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Abstract 

The density matrix theory is applied to establish a connection between the configuration of the 
excited atomic states and the intensity and polarisation of the cascade photons emitted during 
the decay process. Explicit expressions are obtained for the P, D and F states of hydrogen 
and helium atoms. These formulae can be used to assist experimental design for the most 
efficient and revealing measurements. In addition, formulae for the integrated polarisation of 
the emitted photons from the P, D, F and G states of hydrogen and helium are presented in 
terms of partial excitation cross sections. 

1. Introduction 
It is well known that the radiation field emitted by an excited atom is, in general, 

polarised and anisotropic. By measuring the polarisation and angular distribution 
of the emitted photons, one can retrieve information on the configuration of 
the excited atomic states characterised by a wavefunction or a density matrix. 
Consequently, an understanding of the associated excitation process can be 
obtained. In fact, the detection of a single line radiation emitted from an atomic 
state with angular momentum L = 1 can provide a complete account for the 
configuration of this state; while for atoms with angular momentum L ~ 2, an 
analysis of not only the first emitted photon but also the subsequent cascading 
photon(s) is required for such a complete description. 

As an illustration, we plot in Fig. 1 the charge angular distribution of the 
1 P, 1 D and 1 F states of helium together with the intensity distribution of the 
photons emitted directly from these states. The configurations of these states 
are arbitrarily chosen to be 
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Fig. 1. Left: Angular charge density distribution for the 1 P, 1 D and 1 F states of helium. 
Right: The intensity distribution of the photons emitted from these states. The configurations 
of these states are defined in the text. 
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As shown in Fig. 1, the radiation field of alp state has a structure similar 
to its charge density distribution. As a result, the latter can be determined by 
measuring the former, and vice versa. However, the radiation field of aID state 
does not possess the complex features of the corresponding charge cloud, rather 
it is similar to that emitted by alp state atom. A measurement of such a simple 
radiation pattern can only provide partial information on the more complicated 
charge cloud and hence partial information on the configuration of the atomic 
state. The same applies to a IF state, which has an even more complicated 
charge distribution, while the emitted photon angular distribution is again of a 
simple form. 

On the other hand, excited 1 D and IF states decay to the ground state by 
several sequential cascade emissions. The cascade photon(s) provide the additional 
information needed for a complete determination of these atomic states. For 
example, let us have a closer look at the decay process of the helium 31 D state. 
After the excitation, the atom evolves with time until the first photon 1'1 is 
emitted when the atom decays to the lower 21 P state. This 21 P state is in 
general polarised and the polarisation will be passed on to the second photon 
1'2 which is emitted when the atom decays to its ground state. As discussed 
earlier, a measurement of 1'2 provides complete information on the polarised 21 P 
state. This information plus the intensity and polarisation of 1'1 provide sufficient 
information for a complete determination of the 31 D state, if 1'1 is measured in 
coincidence with 1'2 to ensure they come from the same event. 

In this paper, we present a general theoretical model for describing the 
angular and polarisation correlations of the cascading photons. These correlation 
functions relate the measurable photon intensities and polarisations to the 
excitation amplitudes of the atom. Explicit expressions for the double and/or 
triple coincidence measurements of the P, D and F states of atomic hydrogen 
and helium will be derived. In particular, the integrated polarisation formulae 
for these states are presented in terms of partial excitation cross sections. In this 
work, we consider electron-impact excitation, but the theoretical model and the 
formulae are applicable to any other type of excitation process. In the following 
model, a pure L8 coupling scheme is assumed for the helium atom. Wang et al. 
(1995) recently presented a more general treatment for cases with singlet-triplet 
mixing. 

2. Theory 

In the case of coherent excitation, the excited atom is in a pure state and 
thus can be represented by its wavefunction 

m 

which is a linear superposition of its magnetic substates and where 1m are the 
excitation amplitudes. If the excited atom is in a mixed state, for example when 
the incident electron beam is unpolarised in spin, a density matrix 

m'm 
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is required to represent such an atom. One can also use the state-multipole 
description which is defined as some combination of the density matrix elements, 
i.e. 

