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Abstract 

We discuss quantum-mechanical many-body systems interacting with a topological field, known 
as topological quantum fields. Several topics on the theory of quantum fluids are examined. 
First we establish the existence of topological gauge fields in high- T c superconductors and in 
Heisenberg quantum antiferromagnets. Then we consider typical topological quantum fluids, 
known as quantum Hall fluids, which are systems exhibiting the fractional quantum Hall effect 
(FQHE). A theoretical model of these fluids is described in detail. We also discuss the long 
distance physics of topological quantum fluids, their topological order parameter and possible 
experimental tests of the theory. 

1. Introduction 

In connection with theoretical studies of the high- T c superconductors with 
the electron-electron antiferromagnetic interaction mechanism (Baskaran and 
Anderson 1988; Aflleck and Marston 1988; Aflleck et al. 1988; Dagotto et al. 
1988; Wu et al. 1988; Marston and Aflleck 1989; Hieu and Son 1989) and the 
fractional quantum Hall effect (FQHE) (Tsui et al. 1982; Laughlin 1983; Hadane 
1983; Halperin 1983; Girvin 1984; MacDonald and Murray 1985; Prange and 
Girvin 1987; Fisher and Lee 1989; Jain 1989; Greiter and Wilczek 1990), a 
new type of quantum fluid has been proposed: the topological quantum fluid. 
A quantum fluid is a topological one if it is a quantum-mechanical many-body 
system interacting with a topological field (Witten 1988). A vector gauge field is 
topological if its Lagrangian contains a topological term which does not depend 
on the metric tensor gp.v of the space-time and therefore is stable against the 
perturbations of gp.v. An example of the topological gauge field is the Abelian 
Cher-Simons (CS) gauge field ap' in the 2 + I-dimensional (curved, in general) 
space-time with the Lagrangian 

(1) 

where a is some constant. For comparison we note that the Maxwell gauge field 
Ap. has the Lagrangian 
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L 11':' F ,..A vp 
M = "4 I",..v Apg 9 , F,..v = a,..Av - avA,.. , (2) 

which contains the metric tensor g"'v. 
The order parameters of ordinary quantum fluids are related to the broken 

symmetries of the many-body system. A topological quantum fluid is characterised 
by an order parameter of the topological origin-the topological order parameter. 
It is connected with the degeneracy of the ground state of the system and depends 
on the topology of the space in which the many-body system exists. That is why 
topological quantum fluids are also called topologically ordered quantum fluids. 

In this paper we discuss several topics on the theory of quantum fluids. First we 
establish the existence of topological gauge fields in high- T c superconductors and 
in Heisenberg quantum antiferromagnets. Then we consider typical topological 
quantum fluids-the quantum Hall fluids. These are the systems exhibiting the 
FQHE. A theoretical model of these fluids is then described in detail. We also 
discuss briefly the long distance physics of topological quantum fluids, their 
topological order parameter and the possibilities for experimental tests of the 
theory. 

2. Topological Gauge Fields in High- T c Superconductors 

Gauge fields in condensed matter have been proposed in various theoretical 
works on high- T c superconductors with the Heisenberg quantum antiferromagnetic 
interaction of itinerant electrons (or holes) (Baskaran and Anderson 1988; Affleck 
and Marston 1988; Affleck et al. 1988; Dagotto et al. 1988; Wu et al. 1988; 
Marston and Affleck 1989; Hieu and Son 1989; Ioffe and Larkin 1989; Wen et 
al. 1990; Nagaska and Lee 1992; Zou et al. 1992; Ubbens and Lee 1992; Libby 
et al. 1992; Ubbens et al. 1993; Chen et al. 1993; Simon and Halperin 1993; 
Tikofsky et al. 1994). 

