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Abstract

Calculations of low energy positronium-proton scattering using the close coupling approach
are reported at energies below the three-body breakup energy of 0-5 Rydberg. The channel
space includes nine physical hydrogen and positronium states and in addition twelve hydrogen
and positronium pseudo-states. Total elastic and electron-transfer cross sections are reported
at incident energies below the ionisation threshold. Cross sections for electron transfer to the
H(n=2) and H(n=3) levels are also reported.

1. Introduction

The combination of (e~e*p) is one of the fundamental three-body systems
of atomic physics. As a three-body system, it does not possess a stable bound
state, but there are two-particle bound states that can be formed from its
constituents. These are the hydrogen atom, which is stable, and the positronium
atom which has a lifetime of about 107® s before undergoing positron-electron
annihilation. Because of this, the positron-hydrogen and positronium-proton
collision systems form one of the simplest possible scattering systems in which
a genuine rearrangement collision is possible. While there have recently been a
number of calculations of positron-hydrogen scattering (Archer et al. 1990; Hewitt
et al. 1990; Higgins and Burke 1993; Igarashi and Toshima 1994; McAlinden et al.
1994; Mitroy and Stelbovics 1994a, 1994b; Mitroy and Ratnavelu 1995: Roy and
Mandal 1993; Zhou et al. 1994), the same cannot be said for positronium-proton
scattering. This is despite the fact that the behaviour of the positronium-proton
elastic phase shift is quite unusual at high energies (Mitroy et al. 1995), and
the positronium-antiproton to electron-antihydrogen reaction has been promoted
as one of the most efficient ways to form antihydrogen (Charlton et al. 1994
Deutch et al. 1988, 1993).

The following events are possible in a positronium-proton collision:

Ps+p—Ps*+p (excitation of Ps),
Ps+p—et+H (formation of H),
Ps +p — et + e +p (ionisation of Ps).

The present close coupling (CC) calculations of positronium-proton scattering
are restricted to energies below the three-body breakup threshold. The channel
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space includes a total of thirteen hydrogen-type states and a total of eight
positronium-type states, including the exact H(n=1,2,3) and Ps(n=1,2) states,
and is identical to a previous calculation of positron-hydrogen scattering (Mitroy
1995). Indeed, for the most part, the T-matrix elements used for the computation
of the present cross sections are taken from the T-matrix files generated during
the positron-hydrogen calculations. The present calculations are only possible
because an efficient technique for computing the electron-transfer matrix elements
used in the momentum space T-matrix method has been developed (Mitroy
1993a).

Most of the earlier calculations of Ps—p scattering (Darewych 1987; Humberston
et al. 1987; Nahar and Wadehra 1988; Mitroy and Stelbovies 1994b; Igarashi et
al. 1994) were prompted by a desire to compute anti-hydrogen cross sections for
the reaction

Ps+p—e  +H.

The only comprehensive calculations of Ps—p scattering reported so far have been
the six-state CC calculation by Mitroy and Stelbovics (1994a) and the more
accurate twelve-state CC calculation by Mitroy and Ratnavelu (1995). There has
been one other calculation reporting cross sections for Ps—p scattering (Archer
et al. 1990), however this calculation was restricted to the J =0 partial wave.

2. Details of the Calculations

The primary purpose of the calculations reported in this paper is to generate
accurate cross sections for positronium—proton scattering in the low energy region.
The cross sections reported in this paper are for the most part derived from
T-matrix elements generated from earlier calculations. Under these circumstances,
a detailed description of the computational procedures is not required, although
the more important details are summarised. The three model calculations for
which cross sections are reported are:

CC(3,3). This basis includes the physical H(1s), H(2s) and H(2p), and Ps(1s),
Ps(2s) and Ps(2p) levels. This basis entailed no new calculations since cross
sections and phase shifts have been reported previously (Mitroy and Stelbovics
1994a).

