are the equations for a twist map. The map represents flux lines on
one surface twisted relative to those on adjacent surfaces. The map is a radial
twist map if 6 is periodic. The radial twist map form of our area-preserving
map can be written as

Jpt1 = Jp —€sin2mmb, (26)
Ont1 = Op+tr+sIpg1. (27)

Equations (26) and (27) are one form of the standard map used to plot Fig. 6,
which can be compared with the island chains of Figs 2-4.
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Fig. 6. Chain of 5 islands predicted by standard map.

5. Nontwist Maps

When the twist condition is violated [the shear coefficient #/(u,) is zero|, our
area-preserving map takes the form:

Jnt1 = Jp —esin2mmb, , (28)
On+1 = 60, +1¢t,. + ﬂJﬁ_H . (29)
With (3 restricted to 3 = —t,, these equations are the standard nontwist map

of del-Castillo-Negrete and Morrison (1993), also studied by Weiss (1991) and
compared with pressure-broadened heliac plots by Hayashi et al. (1995).

\\//
(a) (b)
() (d)

Fig. 7. Possible ¢ curves considered in this work plotted (along the vertical axis) against
flux-surface enumeration variable u (along the horizontal axis) with (a) ¢+ monotonically
increasing and crossing a rational value in the middle of the flux-surface nest, (b) ¢ having a
local minimum well below the rational value of interest, (¢) ¢ having a local minimum just
below a rational value, and (d) ¢ having a local minimum at a rational value.

In Figs 7Ta~d we plot four arbitrary ¢ curves of interest in the present work as
a function of the surface parameter u in the vicinity of a rational value ¢ = n/m.
In Fig. 7a ¢ is a monotonic function of u near the value n/m. This would
be the case for the classic twist map of a single chain of m islands. A chain
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(0)

Fig. 8. Nontwist maps (a), (b) and (c) topologically similar to puncture plots expected when
t has a functional dependence and values similar to those illustrated in Figs 7b, 7c and 7d
respectively.
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Fig. 9. Puncture plots (a—d) where ¢ is evolving approximately as in Figs 8a—d respectively.
Here the perturbation is small and the topological details of the islands are not visible at this
scale. The histogram-like images along the right symmetry axes in the plots show roughly the
differences between ¢ and the rational value %,. Chains of seven islands are expected where
the ¢ histogram curves cross the symmetry axis. These would be the locations of stable orbits
with no perturbation.

similar to that of Fig. 5 might have + =1-2, n =6 and m = 5, for example.
In Fig. 7b we show a roughly parabolic ¢+ curve having its minimum well below
the n/m rational value. Each crossing by the ¢ curve of the line drawn at
constant ¢n/m would result in a chain of m islands, and we would construct a
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(a)

Fig. 10. A detail from a nearly re-connected m = 2 puncture
plot is shown in (a) for comparison with the appropriate
nontwist map in (b).

separate approximate Hamiltonian in each of the two cases. We would use the
same twist map equations (26) and (27) in each case, each producing a chain
of the same number of magnetic islands. The two island chains would each be
similar to that of Fig. 5. By contrast if the ¢ curve minimum occurs close to
or at the value n/m, as in Figs 7c and 7d, the twist condition is violated, at
least approximately, and it is appropriate to use the standard nontwist map of
equations (28) and (29). The two cases will result in plots similar to those of
Figs 8a and 8b respectively. Nontwist maps become appropriate as the distance
in the u-direction between two island chains of equal m-number approaches the
width of the islands in the chains.

In Figs 9a—d we show a series of puncture plots predicted by a Heliac vacuum
field line tracing program, the Gourdon code (Gourdon et al. 1971), to match the
series of conditions of Figs 7Ta—d for m = 7. We show a puncture plot in Fig. 10a
produced by the nontwist map of equations (28) and (29), choosing parameters
for visual agreement with the predictions of a field line tracing computer program
shown in Fig. 10b.

6. Conclusion

The existence of nested flux surfaces in a stellerator implies a canonical
Hamiltonian relationship among the variables describing the location of the
intersection of a flux surface with a poloidal cross section. It also implies the
existence of an integrable Hamiltonian. Without knowing the physical origin of
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this Hamiltonian or its explicit dependence on the canonical variables, we can
infer a perturbation Hamiltonian which approximately describes magnetic island
chains in analytic form and provides some insight into perturbation strengths and
the value of the rotational transform at a particular puncture plot location. From
the Hamiltonian description we can derive a description of the same phenomena
using area-preserving maps. Where the rotational transform ¢ does not have
a local minimum at the location of an unperturbed rational flux surface (the
non-zero shear case), we use a twist map. Where the shear vanishes (: has a
local minimum), a nontwist map is appropriate. It would be interesting to use
the results of the present work to examine the relation between island sizes, the
shape of the ¢ curve and perturbation strengths and to explore the evolution of
Hamiltonian maps from twist to nontwist cases as we vary the shape of the ¢
curve.
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Appendix: Bean-shape Parametrisation

The bean-shape parametrisation scheme described here is an intuitive way of
visualising the transformation between flux coordinates and physical space. The
scheme is similar to the more commonly used bean-shape parametrisation scheme
described by Chance et al. (1983) and by Monticello et al. (1984), except that our
transformation is easier to apply to the magnetic islands arising from Hamiltonian
theory, is analytically invertible, provides an excellent fit to experiment, and is
easier to visualise.

Fig. 11. Circular light beam incident
v on a vertical reflecting circular

cylinder of larger radius to produce
a bean shape on the underlying
horizontal surface.

(

=)

The mapping is inspired by the optical transformation obtained on reflecting
a circular beam of light in an upright circular cylinder onto its base plane. The
circular beam (of radius R) with its central ray (R = 0 ray) in the (y, z)-plane is
directed at an angle of incidence v toward a circular reflecting cylinder (of radius
Q > R) whose symmetry axis is the y-axis (see Fig. 11). The circular beam of
light will be reflected onto the (z, z)-plane, its image bean-shaped with its centre
falling on the z-axis at a distance Q + h/tan from the y-axis, where h is the
height at which the central ray strikes the cylinder. While still capturing the
intuitive features of the model, the equations given below for the transformation
have been modified in order to simplify the inverse mapping, which otherwise
involves the recovery of the roots of a quartic equation. If we fill the circular
beam with a nest of circular surfaces, the reflected image is a nest of bean-shaped
surfaces which closely mimic the nested surfaces found experimentally. If we
describe a point in a cross-section of the circular beam by the polar coordinates
(R,©), the transformation to the (z,z) coordinates of the corresponding point
in the bean-shaped image is written as:

z = Dcos¢, (30)
z = Dsing, (31)

where the intermediate variables D and ¢ are defined by
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. h+ Rsin®
D-—Qsm¢+—tar17—, (32)
Qcos¢p = RcosO. (33)

The shape of the bean is determined by the fitting parameters ¢ and Q. We
can also adjust the height h to adjust the bean’s overall size.

The centre of the bean can represent the magnetic axis of a bean-shaped
puncture plot. The corresponding (r,6) polar coordinates centred on the magnetic
axis are given with (z,2') = (z,z — Q — 20) as

r= (2 +2%)}, (34)

0 = arctanil, (35)
z

where 6 is the usual poloidal angle defined in the Introduction. Equations
(30)—(35) thus define a mapping from the ‘flux coordinates’ (R,©) to the ‘real
space’ coordinates (r,6).
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