The total Hamiltonian of the system has the form 

H= Ho + Hint, (3) 

where Ho is bilinear in the destruction and creation operators for the electron, c"a 
and ct, respectively, i and a denote the sites and the electron spin projections. 
Here Hint is the interaction Hamiltonian 

H' J ~ ('+ ') ('+ ') int = "4 ~ ci (FCi cj (FCj , 

(ij) 

where (ij) denote the pairs of nearest-neighbour sites 
function of the system at the temperature T is 

(4) 

and j. The partition 

(5) 
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In the r.h.s. of equation (5) we have the functional integrals over the Grassmann 
variables Cia and c1a corresponding to the quantum operators Cia and ci:,. They 
are the functions of the imaginary time T in the interval 0 < T < (3, (3 = liT. 

Let us transform the expression on the r.h.s. of equation (5). The Fierz 
rearrangement gives 

(6) 

Therefore the partition function becomes 

(7) 

The last two factors on the r.h.s. of (7) can be transformed into new forms 
which contain only bilinear expressions of the electron quantum operators in the 
exponents. For this purpose we introduce functional integrals over the bilocal 
complex functions ~ij and the local real functions 'Pi 

Z~ = j [D~ij] [D~:j]e-J~~L(ij)~:j~ijdT, 

Z'P= j[D'Pi]e-fc?L(ij)'Pi'PjdT. 

(8) 

(9) 

By means of the Hubbard-Stratonovich transformation it can be shown that 

e'f Jt L(ij) (ct Cj)( cj Ci )dT 

= ;~ j [D~ij] [D~:j]e- J;~ L(ij) {~:jfij+J1[~:j(ct Cj)Hij (cj Ci)J}dT , (10) 

e':ut' L(ij) (ct Ci)(Cj Cj)dT 

= ~j [D ] -JtL(ij) {'Pi'Pj+/i['Pi(cjCj)+'Pj(ctci)]}dT 
Z 'P e . 

'P 
(11) 

Setting the expressions (10) and (11) into the r.h.s. of (7), permuting the order 
of the integrations over Cia, Cia and of those over ~ij, elj and 'Pi, after the 
integration over Cia and c1", we obtain an expression for the partition function 
of the system in the form of a functional integral over the scalar fields ~ij, ~:j 

and 'Pi: 

(12) 

The scalar functions ~ij, ~:j' 'Pi represent the effective fields of the bosonic 
collective excitations in the system. 
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Let us separate the magnitudes and phases of the bilocal functions 

c ilJ·· <,ij = 'f/ije 'J, c* -ilJ·· <,ij = 'f/ije ", 

'f/ij and Bij being the real functions of r. Under the gauge transformation 

the phase Bij changes in the following manner: 

It can be expressed in terms of a vector field a( r, r) 

Bij = l~j a(r,r)dr, 

(13) 

(14) 

(15) 

(16) 

where ri is the coordinate vector of the site i. Let a(r) be some function with 
the value ai at the site i 

a(ri) = ai· 

The corresponding gauge transformation of a is 

a(r, T) --+ a(r, T) + 'Va(r). (17) 

The effective action S[~ij'~;j,'Pi] in the r.h.s. of (12), in general, contains the 
time derivatives 

In order to have the invariance under the T-dependent gauge transformations of 
the form (14) and (15), 

ai = a(r.;, T), 

it is necessary to introduce also the time component ao(r, T) of the gauge field 
together with the spatial ones a( r, T), and to replace 

! ~ij ----7 {d~ - i [ao(rj, T) - aO(ri' T)J}~;j, 

~f7j ----7 {~+ i [ao(rj, T) - aO(ri' T)] }Cj . 
dr dT 

The effective action is invariant under the gauge transformations 

a(r,T) ----7 a(r,T) + 'Va(r,r), 
oa(r, T) 

ao(r, T) ----7 ao(r, r) + , 
OT 

(18) 

(19) 

with any function a(r, T). In the expression for the partition function we must 
include the functional integration over the component ao(r, T) and add the gauge 
fixing term to the effective action. 
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Thus the existence of the gauge field al' (r, T) in the system with the interaction 
Hamiltonian (4) has been established. This gauge field has been investigated 
extensively (see the work cited at the beginning of this section; see also Narikio 
et al. 1990 and Fukuyama and Kuboki 1990). Wen et al. (1990) have studied 
the chiral spin states and shown that in this case the effective Lagrangian of the 
gauge field is the CS term of the form (1). This result was confirmed by the 
recent works of Libby et al. (1992) and Tikofsky et al. (1994) . The corresponding 
systems are called the chiral spin fluids. Chen et al. (1993) have considered the 
system with the interaction Hamiltonian (4) near the Mott transition and also 
derived the same CS effective Lagrangian. 