CC(8, 6). This basis includes the lowest three physical levels of hydrogen (1s,
2s and 2p) and well as three pseudo-levels (3s, 3p and 3d). The lowest three
physical states of positronium (1s, 2s and 2p) and three pseudo-positronium levels
(3s,4s and 3p) were included. Extensive calculations with this basis have been
reported previously (Mitroy 1993b; Mitroy and Ratnavelu 1995).

lowest three physical states of positronium (1s, 2s 2p) and five pseudo-positronium
levels were included (3s,4s,3p,4p and 3d). The detailed specification of this
basis has been given elsewhere (Mitroy 1995). Calculations at some additional
energies have been performed.

For most of the calculations reported in this paper, 40 and 48 point Gaussian
quadrature meshes were used to discretise the kernel of the integral equation.
Calculations were done at more than 200 energies below the Ps(n=3) threshold
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to properly map out the resonance structures associated with the H(n=2) and
Ps(n=2) thresholds. Some complicated structures exist between the Ps(n=2) and
H(n=3) thresholds (Archer et al. 1990). There has been no attempt to investigate
this particular energy region in any detail since this necessitates increasing the
size of the Gaussian mesh used to discretise the integral equation. Calculations
were only performed at four energies above the H(n=3) threshold.

Since the time taken to evaluate the positronium matrix elements increased for
the higher partial waves, the fully coupled CC(13,8) model was not used for all
the partial waves. For the lowest partial waves no approximations (apart from the
purely numerical ones inherent in any calculation) were made to compromise the
accuracy of the CC(13,8) calculations. For an intermediate set of J-values, the
matrix elements connecting the hydrogen states to the positronium states were
omitted and the two manifolds were decoupled from each other. For the highest
partial waves, a modified effective range formula (MERT) (Mitroy and Ratnavelu
1995; O’Malley et al. 1962; O’Malley 1963) was used to compute the approximate
T-matrix elements for the diagonal channels. The MERT approximation to the
phase shift is

2mag (Ps)k?
(2J+3)(2J +1)(2J -1)°

1)

tand; =

[An earlier expression given by Mitroy and Ratnavelu (1995) had a typographical
error and was a factor of 2 too large.] However, it was possible to ensure that
the use of these approximations would not lead to an inaccuracy of more than
1% in the integrated cross sections by checking the accuracy of the different
approximations at the changeover J-values.

3. Elastic Scattering

One of the salient features of Ps(1s)—p scattering is that the e™—H(1s) channel
is also open. This results in the phase shifts for elastic scattering having
both real and imaginary components. Another unusual aspect is that the
Ps(1s) + p — et 4+ H(1s) reaction is a superelastic collision. One consequence
of the superelastic nature of the transition is that the electron transfer cross
section will asymptote like E~% at threshold, where E is the energy in the
Ps(1s)-p entrance channel (Mott and Massey 1965; Mitroy and Stelbovics 1994;
McAlinden et al. 1994). Another exotic effect is a consequence of the fact that
positron and electron have the same mass, and therefore the centre-of-mass and
centre-of-charge of the positronium atom are coincident. The static interaction
between a proton and a positronium atom will be zero, and so the first Born
approximation to the elastic scattering T-matrix element is zero (Massey and
Mohr 1954; Mitroy 1993a, 1993b). Consequently, elastic scattering can only occur
as a result of second order or higher order processes.

Both the real (Fig. 1) and imaginary (Fig. 2) parts of the phase shift are graphed
for the J =0, J=1 and J =2 partial waves. Comparison of the CC(13,38)
and CC(6,6) phase shifts reveals that the CC(T3,8) phase shifts are larger as
expected. The differences between the CC(13,8) and CC(8,6) sets of phase shifts
are not large, being less than 5% at most energies. The six-state CC(3,3) model
provides a poor approximation to these more accurate calculations. For the J =0
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Fig. 1. Real part of the J=0, 1 and 2 phase shifts (—).
Phase shifts from the CC(6,6) (@) and CC(3, 3) (#) models
are also shown.

and 1 partial waves, the differences are greater than 0-1 rad at most energies.
The differences between the CC(3,3) and CC(13,8) phase shifts are larger for
the J =2 partial wave. However, the dipole polarisability for the positronium
ground state is quite large at 36-0 a3, so any deficiencies in the polarisation
potential will be emphasised. The CC(3,3) basis takes into account only 65-8% of
the positronium ground state polarisability. Another factor that accentuates the
influence of the polarisation potential is the fact that the first-order contribution
to the elastic scattering T-matrix is zero.