L 

-Tn 
K ) Im l !;" 
-Q 

with 0::; K ::; 2L and -K::; Q ::; K. The notation k = .J2K + 1 is used. 
The density matrix formulism and the state multipoles are two equivalent 

descriptions of an atomic system. However, the state multipoles have the inherent 
symmetry of the excited atom and hence are usually the preferred representation 
to use in describing the emitted radiation. For example, the monopole is isotropic 
and represents the total cross section of the excited state and hence the total 
intensity of the emitted photons; the rank 1 multi poles represent the orientation 
of the atom and are related to the circular polarisation of the emitted photons, 
and the rank 2 multipoles represent the alignment of the atom and are related 
to the linear polarisation of the emitted photons. 

The emitted photons can be fully characterised by a photon density matrix 
p)..I)..(fi), where A and fi == (8, cp) denote the helicity and Euler angles of the emitted 
photons. The diagonal elements of this matrix describe the amplitudes of the 
left and right circular polarisation and so the total intensity 1= P-l-l +Pl1 and 
the net circular polarisation P3 (cir) = (P-l-l-Pl1)/ I. The off-diagonal elements 
describe the phase relationship between the left and right circular polarisation 
and are associated with the linear polarisations at two perpendicular directions, 
i.e. P1(lin) = -(p-l1 +Pl-l)/ I and P2(lill) = i(p-l1-Pl-l)/ I. 

Our task is to establish a relationship between the photon density matrix 
and the state multi poles of the excited atom. In this way, if we know the 
atomic configurations, we have detailed information on the emitted photons, 
and vice versa if we measure the intensity and polarisation of the photons we 
can completely characterise the excited atomic state. Three basic equations are 
required for such a task (Blum 1981). The first describes the time evolution of 
the excited atom under its system Hamiltonian H, i.e. 

where the time perturbation factor is U( t) = e- iHt/ h . From the abov€ equation, 
we have the configuration of the excited state at the time of emitting a photon. 
The second equation provides the density matrix for the emitted photon 

p)..')..(fi) = C(w) L (T(L; t)kQ) Tr{r _)..'T(L)KQ r~)..}n , 
KQ 

(2) 

where r _).. is the radiation dipole operator. The third equation gives the 
configuration of the resultant lower state of the atom, 

(T(L f ; t)lq)~/).. = C(w) L (T(L; t)kQ)Tr{r _)..1 T(L)KQ r~).. T(L f )lq}n. (3) 
kq 
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3. Case Study 
(3a) Helium 31D State 

Let us apply these three basic equations (1)-(3) to the 31D state of helium. At 
time to, the atom is excited to the 31 D state represented by the state multipoles 
(T(L2; t = O)tQ2). This state evolves with time governed by equation (1), 

The first photon is emitted at time t1. According to (2), the photon density 
matrix is 

PA1'Al (rid = c(wd I: (T(L2; h)tQ2)Tr{r -Al' T(L2)K2Q2 r~AJnl . (5) 
K2Q2 

After emitting the first photon, the atom decays to the 21p state which is given 
by (3) as 

(T(L1; tdklQJ~~Al = C(W1) I: (T(L2; h)k2Q2) 
K2Q2 

The 21p state evolves further with time, i.e. 

