
Aust. J. Phys., 1995, 48, 907-23

Study of Squeezing Properties in a
Two-level System

Rui-hua Xie, A Gong-ou Xu A and Dun-huan u»
A Department of Physics, Nanjing University,
Nanjing 210008, P. R. China.
B Department of Physics, Wuhan University,
Wuhan 430072, P. R. China.

Abstract

We have studied the squeezing properties of a field and atom in a two-level system. The influence
of nonlinear interactions (Le. the arbitrary intensity-dependent coupling of a single-mode field
to a single two-level atom, the nonlinear interaction of the field with a nonlinear Kerr-like
medium) on the squeezing is discussed in detail in the rotating wave approximation (RWA).
We show numerically that the effect of the virtual-photon field suppresses dipole squeezing
predicted in the RWA and leads to an increased squeeze revival period; the suppressed
squeezing can be revived due to the presence of the nonlinear Kerr-like medium.

1. Introduction

Recent achievements with highly excited Rydberg atoms in high- Q microwave
cavities (Brune et ale 1987) have made it possible to investigate experimentally
the dynamical features of the atom-field interaction which depend explicitly on
the quantum nature of the electromagnetic field. The revival (Sukumar and Buck
1981; Buck and Sukumar 1981; Buzek 1989a, b; Buzek and Jex 1990) of interest
in the Jaynes-Cummings model (1963) (JCM) is due to the observation of some
non-classical features in the laboratory, such as squeezing of the radiation field
(Slusher et al. 1985).

The JCM without the RWA is not solvable by the usual techniques since
the eigenstates of the Hamiltonian cannot be found in closed form. The first
solution of this model was due to Graham and Hohnerbach (1984) in which a
numerical method was employed. It has been shown that the virtual-photon field
(counter-rotating wave terms) is the source of the Lamb shift (Compagno et al.
1983), that it can ensure causality in atom-field coupling systems (Compagno et
ale 1989), and that it has a significant effect on the atomic inversion (Zaheer and
Zubairy 1988) and photon antibunching (Xie et ale 1995), even under the condition
that the RWA is considered valid. Recently, Lais and Steimle (1990) have shown
numerically that the counter-rotating wave terms suppress the squeezing of the
radiation field predicted in the JCM. All studies have shown that it is worth
while to investigate the quantum dynamical properties in the atom-field coupling
system, where the counter-rotating wave terms are included.

The squeezing of the radiation field has been studied theoretically (Walls and
Zoller 1981; Meystre and Zubairy 1982; Buzek 1989b) and experimentally (Slusher
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et ale 19S5) due to its potential application (Yuen and Shapiro 1975) in optical
communication and gravitational wave detection. Meanwhile, the squeezing of
fluctuations of the atomic dipole variables has also received considerable interest
(Walls and Zoller 19S1; Wodkiewicz et ale 1987; Hu and Aravind 19S9; Zhou
and Peng 1991). It has been shown by Wodkiewicz et ale (19S7) that an atom
exhibiting reduced dipole fluctuations can radiate the squeezed light. Hu and
Aravind (19S9) have indicated that there exists a striking symmetry between
the squeezing of the field and that of the atom in the vacuum field JCM. In
recent years, some authors (Wodkiewicz et ale 19S7; Zhou and Peng 1991) have
even formulated a new class of squeezed states (Le. the superposition squeezed
states) of the field and atoms with a simple implementation of the fundamental
linear superposition principle of quantum mechanics. In the mixed JCM and
anharmonic oscillator model (Buzek 19S9b), Buzek and Jex (1990) have shown
that the interaction between the field and the nonlinear Kerr-like medium leads
to the deterioration of the squeezing of the radiation field in weak nonlinearity
regimes. Buzek (19S9a) has also found that the squeezing of the field exhibits
periodic revivals in the intensity-dependent-coupling JCM (Buck and Sukumar
19S1).