The scattering length for Ps—p scattering was estimated by fitting a MERT
formula (O’Malley et al. 1962; O’Malley 1963) to six values of the s-wave phase
between 0-0141 and 0-07 ag 1. (When performing the fit, the effective dipole
polarisability that is used in the MERT formula is 72 a3.) The present scattering
length is —15-540-4 ag. The error bar provides an estimate of the uncertainty
from the MERT fit, and should not be taken as giving an absolute bound on
the scattering length. Mitroy and Ratnavelu (1995) previously estimated the
scattering length to be —16 ao for the CC(6,6) model using a graphical technique.
A better estimate of the CC(6,6) scattering length, namely —15-240-4 ao, was
obtained using a MERT fit. Using the present value for the scattering length
would imply an elastic cross section of 960 a2 at threshold.
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Fig. 2. Imaginary part of the J =0, 1 and 2 phase shifts
(—). Phase shifts from the CC(6,6) (@) and CC(3, 3) (&)
models are also shown.

One of the features of the plots shown in Fig. 1 is that the J =0 and
J =1 phase shifts both pass through zero at momenta of 0-207 and 0-49 ag !
respectively. It would be necessary to extend the calculation to higher energies
to determine whether the J = 2 phase also goes through zero. Although minima
are present in the J =0 and J =1 cross sections (Fig. 3), these occur at different
energies and as a consequences there is no pronounced Ramsauer minimum in
the integrated elastic cross section (Fig. 4).

The imaginary phase shift provides a measure of the loss of flux from the
Ps(1s)-p entrance channel. One notable feature of Fig. 2 is the manner in which
the imaginary phase shift increases as a function of energy. At the H(2s) and
H(2p) thresholds (k ~ 0-7 ag') the rate of increase of the imaginary phase shift
gets larger. This can be interpreted as reflecting the fact that the transitions to
form hydrogen in the H(2s) and H(2p) levels are stronger than the transition to
the H(1s) level.

There are resonances associated with both the H(n=2) and Ps(n=2) thresholds.
The real part of the phase shifts all increase by m when going through the H(n=2)
resonances. The resonances associated with Ps(n=2) threshold lead to structures
in the real part of the phase shift which are barely perceptible although there

are prominent features in the imaginary part of the phase shift for the J =0
partial wave.
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The elastic cross sections for the J =0, 1, 2 and 3 partial waves are listed in
Table 1 and a detailed plot of the J =0, 1 and 2 partial cross sections is shown
in Fig. 3. The differences between the CC(6,6) and CC(13,8) cross sections are
less than 10% at all the energies detailed in Table 1.

Table 1. The J =0, 1, 2 and 3 partial cross sections (in units of wa3) for Ps(1s)-p elastic
scattering

The integrated cross sections are also given

Model Energy (Ryd)
0-0041 0-0625 0-14 0-2225 0-300 0-400 0-5000
J=0
CC(3,3)* 6-53 11-1 11-5 8-80 6-54 4-49 3-15
CC(8,8)° 56-4 7-07 9-92 8-34 6-45 4-64 3.35
CC(1_3,§) 59.7 6-92 9.86 8-32 6-45 4-64 3-37
Variational® 56-7 7-05 9.93 8-37
J=1
CC(3,3)* 5-85 0-784 1-11 3-40 4-12 4-50 4.25
CC(8,8)" 15-0 3.97 0-181 1-82 2-56 3.92 3.29
CC(13,§) 15-2 4-17 0-160 1-77 2-51 3-14 3-22
J =
CC(3,3)* 0-336 2-55 1-03 0-184 0-102 0-333 0-656
CC(8,6)° 0-785 6-86 4.07 1.7 0-962 0-619  0-670
CC(1_3,§) 0-792 7-07 4-26 1-82 1-03 0-683 0-729
Variational® 0-0021 4-68 2-82 0-697
J=3
CC(3,3) 0-0487 0-799 1.271 1-24 1-18 0-875 0-701
CC(5,8)° 0-113 1.82 3.18 3.46 3.39 271 2.13
CC(13,8) 0-119 1-85 3.32 3.64 3.56 2.85 2.25
Total
cC(3,3)* 12-8 15-6 15-7 149 13-8 12.2 110
CC(8,8) 72.7 205 19-2 183 17-6 16-3 14-6
CC(13,8) 75.9 20-8 19-5 18-6 18-0 16-7 15-0

& Mitroy and Stelbovics (1994b).