Finally, the second photon is emitted at time t2 given by the following density 
matrix: 

and the atom decays to its monople ground state represented by (T(Lo)bo). 
By substituting (4), (6) and (7) into equation (8) and calculating the traces 

over the appropriate quantum numbers, we obtain a two-photon density matrix 
in terms of the state multipoles of the 31D state, 
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(9) 

where K 1 , b = 0 ... 2; Ql,P, a = -Kl ... Kl; K2 = 0 .. .4; Q2, p' = -K2 ... K 2. Details 
for such a derivation were presented in Wang et al. (1995). In the above equation, 
the first group of terms contains the dipole matrix elements for the first and second 
photon emission; the second term describes the exponential decay of the initial 
and intermediate states; the n-j symbols are related to the angular momentum 
coupling and conservation; and the rotational matrices D are geometric factors 
where (a, (3) and ((), cp) are the polar angles of the two photon detectors. Finally, 
the state multipoles (T(L2; t = 0)k2Q2 )lab represent the excited atom immediately 
after excitation, where lab refers to the laboratory frame. 

As discussed earlier, the sum of the diagonal elements of the photon density 
matrix gives the total coincidence intensity, 

I(a{3, ()cp) = L PA~A1,A;A2(a{3,()cp) = C L AK2Q2(a{3, ()cp)(T(L 2 ftQ)lab. (10) 
A' 2 = A2 = ±l K2Q2 
A'l = A1 = ±l 

The various Stokes parameters are obtained from different combinations of the 
elements of the two-photon density matrix. For example, if polarisation analysis 
is performed only on the first photon, the Stokes parameters are given by 

L (p(Al = -1; A~ = 1) + p(Al = 1; A~ = -1)) 
A;=AF±l 

= C L Ak2Q2 (a{3, ()cp)(T(L2 )itQ2)lab , 
K2Q2 

1P2 = i L (p(Al = -1; A~ = 1) - p(Al = 1; A~ = -1)) 
A;=A2=±1 

= C L Ak2Q2 (a{3, ()cp)(T(L2 )itQYab , 
K2Q2 
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L (p(A1 = -1; A~ = -1) - p(A1 = 1; A~ = 1)) 

'\;=A2=±1 

= C L A}2Q2(a/3,ecp)(T(L2 )k2Q)lab, (11) 
K2Q2 

Evaluations of (10) and (11) were carried out using an algebra program written 
in Mathematica (Wang and Williams 1993) and we obtained the coefficients 
AK2Q2 and AK2Q2 (i = 1, 2, 3) for each state multipole, The values for the state 
multi poles depend upon the associated excitation dynamics and can be obtained 
by solving the corresponding Schrodinger equation. We calculated these state 
multipoles for electron-impact excitation in the distorted-wave Born approximation 
(DWBA) (Madison 1995). 

The above theoretical findings can be utilised to provide guidance for optimum 
experimental settings of the detectors in order to access the most efficient and 
revealing measurements. For example, in order to fully understand the collision 
dynamics in the process of exciting a helium atom to the 31 D state by electronic 
impact, triple coincidence measurements are required in which the two cascade 
photons are measured in coincidence with the incident electron. Unfortunately, it 
was found that the triple coincidence count rate is in general very low. A trial and 
error type of approach to find the optimum angular locations for the electron and 
two photon detectors would take excessive time and is not practical in this case. 

On the other hand, theoretical predictions for the optimum positioning of the 
two photon detectors are readily available from (10). The three plots on the 
left of Fig. 2 show the triple coincidence intensity l(a, e; /3 = cp = 0), where the 
detector for the scattered electron is in the plane defined by the two photon 
detectors. In this figure, (al), (a2) and (a3) correspond to scattering angles 
of 5°, 10° and 20° respectively and incident energy of 80 e V. The three plots 
on the right show the arrangement of the three detectors which gives rise to a 
maximum coincidence signal according to the DWBA calculation. The angular 
locations of the two photon detectors are a = 70°, e = 110° for an electron 
scattering angle of 5°; a = 51°, e = 129° for scattering angle 10°; and a = 40°, 
e = 140° for scattering angle 20°. Very recently, we also obtained the excitation 
amplitudes of the 31 D state at the same incident energy from a convergent close 
coupling (eee) calculation by Fursa and Bray (1995). By using their results, 
the prediction is that, in order to get the maximum triple coincidence signal, 
the two photon detectors should be placed at a = 73°, e = 107° for scattering 
angle 5°; a = 62°, e = 118° for scattering angle 10°; and a = 49°, e = 131° for 
scattering angle 20°. 

