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Abstract

A physical model which considers a U1 gauge invariant Lagrangian with spontaneous
symmetry-breaking and minimally coupled to a gravitoelectromagnetic field is proposed. Its
topological charge is identified with the gravitational ftuxoid. In this paper we analyse the
spin-gravitomagnetic field interaction and the kinetic moment-gravitomagnetic field interaction.

1. Introduction

The concept of a gravitational field (or at least some components of the
gravitational field) analogous to the electromagnetic field is supported by the
following observations (Ciubotariu 1991). For the case of weak fields:

(i) Newton's law is analogous to Coulomb's law.
(ii) The linearised Einstein equation has the same form as Maxwell's equations

(Balasz and Bertotti 1963; Peng 1983, 1990).
(iii) The geodesic equation has the same form as the Lorentz equation of

motion (Fuchs 1981).

For the case of strong fields:

(i) The autofocusing of gravitational waves (Ferrari 1988a, 1988b) is similar
to that of laser radiation in nonlinear optics (Askar'Jan 1962).

(ii) The gravitational field of axially symmetric and reflection-symmetric
systems, in the near-field approximation, has a structure very similar to
the electric-type solutions of electromagnetic theory (Morgan 1971).

(iii) There exists a gravitational analogue of the electromagnetic Faraday
rotation (Piran and Safiev 1985).

Recently, Peng (1983, 1990) discussed a set of Maxwell-like equations that
arise in the slow-motion vic « 1 weak-field limit of Einstein's field equations.
In this case, the equations of general relativity can be written in terms of
separate space-time coordinates, and one can introduce the gravitoelectric (Eg )
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and gravitomagnetic (B g ) fields (Ciubotariu et ale 1993). The set of governing
equations may be called gravitoelectromagnetic and are written as

. aEg
V' X B g = - 41TJnl + at '

\J x E g = _ 8Bg

at '

V' • E g = - 41TPm ,

(1)

(2)

(3)

V' . B g = 0, B g = V' x A g , (4)

where i: = PmV is the mass current density, Pm = nm is the proper mass
density, with n the number density of particles of rest mass m, and A g is the
gravitomagnetic vector potential.

For instance, the gravitomagnetic field induced by the rotation of the Earth,
at a geographical latitude of 45°, is given by (Ljubicic and Logan 1992)

2G.I (3(W ·R)R ) 1"..1 10-14 -1B - - -W 1"..1 s,
g - cR3 R2 (5)

where G is the gravitational constant, R is the radius of the Earth, I is the
moment of inertia of the Earth about an axis through its centre and W is the
angular velocity associated with the Earth's rotation.

Since in this approximation the mass is the unique source of the gravitational
field, we have

To.,f3 = Pmuo.u f3, TOO ~ Pmc2
, T Oi ~ Pmvi = j:n, Tij ~ 0, (6)

a TaO. ( J.i).T = = Pm, m ,

aPm't'7 . = 0
-- V • J mat

a, (3, ... = 0, 1, 2, 3; i, j, ... = 1, 2, 3,

(equation of continuity) (7)

and the equation of motion are geodesics, i.e.

d2xo. {a} dx f3 dz?
u f3V'f3 uo. = -- + - - =0.

dT2 (31 dT dT
(8)

This is analogous to the equation for the Lorentz force acting on an electrical
charged particle, that is, (8) is of the form (Peng 1983; Ciubotariu 1991)

dv = E g + 4 v X B g .
dt

(9)
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Now, if we choose ha (3 of the form (Ho and Morgan 1994)
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so that

V
hoo = - c2 ;

V
h .. = -8i j 2";

~J c hOj = hj o = Agj (i, j = 1, 2, 3),
c

(10)

2E
g

= -VV _ oAg .

at ' B g = \7 x A g , (11)

where ha (3 is a small perturbation to the metric term ga(3

ga(3 = TJa(3 + ha (3; Iha (31 « 1 (12)

and TJa(3 is the Minkowski metric, then the gravitoelectromagnetic 4-vector (Ho
and Morgan 1994) can be introduced:

A" = ( - ~, A g ) • (13)

In the present paper we propose a physical model which considers a U1 gauge
invariant Lagrangian with spontaneous symmetry-breaking minimally coupled to
a gravitoelectromagnetic field. The topological charge is identified with the
gravitational fluxoid and in this context some physical effects are studied.