Brune et ale (19S7) have reported the first two-photon quantum oscillator
by employing Rydberg atoms in a high-Q superconducting microwave cavity.
Scully et ale (19SS) have predicted that a two-photon correlated-emission laser
can produce the stable squeezed light. Zhou and Peng (1991) have studied
dipole squeezing in the two-photon JCM with superposition state preparations.
In the present paper, we consider the two-photon JCM, where various forms of
intensity-dependent nonlinear coupling of the field to the atom are supposed and
a nonlinear Kerr-like medium is introduced. The purpose is to investigate the
influence of the above nonlinear interactions on the squeezing of the field and
atom. In addition, the influence of virtual-photon processes on dipole squeezing
will be discussed through a numerical method (Graham and Hohnerbach 19S4).

The paper is organised as follows. The theoretical model and its solution in
the RWA are given in Section 2. Then we study, in Section 3, the squeezing
properties of the atom in this model with and without the RWA. In Section 4,
light squeezing is studied in detail in the model with the RWA. Finally, we give
our summary in Section 5.

2. The Model and Its Solution in the RWA

Here we consider a two-level system, where a single two-level atom is surrounded
by a nonlinear Kerr-like medium contained inside a single-mode cavity, and the
cavity mode is also coupled to the Kerr-like medium (Buzek 19S9b), as well as
to the atom. If cavity damping and the effect of the thermal field are neglected
and if an arbitrary intensity-dependent nonlinear coupling between the atom and
the cavity exists, then the total Hamiltonian of the system can be written as

H == na(a+a+~)+nbb+b+qb+2b2+A(a+b+b+a)

+ »S; + G(R+ + R)(S_ + S+). (1)
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In the adiabatic limit, the total Hamiltonian (1) can be transformed to a form
involving only the photon and atomic operators:

Heff = !1(a+a+ ~) + wSz -t- xa+2a2 + G(R+ + R)(S_ + S+), (2)

where Sz and S± are operators of atomic inversion and transition, respectively,
having the following commutation relations:

[Sz, S±] = ±S:I:: , [S+, S_] = 2Sz. (3)

Here w is the atomic transition frequency, a+ (a) is the creation (annihilation)
operator of the cavity mode with the frequency !1a and the commutation relation
[a, a+] = 1, while b+ (b) is the creation (annihilation) operator of the Kerr-like
medium with the frequency !1b and the commutation relation [b, b+] = 1, and G is
the atom-field coupling constant. The operators R+ and R are the generalisation
of the definition (Buck and Sukumar 1981) in the following way:

R+ = V(N)a+2 , R = a2V (N ) , (4)

where N = a+a is the photon number operator and V(N) is an arbitrary function
of N and reflects arbitrary intensity-dependent coupling between the atom and
the field of the Hamiltonian (1). The new frequency !1 and the nonlinear coupling
constant X (i.e. the dispersive part of the third-order nonlinearity of the Kerr-like
medium) are given by (Agarwal and Puri 1989)

X

!1

qA'4:/(!1b - !1a )4 ,

!1a - A2/(!1
b - !1a ) .

(5)

(6)

If the RWA is explicitly used, the effective Hamiltonian (2) can be written as

H~WA = !1(a+a+ ~) +w Sz + xa+2a2 + G(R+ S_ + RS+). (7)

Throughout we employ units with n= c = 1. The dynamics of the effective
Hamiltonian (7) can be solved explicitly as follows. In the representation of the
atomic eigenstates

I+) = (~) and I -) = (~) ,

we have obtained the time-dependent unitary transformation operator as follows:

U(t,O) = exp(-iH~WAt) = (U++, U+_)
U_+,U__ ' (8)
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U++ exp {-i[O(a+a + ~) + x( (a+ a)2 + a+a + 1)]t}{cos (At)

- i(~j2 - x(2a+a + 1)) sin (At)jA} ,

(9)

U__ = exp {-i[O(a+a - ~) + x((a+a)2 + a+a + 1)]t}{cos (Bt)

+ i(~j2 + x(2a+a + 1)) sin(Bt)jB} ,

U+_ = -iGexp{-i[0(a+a+~)+x((a+a+2)2

+ a+a + 3)]t}Rsin(Bt)jB ,

u_+ = -iGexp{-i[0(a+a-~)+x((a+a-2)2

+ a+a - 1)]t}R+ sin (At)jA,

A = V[Lij2 - x(2a+a + 1)]2 + G2V2(N)a2a+2 ,

B = V[~j2 + x(2a+a + 1)]2 + G2a+2a2V2(N) ,

~ = w - 20.