® Mitroy and Ratnavelu (1995).

© Humberston (1984), Brown and Humberston (1984) (cross sections derived from the K-matrix
elements).

Elastic cross sections for the J =0 and J =2 partial waves have also been
derived from the variational K-matrix elements of Humberston (1984) and Brown
and Humberston (1985). [In Mitroy and Ratnavelu (1995), the cross sections
attributed to Humberston and Brown were computed from the real part of the
phase shift and are slightly different.] The variational cross sections for J =0
are in reasonable agreement with the close coupling calculations, although they
are in better agreement with the CC(6,6) calculation. For J =2, the variational
cross sections are in poor agreement with the present cross section. Since it is not
clear whether Humberston and Brown were interested in getting accurate cross
sections for the Ps(1s)-p entrance channel, it is probably to be expected that
their cross sections for the Ps(1s)-p entrance channel are not of the same high
quality as their cross sections for the positron-hydrogen entrance channel. Since
they do not report their K-matrix elements for J = 1, it is not possible to make a
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Fig. 3. Elastic scattering cross sections (in ma3) for the J =0, 1 and 2 partial waves (—).
Partial cross sections from the CC(3, 3) and () and CC(6,6) (@) models are also shown.
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Fig. 4. Elastic cross section (in 7a3) for positronium-proton scattering at energies below the
three-body ionisation threshold. Besides the CC(13,8) calculation, cross sections from the
CC(3, 3) (#) and CC(6,6) (@) models are shown.
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comparison in this case. We suspect that the poor results obtained for J = 2 may
reflect the use of trial functions that were not particularly suitable for describing
the strong polarisation interactions present in the Ps(1s)-p entrance channel.

The last rows of Table 1 list the integral cross section for a number of
different calculations. The CC(3,3) model provides a relatively poor description
of positronium-proton scattering. Although the difference between the CC(3,3)
and CC(13,8) cross sections is only 4 mao? at an incident energy of 0-5 Ryd,
the CC(3,3) and the CC(13,8) phase shifts have the opposite sign. Under these
circumstances, a difference of only 4 ma? between the CC(3,3) and CC(13,8)
cross sections can be regarded as fortuitous. The differences between the CC(8,6)
and CC(13,8) cross sections are less than 5%, and give an indication of the
overall convergence of the CC(13,8) cross sections. The integrated cross section
is plotted in Fig. 4. The two salient features of the integrated elastic cross section
are the large size of the cross section at threshold and the featureless nature of
the cross section for incident Ps energies >0-1 Ryd. The resonant features near
the H(n=2) and Ps(n=2) thresholds are very narrow (Mitroy 1995).

4. Charge Transfer Cross Section to form Hydrogen

The electron-transfer reaction to form antihydrogen is a superelastic collision
and the s-wave partial cross section can be expected to diverge like F “$asE — 0.
This is visible in Fig. 5 where the J = 0 cross section for electron transfer to the
H(1s) state is depicted. A detailed tabulation of the partial cross sections has
not been provided, since this information can be derived from Table 2 of Mitroy
(1995) by using the principle of detailed balance. Instead, total cross sections
for transitions to the different final hydrogen states are given in Tables 2 and 3.

Table 2. Integrated cross sections (in wa3) for hydrogen formation in the H(1s)

ground state
Model Energy (Ryd)
0-0041 0-0625 0-14 0-2225 0-30 0-40 0-50
CC(3,3)* 1-099 2-38 2-74 2-94 2-90 2-76 2-55
CC(8,6)° 1-870 3.-24 3.74 3-99 3-89 3-66 3.37
CC(13,8) 1-924 3-28 3-79 4-05 3-95 3.-71 3-40
Hyper® 3-34 3-82 4-06 3.97 3.70 3-39

& Mitroy and Stelbovics (1994b).
> Mitroy and Ratnavelu (1995).
¢ Hyperspherical CC, Igarashi et al. (1994).