Equation (10) can also be used inversely, i.e. by measuring the triple coincidence 
intensity at several different positions, one can extract the experimental values 
for the state multipoles. Now let us examine the coefficients AK2Q2 and AbQ2 

(i = 1,2,3) which reveal the contribution of each state multi pole to the total 
intensity 1 and the Stokes parameters. As an example, the coefficients Af 1, 

A~~,l' Al2 and A~,3 are shown in Fig. 3, where the minimum and maximum 'of 
these functions are clearly seen. If the photon detectors are placed to where a 
few of the coefficients are zero or small, we can eliminate certain terms in (10) 
and (11) and focus on the few with large values of AK2Q2 or A}(2Q2 (i = 1,2,3). 



342 .1. B. Wang and .1. F. Williams 

(b 1) 

(b2) 

F2 e - ...... I----~~ 

(b3 ) 

e-..... l---~~ 

Fig. 2. Left: The triple coincidence intensity distribution I(a,B;(3 = 'P = 0) for electron 
scattering angles of 5, 10 and 20° and incident energy of tlO eV. Right: The corresponding 
optimum arrangement of the three detectors. 
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Fig. 3. The coefficients AkQ which determine the contribution of each state multipole to 
the circular polarisation. 

(c) (d) 
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Fig. 4. Time oscillation of the angular charge distribution for the 33 D state of 
Hum with the same configuration as that shown in Fig. 1(a2). The time sequence 
a ~ b ~ c ~ d ~ e ~ f ~ g ~ h ~ g ~ f... repeats before the state decays. 
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(3b) Helium 33D State 

The main difference between the 31 D and 3:3D states is that the 33D state 
has a non-zero spin (S = 1). During its time evolution, this spin S couples with 
the angular momentum L resulting in an oscillation of the atomic charge cloud 
as shown in Fig. 4. Applying the three basic equations (1)-(3) to the decay 
process of the 3:3D state in the same way as described in the above section, we 
obtain the two-photon density matrix 

P(t1 A1 A'l fi1, t2 A2 A~ fi2) 

= G' (W1 W2 t1 t2) L (_I)K+l+h+L2+a+J; (K.11.1~.12.1~ b)2 K2 ( I, 
KIQI K 2CJ2 CLb pP' -A.2 

1 

, , 
.J 1.11.72.12 

x {: 
L1 L1 } { L1 

j' 
S} {L2 

j' 
S } { L1 J~ 

~} 1 2 

1 1 .11 L1 K .12 L2 K2 J~ L2 

r b 

~} { L1 .11 
S} (K2 

b 

:) (A1 ~ A~ 
1 

-~1) J~ x .h A1 - A~ A~ 
1 

L2 1 _pi 
j' .12 1 1 

x cos(VJ~h t1) cos(VJ;J, (t2 - t1))(T(L2; to = ortQ/ab 

x D(Br..p)(Ktl D(a(3)(K2) D*(a(3)(Ktl pQ p'Q2 aQ ' (12) 

where VJ~.l2 = (E.J~ -Eh)/h and v.J;J, = (EJ; -E.J,)/h. As expected, this matrix 
is in a more complicated form in comparison with (11). Also, there are time 
modulation terms in the above equation, which originate from the spin-orbit 
interaction and are sometimes called perturbation coefficients. These terms are a 
direct reflection of the oscillating charge density distribution of the atom shown 
in Fig. 4. 