3. Quantum Hall Fluids 

Consider now another type of topological quantum fluid: the two-dimensional 
electron system exhibiting the FQHE. They are called Hall fluids. A simple field 
theory description of these systems has been proposed by Zhang et al. (1989). 
The model consists of a quantum electron field "j; interacting with a CS quantum 
gauge field 0,1' in the presence of the classical external electromagnetic field AI'" 
The total Lagrangian of the system equals 

(20) 

where Le is the Lagrangian of the electron field "j; interacting with the vector 
fields 0,1' and AI': 

Le (1/J,,,j;+, gal' - eAI') = i"j;+ (! + igao - ieAo)"j; 

1 A 2 A 

+-1/J+ (\7 - iga + ieA) 1/J, 
2M 

Les is the CS Lagrangian for the quantum field 0,1': 

(21) 

(22) 

Here 9 is the coupling constant of the gauge interaction of the field 0,1' with the 
electron, and p is some integer. We choose p to be positive. The equation of 
motion with respect to the time component 0,0 reads 

ija A 2rr A 

C iaj = p-p, 
9 

(23) 

where p = "j;+"j; is the electron number density. Due to the interaction of the 
two fields "j; and 0,1' each electron always carries a flux of the magnetic-like field 
with the vector potential equal to the expectation value of aj. From equation 
(23) it follows that each electron is attached by p unit quantum fluxes. This is 
the physical picture of the model of composite fermions in quantum Hall fluids 
(Jain 1989; Greiter and Wilczek 1990). 
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From the Lagrangian determined by equations (20)-(22) it is straightforward 
to derive the expression for the Hall conductivity. We choose to work in the 
gauge ao = Ao = o. The functional integral of the system is 

(24) 

It determines completely the physical consequences of the theory. By a shift of 
the functional integration variable 

e 
a --t a+-A 

9 

we can rewrite Z in a new form 

Z = J [D'I/J] [D'I/J*] [Da]eiJ Leffdt, (25) 

with the effective Lagrangian 

Leff = Le('I/J,'I/J*,ga) + Lcs( a + ~A). (26) 

This effective Lagrangian describes the system as well as the original one Ltot 

given by equations (20)-(22). Note that in this new form of Z the external 
electromagnetic vector potential Ai' enters only into the OS term 

(27) 

By definition the electromagnetic current operator equals 

(28) 

We write aU2u for the contribution of the first term in the r.h.s. of (28) to 
the Hall conductivity. We have immediately 

(1) _ 1 e2 
aH --

aU - p 27r . (29) 

However, ai is a quantum field interacting with the external one Ai through the 
interaction Lagrangian 

(30) 

and the expectation value of the last term in the r.h.s. of (28) does not vanish. 
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Let us calculate the expectation value of the current operator (28) in the 
presence of the external time dependent perturbation of the form (30). We have 

(31) 

To first order with respect to this perturbation we obtain 

(iij(r, t)) = i 4~P £lk J dt' J dr' { (T[iij(r, t)iif(r', t')]) 0 ~, Ak(r', t') + Al(r', t') . 

. a,/T[iij(r,t)iik(r',t')]\ } = !!.!L£fk~Jdt'Jdr'Djf(r-r"t-t')Ak(r"t'), (32) 
at \ / 0 27rp at 

where 

(33) 

is the two-point Green function of the CS gauge field interacting with the electrons 
through the Lagrangian (21) in the absence of the electromagnetic field. We have 
studied this elsewhere (Hieu and Son 1991; Hieu 1992, 1993). From equations 
(31) and (32) it follows that the contribution of the second term in the r.h.s. of 
(31) is of the same order with respect to the electromagnetic coupling constants 
e as that of the first term and therefore cannot be neglected. Calculations give 

1 e2 n 
O"Hali = - - --- , 

P 27r n - We 

n _ 27rp 
- M P , 

where p is the electron number density 

p = (fJ)o, 

(34) 

(35) 

and We is the cyclotron frequency of the electron in the effective magnetic-like 
field with strength 

eH 
Beff =B--, 

g 

gBeff 
we=~. 