The J =0, 1 and 2 partial cross sections for electron transfer to the H(1s) state
are depicted in Fig. 5. The trends noticed in the discussion of the elastic cross
sections are also present for the electron transfer cross sections. The differences
between the CC(6,6) and CC(13,8) cross sections are uniformly small for all the
partial waves. On the other hand, the CC(3,3) model gives cross sections which
are quite different from the CC(13,8) cross sections.

The integrated cross sections for H-formation in the H(1ls) ground state are
depicted in Fig. 6 and the cross sections for H-formation in the H(2s) and H(2p)
levels are shown in Fig. 7. The differences between the CC(6,6) and CC(13,8)
cross sections for H-formation in the 1s state are less than 3% at most energies.
Similarly, the hyperspherical close coupling calculation of Igarashi et al. (1994)
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gives cross sections which are very close to the CC(13,8) calculation. It should
be noted that the cross sections Igarashi et al. tabulated in Tables 2 and 3
were not computed at exactly the same energies at the present cross section.
However, the differences in energy are sufficiently small (~0-003 Ryd) that a
direct comparison is possible.

Table 3. Integrated cross sections (in ma3) for hydrogen
formation in the H(2s), H(2p), H(3s), H(3p) and H(3d) levels

Model Energy (Ryd)
0-30 0-40 0-50
H(2s)
CC(3,3) 0-889 1-32 1-38
CC(8,6)° 1-125 1-66 1.82
CC(T3,8) 1-187 1-74 1-94
Hyper® 1-15 1-94 2-19
H(2p)
CC(3,3)® 2.90 6-36 8-84
CC(8,8)P 3.08 6-71 9-13
CC(13,8) 3.25 6-91 9.50
Hyper® 2-72 6-88 9-41
H(3s)
CC(13,8) 0-0229 0-0989
Hyper® 0-0434 0-0720
H(3p)
CC(13,8) 0-0580 0-178
Hyper® 0-0930 0-224
H(3d)
CC(13,3) 0-0445 0-427
Hyper® 0-0459 0-397

*Mitroy and Stelbovics (1994b).
®Mitroy and Ratnavelu (1995).
“Hyperspherical CC, Igarashi et al. (1994).

The differences between the calculations are larger for H-formation in the H(2s)
and the H(2p) states. The cross sections for the H(n=2) levels are more sensitive
to the larger basis sizes used in the CC(13,8) and hyperspherical calculations.
The more primitive CC(3,3) model does a reasonable job of reproducing the
H(2p) formation cross section, although it is less accurate for the H(1s) and H(2s)
cross sections. The total H-formation cross section obtained by summing the
H-formation cross sections to all the individual levels are also shown in Fig. 6.
The inclusion of the H(n=3) levels serves to enhance the differences between the
CC(6,6) and CC(T3,8) models for positronium energies >0-4 Ryd. The CC(6,6)
basis does not include these states which contribute a total of 0-7 wa2 to the
electron transfer cross section at 1-0 Ryd.

The present cross sections for hydrogen formation can be related to the cross
section for antihydrogen formation

Ps(1s) + p—e™ + H(n'l'),
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The J=0, 1 and 2 partial cross sections (in ma2) for the Ps(1s)+p — e*H(1s)
reaction (—). Cross sections from the CC(6,6) (@) and CC(3,3) (#) models are also shown.
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Also shown is the total hydrogen formation cross section which

includes H formation in the n =1, 2 and 3 levels. The cross sections from the CC(6,6) (@)
and CC(3,3) () models are shown along with those from the hyperspherical CC calculations
of Igarashi et al. (1994) (A).