(10)

(11)

(12)

(13)

(14)

(15)

Hence, if the initial state 11/J(t=O)) of the system is given, using equation (8),
we can obtain the state 11/J(t)) of the system at time t. As an example, in the
present paper we assume that the system is initially prepared in the coherent
superposition state

I (1) = (~~)

of the two-level atom (Wodkiewicz et ale 1987; Hu and Aravind 1989; Zhou and
Peng 1991) and the superposition (Meystre and Zubairy 1982; Wodkiewicz et ale
1987; Zhou and Peng 1991) of the photon number states In), i.e,

I7jJ(O)) = (~~) 0 ~ in In) ·

Then the time-dependent state 11/J(t)) of the system at the time t is

11/J(t)) = U(t,O) 11/J(0)) = (l1/Jl(t)))
11/J2 (t)) ,

(16)

(17)
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where

oo
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l1Pl(t))

I 1P2 (t))

L 17+in exp {-i[O(n + ~) + x(n2+ n + 1)]t}{cos (Ont)
n=O

- i[~/2 - x(2n + 1)]sinLf!n
t
) lin) - iG f 17-fn exp{i[f!(n - !)

n n=P

~
! sin(wnt)

+x(n2+n+1)]t}V(n) ( _ )' In-2),
n 2. Wn

oo

L 17-inexp {-i[O(n - ~) + x(n2+ n + 1)]t}{cos (wnt)
n=O

(18)

(19)

. ( t) oo

+ i[~/2 + x(2n + 1)]sm W
n lin) - iG L 17+fn exp{-i[f!(n + ~)

Wn n=O

y!(n+2)!Sin(f! t)
+x(n2+n+1)]t}V(n+2) , n In+2),

n. On

On

Wn

[~/2 - x(2n + 1)]2 + G2V2(n + 2) (11/ + 2)!, 'n.

n'
[~/2 + x(2n + 1)]2 + G2V2(n)-,_· ) ,

n-2 !

(20)

(21)

with L~=o I in 1
2 == 1 and I 17+ 1

2 + I 17- 1
2 == 1. Here V(n) is an arbitrary

function of photon number n. Obviously, when X == 0 and V(n) == 1, equation
(17) is in agreement with those obtained by Zhou and Peng (1991).

3. Squeezing Properties of an Atom

In order to investigate the squeezing properties of the atom, we consider two
hermitian conjugate operators s; and Sy (Walls and Zoller 1981),

Sx == ~(S+ + S_);
1

SY==2i(S+-S-), (22)

which correspond to the in-phase and out-of-phase components of the amplitude
of the atomic polarisation (Walls and Zoller 1981), respectively, and obey the
commutation relation

[Sx, Sy] == iSz .

Then, we have the Heisenberg uncertainty relation

((~Sx)2)((~Sy)2) 2: ~ (Sz)2 ,

(23)

(24)
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where

((~Sx)2) == (S;) - (Sx)2; ((~Sy)2) == (S;) - (Sy)2

R.-H. Xie et al.

(25)

is the variance of Sx and Sy respectively. If the following condition is satisfied,

F I == ((~Sx)2) - ~ I (Sz) 1<0 or F2 == ((~Sy)2) - ~ I (Sz) 1< 0, (26)

then the fluctuations in the component Sx or By of the atomic dipole are squeezed
(Walls and Zoller 1981).