(36) 

(37) 

Here H is the magnetic field created by the external electrical current and B 
is the magnetic-like field created by the electron in the system according to 
equation (23) 

(38) 
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The same result was also derived directly from the original Lagrangian (20). We 
introduce the integral filling factor of the electrons in the effective magnetic-like 
field, 

We have then 

and therefore 

2rrp 
n=--. 

gBeff 

2rrp 1 
w --­

c - IVI n 

o P 
O-wc = --1 . 

P-­
n 

The fractional filling factor of the electrons in the magnetic field H is 

2rrp 
lI=-. 

eH 

From equations (36), (38), (39) and (42) we obtain 

1 1 
-=P--· 
n II 

(39) 

(40) 

(41) 

(42) 

(43) 

Thus the fractional filling factor II is expressed in terms of the integers p and n 
in the following manner: 

1 
II = --1 . (44) 

p- -
n 

Setting expression (41) into the r.h.s. of (34) and using the relation (44), we 
finally obtain the expression for the Hall conductivity 

1 e2 e2 

O"Hall = --1 2rr = II 2rr . (45) 
p--

n 

This is consistent with the definition of the filling factor lI. The model of Zhang 
et al. (1989) is adequate for a theoretical description of the FQHE. It has been 
generalised by Wen, Zee and others (Wen 1989; Blok and Wen 1990; Wen and 
Niu 1990; Wen and Zee 1989, 1991) in order to describe the hierarchical states 
wi th filling factors of the form 

1 
II = ----""""'1:----

PI - ----:1:-­
P2----

1 

Pe 

(46) 
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4. Long Distance Physics of Topological Quantum Fluids 

In the preceeding section we have presented a model of the fractional quantum 
Hall system as an integral quantum Hall system of composite fermions-electrons 
interacting with the CS gauge field. The integral filling factor n of the last 
system equals the number of filled lowest Landau levels. Generalising this model 
of Zhang et al. (1989), Wen, Zee and others (Wen 1989; Blok and Wen 1990; Wen 
and Niu 1990; Wen and Zee 1989, 1991) have proposed describing the electrons 
in each separate filled Landau level by a fermion field (/;1, 1= 1,2, ... ,n, then 
replacing each fermion field by a boson one ~ I interacting with a corresponding 
CS gauge field a~, which converts the boson into the fermion degree of freedom 
(Wilczek and Zee 1983). Including the possible self-interaction potentials of the 
boson fields also, these authors obtained the following effective Lagrangian: 

L = t {i~t [~+ i(gao + a~ - eAo)] ~I + _1_~t['V - i(ga + aI - eA)]2~I 
1=1 at 2M 

+ V(~I) + ":"-cl-'VPaI 8vaI } + Lcl-'vPa 8va . 
471' I-' P 471'p I-' P 

(47) 

In the broken symmetric phase each complex scalar field has a gap-less Goldstone­
Nambu excitation r/ and a gap-full vortex excitation. Since the dimension of 
the space-time is 2 + 1, the scalar massless fields r/ are expressed in terms of 
the massless gauge fields et according to the relation 

(48) 

Transforming the Lagrangian into the dual representation (Wen and Zee 1989; 
Fisher and Lee 1989), we obtain 

(49) 

Here 3fvortex are the currents of the vortices. In the r.h.s. of (49) we do not 
specify the terms which give no contribution in the long-distance limit. Writing 

and integrating over the fields a~ in the functional integral, we reduce the 
Lagrangian to the form 

(50) 
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Writing again 

~,..vp J (g2 a,..ovap + 2ga,..ov Le:)drdt 
p I 

and then integrating over the field a,.., finally we obtain the effective Lagrangian 
in the new form 