Positronium—Proton Scattering 903

2.0} H(2s) st a ]
~ . *
~No < . . 4
U A
E 1.0} * y
c *
.0
;).i 0.0 ! : : : .
o001 H(2p) 4
(7] ]
)
—
(3)
5.0} 1
0.0

0.25 0.30 0.35 0.40 0.45 0.50
Energy (Ryd)

Fig. 7. Cross sections (in ma3) for hydrogen formation in the
H(2s) and H(2p) states by the electron-transfer reaction (—).
The cross sections from the CC(6,6) (@) and the CC(3,3) (@)
models are shown along with those from the hyperspherical
CC calculations of Igarashi et al. (1994) (A).

by charge conjugation symmetry. The cross sections that are most relevant to
proposed experiments to form antihydrogen (Deutch et al. 1988, 1993; Charlton
et al. 1994) are those shown in Fig. 6. Since it is likely that the first attempt
to form antihydrogen will involve collisions with the positronium ground state
at thermal energies of about 1 eV, the cross sections that are most relevant are
those at about 0-1 Ryd. A larger collision energy would lead to an increased
antihydrogen production rate. But it is unlikely that the relative collision energy
can be increased in the cryogenic traps that will be used in the initial attempts
to form antihydrogen.

Given that the most important application of the present work is to the calculation
of antihydrogen formation cross sections, the overall degree of consistency that
exists between the C(6,6), CC(13,8) and hyperspherical calculation of Igarashi
et al. (1994) means that for all practical purposes the calculation of the electron
(positron) transfer cross section from the Ps ground state at low energies can be
regarded as a solved problem.

5. Total Reaction Cross Section

The total reaction cross section for Ps(1s)-p scattering is shown in Fig. 8. In
order to simplify the analysis, the contributions to the cross section are collected
into two components, the elastic and positronium excitation transitions, and those
involving the transfer of an electron to form hydrogen. For most of the energy range
the dominant contribution to the total cross section comes from the elastic cross
section (the Ps-excitation cross sections are small). It is only at 1-0 Ryd that the
H-formation cross section becomes comparable in size to the elastic cross section.
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Fig. 8. Total reaction cross section (in wa3) for positronium-proton
scattering (—). The separate contributions to the cross section from
electron-transfer and non-electron-transfer reactions are shown. The total
reaction cross sections from the CC(6,6) (@) and CC(3,3) (&) calculations
are also displayed.

The close comparison with the CC(6,6) cross section indicates that the present
CC(13,8) cross section is close to convergence. The CC(13,8) cross section
includes the possibility of electron transfer to the H(n=3) levels which are of
course not included in the CC(6,6) calculation. Since the cross sections for
excitation to the Ps(n=2) states and electron transfer to the H(n=3) states are
0-9 and 0-7 ma2 respectively, the omission of the higher Ps and H states from
the calculation are not expected to result in a major error in the total cross
section. Accordingly, a conservative estimate of the accuracy of the present total
cross section would be that the non-resonant part of the total reaction cross
section would be accurate to better than 10%. The present total cross section
should be most accurate at low energies and least accurate at energies close to
the ionisation threshold.

6. Conclusions

A set of cross sections for Ps(1s)-p scattering has been computed with a
21 state close coupling calculation. The present cross sections supersede those
computed earlier in the framework of a 12-state calculation (Mitroy and Ratnavelu
1995) and represent the best that have so far been computed. They should be
regarded as providing the benchmark for future calculations. Comparisons with
the earlier 12-state calculation would indicate that the overall accuracy of the
integrated cross sections reported in this work should be better than 10%.

An accurate estimate of the scattering length has been obtained and the
scattering length is seen to be large in magnitude (—15-5+0-4 ag). This results
in the elastic cross section having a threshold value of 960 ma2. The probable
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cause for the large value of the elastic cross section at threshold and higher
energies is the strong polarisation potential.

It would not be worth while to try and extend the size of the present calculation
and extend the calculation into the intermediate energy region without radically
changing the method of basis selection. The Ps(1s)+p — Ps(2p)+p cross sections
from an 18-state R-matrix calculation by Kernoghan et al. (1994) exhibited a
great deal of structure above the ionisation threshold. Since these structures
are most likely spurious, it seems likely that an enlarged basis would only lead
to pseudo-structures even more complicated than those found by Kernoghan et
al. (1994). A more promising approach would be to try and increase either
the hydrogen-type or positronium-type basis to completeness using L? techniques
while retaining a few levels of the other type in the CC expansion. Numerical
instabilities associated with an over-complete basis (Bransden and Noble 1994;
Mitroy 1995) would make it impractical to simultaneously increase the size of
both the hydrogen and positronium channel spaces to completeness.
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