(3c) Hydrogen 42F State 

The same approach can also be applied to hydrogen atoms. As an example, 
we study the 42F state of hydrogen, from which three cascade photons are 
emitted before the state decays to the ground state. We follow the usual steps 
as described earlier: 

• The 42F state, represented by the state multipoles (T(L 3 )LQ3)' evolves until 
the first photon is emitted at time t1 and the atom decays to the 32D state 

(T(L2)k2 QY" = G(W1) L (T(L:3)k3Q)G(L3; t)%3J~ 
K3Q3 
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• The 32D state (T(L2) k2 Q,)n1 evolves until a second photon is emitted at 
time t2 and the atom decays to the 22p state 

(T(Ldk,Q,)n2 = C(W2) L (T(L2)k2Q2)n1 G(L2; t - tl)~2J~ 
K2Q2 

• The 22p state (T(L 1)k,Q,)n 2 evolves until a third photon is emitted at time 
ta and then the atom decays to its ground state. The three-photon density 
matrix is 

By substituting (13) and (14) into (15), we have the three-photon density matrix 
connected with the state multi poles representing the initially excited 42F state 
of hydrogen. 

Table 1. Formulae for integrated polarisation in terms of partial cross sections 0' i 

Atom Initial Final Integrated polarisation 
state state 

H 2p 2S 3( 0-0 - o-tl 
70-0 + 110-1 

2p 2D 3( 0-0 - o-tl 
610-0 + 1190-1 

2D 2p 57(0-0 + 0-1 - 20-2) 
1190-0 + 2190-1 + 1620-2 

2D 2F 57( 0-0 + 0-1 - 20-2) 
3690-0 + 7190-1 + 6620-2 

2F 2D 129(20-0 + 30-1 - 50-3) 
5760-0 + 11090-1 + 9800-2 + 7650-3 

2F 2C 129(20-0 + 30-1 - 50-3) 
12620-0 + 24810-1 + 23520-2 + 21370-3 

2G 2F 75(100-0 + 170-1 + 80-2 - 70-3 - 280-4) 
17620-0 + 34490-1 + 32240-2 + 28490-3 + 23240-4 

He Ip IS 0-0 - O-J 

0-0 + 0-1 
Ip ID 0-0 - O-J 

70-0 + 130-1 

ID 1p 3( 0-0 + 0-1 - 20-2) 
50-0 + 90-1 + 60-2 

1D 1F :3( 0-0 + 0-1 - 20-2) 
150-0 + 290-1 + 260-2 

1F 1D 3(20-0 + :30-1 - .')0-3) 
120-0 + 2:30-1 + 200-2 + 150-3 

1F 1G :3( 20-0 + :30-1 - 50-:)) 
260-0 + 510-1 + 480-2 + 4:30-3 

IG 1F 100-1) + 170-1 + 80-2 - 70-:j - 280-1 
220-0 + 430-1 + 400-2 + ;)50-:l + 280-4 
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(3d) Integrated Polarisations 

The explicit expressions of (9), (12) and (15) were obtained with the aid of 
Mathematica. These formulae are rather lengthy and therefore not included in 
this paper, but they are available from the authors on request. Instead, we 
present here in Table 1 formulae for the integrated polarisation in terms of the 
partial cross sections for the G ~F, F ~D, D ~P and P =}S transitions in 
hydrogen and helium. These expressions are obtained by integrating (2) over 
time t and photon angle 'P'Y' such as 

A similar integration gives p~nt(B'Y = 900 ) = Plnt(B'Y = 900 ) = o. 
In the classic paper of Percival and Seaton (1958), a list of such formulae 

were given for the lowest few angular momentum states. Recently, Hoekstra et 
al. (1991) presented their results for the F --+ D, D --+ P and P --+ S transitions 
in hydrogen. However, we found that their formula for the D --+ P transition 
differs from our result. 

4. Conclusion 
In this paper, we presented a general theoretical model for describing the 

angular and polarisation correlations between the cascading photons. These 
correlation functions relate the measurable photon intensities and polarisations to 
the excitation amplitudes of the atom. By using the state-multipole description 
for the excited atom, the photon density matrix of sequential cascade emissions 
can be derived in an efficient and compact way. These cascade photons, if 
measured in coincidence, provide complete information about the configuration 
of the excited atom. 
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