(3a) Dipole Squeezing in the RWA

In this section we assume that the atom is initially prepared in· the ground
state and the field is in a superposition (Wodkiewicz et ale 1987; Zhou and Peng
1991) of the vacuum state I 0) and two-photon state I 2), i.e,

I 7jJ(0)) = (~) @ (fo 1 0) + 12 1 2)) . (27)

Using equation (17), we obtain the time evolution of the functions FI and F2

as

H(t) = ~ - 2C 2V 2(2) I fo 12112 12 Cin(W2t)Sin(~~t+ 7xt + 8¢)) 2 - ~ 1(Sz) I,

(28)

F2(t ) = ~ _ 2C 2V 2(2) 1 fo 121 12 12 (Sin(W2t) COS(~~t + 7Xt + 8¢)) 2 _ ! 1 (Sz) I,

(29)

where

(Sz) = -! ( I 12 12 (~~ + 5X)2 + 2~:(2)C2 cos (2W2t ) + 1 fo 12) ,
2

W2 = J(~~ + 5X)2 + 2V2(2)C 2 ,

(30)

(31)

with I fo 1
2 + I f2 1

2 == 1. Here 8¢ is the relative phase between the vacuum and
two-photon state. Clearly, when ~ == 0 and X == 0, equations (28) and (29) are
in agreement with those obtained by Zhou and Peng (1991).

Now we study the squeezing properties of the fluctuations of the atomic dipole
variables. When the field is initially in the vacuum state (i.e. fo == 1) or in the
two-photon state (i.e. f2 == 1), it can be seen from (28) and (29) that Sx or
Sy cannot be squeezed. Does the squeezing of the atom exist when the field is
initially in the. superposition state? We shall answer this question in the following.

Dipole squeezing for X == o. Here we study the role of arbitrary intensity­
dependent coupling of the field to the atom on dipole squeezing. For simplicity,
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(32)(k=0,1,2, ... ),

we take X = ~ = 0 and 8¢ = 7r/2. Obviously, F2 ~ 0, so the fluctuations in
the component Sy of the atomic dipole cannot be squeezed; however, we have
verified that the fluctuations in Sx are squeezed under the following condition:
when 12/2 < I 12 1< 1, Fl(t) < 0 during the time

2k7r+ CA 2k7r+ 27r - CA---- < t < ------
2V2V(2)G 2V2V(2)G

where

CA = areas 31 h 1
2

-2 Ih 1
4

-2
3 I 12 1

2 -2 I 12 1
4

.
(33)

It means that Sx is squeezed periodically with the squeeze duration

7r - CA ,
Tsq ue

= V2V(2)G
(34)

and the squeeze revival period

7r
TR = V2V(2)G

(35)

Meanwhile, the maximum squeeze amplitude

Am ax = 1F l < 0 Imax = (I 12 12-!)(1- 1/2 12) (36)

appears at the time

kr: + 7r/2
tm ax

= V2V(2)G
(k=0,1,2, ... ). (37)

We can see that Am ax = 0·0625 at 112 1=)3/2 is the largest one among those
at 12/2 < I 12 I< 1.

When I 12 I = 12/2, F l = 0, Sx is not squeezed. When 0 < I 12 1< 12/2, Sx
is squeezed almost at all times except to at which F, (to) = 0:

(k=0,1,2, ... ). (38)

In this case, the squeeze duration and its revival period are

(39)
7r

-~ = ,
Tsq ue

- R V2V(2)G

and the maximum squeeze amplitude

Am ax = I r, < 0 Irnax = 112 12(~- 1/2 12) (40)
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appears at

kn + rr/2
tmax = V2V(2)G

(k=0,1,2, ... ). (41)

Also Am ax = 0·0625 at I 12 I= ~ is the largest among those at 0 < I 12 I< V'2/2.
In addition, we find from equation (28) that whether the fluctuations in Sx are
squeezed or not also depends on the phase 8¢. For example, when 8¢ = 0,
F1 ~ 0, the fluctuations in Sx cannot be squeezed [in this case 8¢ = 0 we can
see from equation (29) that the fluctuations in Sy are squeezed and the results
are similar to those discussed above].