(51) 

- ~ ,..vp '"' c I K 0 c J _ ~ ,..vp A 0 '"' a + '"' iI",.. + - 4 € ~<",.. IJ v<"p 4 e€ ,.. v ~<"p ~<"I-'JIvortex ... , 
7r I,J 7r I I 

where K IJ are the elements of the n x n matrix 

K = -(1 +pC), 

I being the unit matrix and C the matrix in which every element equals 1. By 
means of the time-reversal transformation we can change the sign of K. By 
combining different quantum Hall fluids we can construct a new one with some 
symmetric matrix K suitable for the description of the hierarchical state with 
the filling factor (46). If different components of the quantum Hall fluid have 
different charges tI, then instead of the second term on the r.h.s. of (51) we 
should write 

Thus, in the long distance limit, the physics of quantum Hall fluids is determined 
by the Lagrangian 

(52) 

The matrix K has odd diagonal elements, and all other elements are integral 
numbers. It was shown (Wen 1989; Blok and Wen 1990; Wen and Niu 1990; 
Wen and Zee 1989, 1991; Frohlich and Zee 1991) that the filling factor of the 
system is 

(53) 
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and the charges of the vortices are 

qI = I>J(K- 1) JI' (54) 
J 

The matrix K determines also the statistics of the vortices. The ground states 
of the system are described by the nontrivial configurations of the gauge fields 
~~. Their degeneracy equals 

D = (detK)9 , 

where g is the genus of the two-dimensional closed surface in which the system 
exists. 

Thus the matrix K contains all information on the physics of the topological 
quantum fluid. It is an order parameter of the topological character-a topological 
order parameter. 

5. Discussion 

Although the physics of topological quantum fluids with different structural 
origins can be described by a universal effective Lagrangian of the form (52) 
at long distances, these fluids have different elementary excitations and different 
physical properties. In conclusion we mention some topics of the theory of 
topological quantum fluids which are related with their microscopic structure. 
These problems are being widely studied in theoretical and experimental work: 

(1) Physical properties of the flux-charge composite fermions in quantum Hall 
fluids, in particular their behaviour in external electromagnetic fields (Jain et al. 
1993; Kang et al. 1993; Goldman et al. 1994). 

(2) Quantum mechanics and field theory models of quantum Hall fluids, in 
particular their elementary excitations and energy spectra (N arikio et al. 1990; 
Fukuyama and Kuboki 1990; Zhang et al. 1989; Hieu 1992, 1993; Hieu and 
Son 1991, 1994; Wen 1989; Blok and Wen 1990; Wen and Niu 1990; Wen and 
Zee 1989, 1991; Wilczek and Zee 1983; Fisher and Lee 1989; Frohlich and Zee 
1991; Hanna et al. 1989; Fetter and Hanna 1992; Hosotani and Chakravarty 
1990; Hosotani 1993; Frohlich and Kerler 1991; Kol and Read 1993; Zang et al. 
1994; Schemeltzer and Birman 1993; Chen et al. 1989; Iengo and Lechner 1991; 
Cristfano et al. 1990; Pinczuk et al. 1993; Kukushkin et al. 1994). 

(3) Physical properties and physical parameters of topological quantum fluids, 
in particular their linear and nonlinear responses in an electromagnetic field; the 
Meissner effect and superconductivity (Fetter and Hanna 1992; Hosotani and 
Chakravarty 1990; Engel et al. 1993; Randjbar-Daemi et al. 1990; Banks and 
Lykken 1990; Panigrahi et al. 1990; Lykken et al. 1990; Hetrick et al. 1991; 
Ezawa and Iwazaki 1991; Balachandran et al. 1990; Fradkin 1989). 

(4) Edge excitations of quantum Hall fluids (Halperin 1982; Wen 1990; Lee 
and Wen 1991; Stone 1990). 

(5) Symmetries and algebraic aspects in the theory of the FQHE (Cappeli et 
al. 1993a, 1993b; Karabali 1994; Wen and Wu 1994). 

All these problems require further investigation. 
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