4

(b)

(a)

3
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Fig. 1. Time evolution of Fl with the RWA for G == 0·05, 8¢ == 7r/2, ~ == 0, X == 0 and
V(N) == N" for (a) r == 0; (b) r == ~, where curve 1 is for I 12 I == V3/2 and curve 2 for
112 I == ~.

When 8¢ = rr/2, we can see from above analysis that Tsq ue , TR and t n1a x

all are inversely proportional to V(2)G, and the maximum squeeze amplitude
Am ax is only related to I 12 I (note I 10 1

2 + I 12 1
2 = 1). These reflect that the

forms of arbitrary intensity-dependent coupling between the atom and the field
only influence the squeeze duration Tsque , the squeeze revival period TR and
the time t m ax of appearance of the maximum squeeze amplitude Am ax . As an
example, we assume V(N) = NT(r ~ 0) (r = ! is the definition given by Buck
and Sukumar 1981). We have plotted the time evolution of F1 in Fig. 1 for
r = 0, ~ and I 12 1= ~, 1'3/2, where it can be seen clearly that r~que, TR and
t m ax all decrease with an increase of the factor r, and that the maximum squeeze
amplitude Arn ax is not influenced by the forms of arbitrary intensity-dependent
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coupling. Interestingly, if there exist the forms with V(N) = N':" (r 2: 0), longer
Tsque , TR and t rn ax values are obtained with an increase in the factor r .

Dipole squeezing for X i= o. For simplicity, we let X = -~/10. In the following,
we take the component Sx of the atomic dipole and the cases with 84> = 'If /2
and 0 < I f2 I< V2/2 as an example. We have verified that the fluctuation in
Sx is squeezed under the following conditions.

(1) In the cases where

where

E

D

W>E,
G

V(2)V2D
2'If

(

I f2 1

2
)

arcos 1- I f2 12

(42)

(43)

(44)

Here Sx is the squeezed duration for

2k'lf + 'If - D 2k'lf + 'If + D
---- < t < ----

41xI 41xl

Clearly, the squeeze duration is

D
Tsque = 2TXT '

the squeeze revival period is

'If

TR = 2TX!'

(k=0,1,2, ...). (45)

(46)

(47)

and if 2 I X I /V2GV(2) is an odd number, we observe the maximum squeeze
amplitude

at time

Am ax = I PI < 0 \max = I [z 1
2 (!- 112 1

2) (48)

(2) In the cases where

(k=0,1,2, ...). (49)

X <E,
G- (50)
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we have verified that Sx is squeezed almost completely during the following,
except at to at which sin (J2GV(2)to) = 0,

2k7r + 7r - D 2k7r + 7r + D
41xl « t «: 41xl (k=O,1,2, ...), (51)

where the squeeze duration (here we have included the time to) is

D
Tsque = 2TXI ' (52)

the squeeze revival period is

7r

TR = 2TXI ' (53)

and if J2GV(2)j2 I X I is an odd number, the maximum squeeze amplitude A m ax

(given by equation 48) appears at the time tm ax (given by equation 49).

10

(c)

8642

-0.06

0.18

0.12

---
LC 0.06

0.00

-0.06 ..
0

0.18 f (a)

0.12

--
LC 0.06

0.00

-0.06

0.06

-
t.C

Gt

Fig. 2. Time evolution of Fl with the RWA for I 12 I == ~, G == 0·05, 8¢ == 1r/2, ~. == 0,
V(N) == VN and (a) X/G == .g.; (b) X/G == 1; and (c) X/G == 5.
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From the above analysis, we can see that Tsque and TR are inversely proportional
to X, and the maximum squeeze amplitude Am ax is related to X, V and G as
well as to I12 I. These reflect that the squeeze duration Tsque , the squeeze revival
period TR and the maximum squeeze amplitude Am ax all are influenced due to
the nonlinear interaction of the field with the medium. In addition, the forms
of intensity-dependent coupling between the atom and the field only influence
the maximum squeeze amplitude Arn ax • In Figs 2a and 2c, we show the time
evolution of F1 with V(N) = /lV, I 12 I= ! and X/G = !' 1, 5 (in this case,
E ~ 0·4). These plots clearly show periodical squeezing below the dotted line,
where the squeeze duration and the squeeze revival period decrease with an
increase of X/G. In addition, we can see that V2GV(2)/2 I X I in Fig. 2a and
2 I X I /V2GV(2) in Figs 2b and 2c are odd numbers, so Am ax = 0·0625 appears
at t m ax (given by equation 49).

(3b) Dipole Squeezing without the RWA: Numerical Results

Not much work has been done on the influence of the virtual-photon processes
on squeezing. In recent years Lais and Steimle (1990) have numerically shown,
using a continue fraction method, that the counter-rotating wave terms suppress
the squeezing of the radiation field. In this section, we want to examine
numerically the role of the virtual-photon field on dipole squeezing.

Numerical method. Taking Im, n) as our basis, where Sz Im, n) = m Im, n),
m = ±! and a+a I m, n) = n I m, n) (n = 0,1,2, ...), we can obtain the
eigenfunction I tPi) and the energy eigenvalue E, (i=1, 2, ...) of the effective
Hamiltonian (2) by truncating the infinite matrix to finite order (Graham and
Hohnerbach 1984), then taking the initial condition (27) we can obtain the
expected value of the variable Sz(l=x, y, z) at t as

(Sz) = (1/;(t) I s, 11/;(t))

L(1/;(O) I¢i)(¢i I s, I¢j)(¢j 11/;(0)) exp (-i(Ej - Ei)t). (54)
i,j

By substituting into equation (26), we can investigate the squeezing properties
of atomic dipole variables as follows. The efficiency of the numerical method
used in this section is adequate, since the RWA corresponds to a perturbation
treatment to first order and the cases considered in the following satisfy the RWA
condition (Graham and Hohnerbach 1984) (Le. Iw - 2n 1« wand G « w).

It should be stressed that an analytical explanation of the physical origin of
our numerical results is still lacking but will appear in a future paper. In the
following, we only describe our numerical results (we have only considered the
resonance case ~ = 0 in our numerical work).

Numerical results. In Fig. 3 we plot the time evolution of F1 for I 12 I = !,
X = 0, 8¢ = 'IT /2 and r = 0, !. It can be seen that periodical revival squeezing
appears; however, comparing these results with those in the RWA (see Figs 1a
and 1b for I 12 I = ! and r = 0, !' respectively), we found that the interference
between the real-photon and virtual-photon processes suppresses the squeezing
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of some time regions predicted in the RWA and leads to an increased revival
squeeze period. In addition, as in the RWA, we can see from Fig. 3 that the
squeeze revival period decreases with an increase in r.

(b)

(a)0.18

0.12

-
t.L 0.06

0.00

-0.06

0.18

0.12

-
L.C 0.06

0.00

-0.06 ..
a 8 1 6 24 32 40 48 56 64

Gt

Fig. 3. Time evolution of PI without the RWA with I 12 I == ~, G == 0·05, 8¢ == 1r /2, ~ == 0,
X==O and V(N) ==N T for (a) r==O; and (b) r==~.

Finally, we plot the time evolution of FI in Fig. 4 for I 12 I == ~, 8¢ == 7r/2 and
X/G == 0·01, 0·02, 0·04. We can see that the suppressed squeezing in Fig. 3a is
gradually revived with an increase of X. These numerical results show that the
destructive effect of the counter-rotating wave terms on the squeezing may be
weakened due to the presence of the nonlinear Kerr-like medium. An analytical
explanation for these results would be very interesting.

(3c) Conclusions

If the field is initially prepared as a superposition of the vacuum and two­
photon state and the atom is initially in the ground state, we reach the following
conclusions: (i) when X == 0, ~ == 0 and 8¢ == 7r /2, we have shown that dipole
squeezing is observed in the cases with V2/2 < I 12 I < 1 or 0 < I 12 I < V2/2,
where the forms of arbitrary intensity-dependent coupling between the atom and
the cavity mode only influence the squeeze duration Tsq ue , the squeeze revival
period TR and the time t rn a x of appearance of the maximum squeeze amplitude
Arn a x ; (ii) dipole squeezing is phase insensitive; (iii) taking X == -~/10, 8¢ == 7r /2
and 0 < I12 1< V2/2, we have shown that Tsque, TR and Arn a x all are influenced
by the nonlinear coupling of the field to the medium, while the forms of arbitrary
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intensity-dependent coupling of the field with the atom only influence Arn ax ; and
(iv) the counter-rotating wave terms suppress dipole squeezing predicted in the
RWA and lead to an increased squeeze revival period-this suppressed effect may
be weakened by taking into account the nonlinear Kerr-like medium.

0.18

0.12

LC 0.06

0.00

- 0.06 [!"'''''' I"'!!!',,I',,"'" 'I",,'" "I""!"" I""',," I'"'''''' I"" ""~
0.18

0.12

-.­
'--

t.C 0.06

0.00

-
0

.06 f" ill" 'I,," "" 'I'"'''''' 1"""'" I"""'" I"'''!'' 'I'"""" I""''''~
0.03

0.00

t.C
-0.03

-0.06

o 8 16 24 32 40 48 56 64

Gt

Fig. 4. Time evolution of Fl without the RWA for I 12 I == ~, G == 0·05, 8¢ == 1r/2, ~ == 0
and (a) X/G == 0·01; (b) X/G == 0·02; and (c) X/G == 0·04.

4. Squeezing of Light in the RWA

Recently Buzek (1989a) has studied light squeezing in the intensity-dependent­
coupling JCM (Buck and Sukumar 1981). In this section we shall investigate
light squeezing in arbitrary intensity-dependent-coupling JCM described by the
effective Hamiltonian (7). Meanwhile, we also wish to indicate the relation
between the field and atomic squeezing.

In order to investigate the squeezing properties of the light, two quadrature
field operators al and a2 are defined as (Meystre and Zubairy 1982)
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a1 = ~(a + a+);
1

a2 = 2i (a - a+) ·

R.-H. Xie et ale

(55)

They obey the commutation relation

[a1, a2] = i~ .

The Heisenberg uncertainty relation is

((~a1)2)((~a2)2) 2: 116 '

where

(56)

(57)

((~ai)2) = (ar) - (ai)2

It is convenient to define two functions

(i = 1,2). (58)

b, = ((~a1)2) - ~; h2 = ((~a2)2) - ~ . (59)

The squeezing condition is hi < 0 (i = 1 or 2).
Taking the initial condition (27) and using (17), we obtain the time evolution

of h1 and h2 as (here X = 0)

h1(t ) - I f212 (COS2(W2t)+(!~)2Sin2(:2t)) + V2 1fo II hi
W2 2

(
1 ~ sin (W2 t). 1 )x COS(W2t)cos(2~t+8¢)+ sln(2~t+8¢) ,

2W2
(60)

with

h2 (t ) I f212 (COS2(W2t)+(!~)2Sin2(W2t)) V2
2 W~ - 2 I fo II h I

(
1 ~ sin (W2 t ) . 1 )

x COS(W2t)cos(2~t+8¢)+ sln(2~t+8¢) ,
2W2

W2 = J(!~)2 + 2V2(2)G2

(61)

(62)

and I fa 1
2 + I f2 1

2 = 1. Here 8¢ is the relative phase between the vacuum and
two-photon state.

Now we study the squeezing properties of the field. When the field is initially
in the vacuum state (i.e. fa = 1) or two-photon state (Le. f2 = 1), it can be seen
from (60) and (61) that a1 or a2 cannot be squeezed. Does the squeezing exist
when the field is initially in the coherent superposition state? In the following we
shall take h1 as an example and answer the question. For simplicity, we assume
the field to be resonant with the atomic frequency (Le. ~ = 0) and take 8¢ = o.
Clearly, when 0 < I f2 1< )3/3, light squeezing can be observed during the time
(Le. h1(t ) < 0)
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2k1r + 1r/2 2k1r + 31r/2---....,-- < t < ---=--
J2V(2)G J2V(2)G '

(63)

where the squeeze duration is

(64)
1r ,

Tsq ue = J2V(2)G

the squeeze revival period is

21r
- ,

TR = J2V(2)G
(65)

and

Am ax = I f2 12 (J21 fa I - )
21 f2 1 1

(66)

(67)

appears at t m ax which satisfies cos (v'2V(2)Gtm ax ) = -1.
When J3"/3 < I f2 1< 1, light squeezing can be observed during (i.e. hI (t) < 0)

2k1r + tt/2 2k1r + CL-----.;..-<t<---
J2V(2)G J2V(2)G '

or

2k1r + 21r - CL 2k1r + 31r/2----- < t <--~
J2V(2)G J2V(2)G '

(68)

where

CL = arcos( _ J21 fa I)
21 f21 .

(69)

It can be seen that

CL-1r/2 ,
Tsq ue = J2V(2)G

(70)

21r
TR = J2V(2)G

(71)

We can show that

Am ax = 1hI < 0 Imax = _I fo 1

2

8
(72)

appears at tm ax which satisfies cos(v'2V(2)Gtm ax ) = -v'21 fa I /41 f2 I·
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From the above analysis, we can see that when 81 == 0 and ~ == 0, light
squeezing appears for 0 < I 12 I < 1, where Tsque , TR and t rn ax are inversely
proportional to V(2)G, and Am ax is only related to I 12 I. These mean that
only Tsque , TR and the time tm ax of appearance of Am ax are influenced by the
forms of intensity-dependent coupling between the atom and cavity mode. As
an example, we assume V(N) == NT(r 2: 0), and plot the time evolution of hI in
Fig. 5 for r == 0, 1 and 1/2 1== 110' 0/3,1· It can be seen from these plots that
Tsque , TR and t rn ax decrease with an increase in r, and Arn ax is not influenced
by the forms of intensity-dependent coupling.

When ~ == 81 == X == 0, as addressed above, the fluctuations in By are squeezed
for 0 < I 12 I < )2/2 or )2/2 < I 12 I < 1. Surely, for these parameters, light
squeezing appears. Moreover, these show the relation between the field and
atomic squeezing: the squeezed atom can radiate the squeezed light.

1.0

0.8

0.6-
.£ 0.4

0.2

0.0

-0.2

1.0

0.8

0.6

.£ 0.4

0.2

0.0

-0.2

0 2 4 6 8 10

Gt

Fig. 5. Time evolution of hI with the RWA for G == 0·05, 8¢ == 0, ~ == 0, X == 0 and
V(N) == NT: (a) r == 0; (b) r == ~, where curve 1 is for 112 I== to, curve 2 for 112 1== V3/3
and curve 3 for I12 I == ~.

5. Summary

In this paper we have dealt with a generalisation of the two-photon JCM,
where arbitrary intensity-dependent coupling between the atom and field has been
taken into account and a nonlinear Kerr-like medium has been introduced. The
general time-dependent state of the system within the RWA has been analytically
obtained when the system is initially restricted to the coherent superposition
state of the atom and that of the photon number state. We have analytically
investigated the role of the nonlinear interaction of the cavity mode with Kerr-like
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medium and the arbitrary intensity-dependent nonlinear coupling of the field to
the atom on squeezing of the field and atom in the system with the RWA. Also,
we have numerically examined the influence of the counter-rotating wave terms
on dipole squeezing predicted in the RWA.
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