2. Mathematical Model

We consider the local U1 gauge invariant Lagrangian L with spontaneous
symmetry-breaking:

L= !(V" ¢)*(V"¢) - ~!(p*¢ - ;r-~F"v F"v , (14)

where \7J-L = 8J-L - i(4m/n)AJ-L is the covariant derivative, AJ-L is the gravito­
electromagnetic 4-vector field, ¢ is the Higgs field coupled minimally to the
gravitoelectromagnetic field, FJ-Lv = 8J-L Av - 8vAJ-L is the gravitoelectromagnetic
tensor field, 4m/n is the coupling constant, n is the reduced Planck constant
and f > 0 is the self-interaction constant.

Using the Euler-Lagange equations for the Lagrangian (14), the field equations
are

a" F"v = 2i Tn (¢*oJt ¢ _ ¢o" ¢*) + 16~2 A" ¢*¢,
n n

V" V"¢ = - !¢(¢¢* - ;) .

(15)

(16)
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These equations have the solution (Chaichian and Nelipa 1984)
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FJ-tv == 0, "\1 J-t ¢ == 0, I¢I==AIJ!, (17)

which corresponds to the absolute minimum of the energy functional. The model
gives rise to a continuous degenerate vacuum which is represented graphically as
a circle of radius R == AIv7 in the complex plane ¢ (Chaichian and Nelipa 1984).
It is noted that all particles are massive, the mass of the 4-vector field being
(4 rnlfi)Alv7 and the mass of the scalar field is AJ2 (Chaichian and Nelipa
1984). There is no residual symmetry in the model.

One is not in a position to find analytical solutions to the field equations (15)
and (16). We shall look for a solution with a symmetric form:

where

Ao == 0, A g == A(r) u,

r 2 == x2 + y2

¢ == R(r) ein () , (18)

(19)

and () is the rotation angle (phase), u is the unit vector normal to the radius
vector and n is an integer. With these conditions equations (15) and (16) become

_~[~ ~(rA)] + (16rn2
A _ 4nrn)R2 == 0,

dr r dr fi2 rti

1 d ( dR) [(n 4m)2 (2 A2)]-- - r- + - - -A +1 R - - R==O.
r dr dr r fi 1

(20)

(21)

The two-dimensional soliton solutions are called vortices (Chaichian and Nelipa
1984).

A particular solution to equation (20) is the function

A == nfi
4rnr'

Then equation (21) has the form

1 d ( dR)-;. dr r dR - (>.2 - f R
2)R

= O.

(22)

(23)

Because R(r) is a finite function for r ----+ 00, the vacuum value ¢v can be expressed,
by virtue of (17), as

¢v == l¢vl e in B
.

Combining (24) with (23) we find that

R(r) == AIJ!.

(24)

(25)
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3. Topological Considerations

The model gives rise to a discrete homotopy group 11"1(81) with an infinite
number of elements, so that this admits an infinite number of different soliton
solutions (Chaichian and Nelipa 1984). The associated topological charge is
(Chaichian and Nelipa 1984)

1 J I nn 127r
1I"ncPg= B(r).dS= A.dI=- dO=n-,

R2 Sl=8R2 4rn 0 2rn
(26)

where R2 is the region bounded by 8 1 , the circumference of the circle of radius
R. Equation (26) defines the gravitomagnetic (quantum) flux

where

cPg = ncjJgo,

cjJgO = 211"n = r JB . dS
m l«

(27)

(28)

is the gravitational flux quantum (gravitational fluxoid), So = 411"R6 is the
elementary fluxoid surface and n is an integer identified with the number of flux
quanta.

These results allow us to conjecture that vortices will appear in a superfluid
placed in an external gravitomagnetic field. If the area of a vortex is A = 11"R 2 ,

where R is the vortex radius, then the number of vortices per unit surface area
is given by

1
N = 1I"R2 .

On the other hand, from (26) we can express the vortex density as

N= 2m IV X AI.
n1l"n

Now, substituting (30) into (29) we get

R ( n 1)1= n 2m IBgl 2 = ViiRo ,

where Ro is the elementary fluxoid radius, given by

n I)!
n; = (2m IBgl

(29)

(30)

(31)

(32)

The result (31) indicates that the vortex radius is also quantised.
For a superfluid in which the generic particle has the mass rnHe ~ 6·64 X 10-27 kg

(helium), the radius of the elementary fluxoid in the terrestrial gravitomagnetic
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field is Ro rv 103 m, and for the electron-positron vacuum, for which the generic
particle has a mass of m; ~ 10-31 kg, then Ro rv 105 m.

Evidently, in terrestrial laboratories such an experiment will be hard to
realise. A pulsar (rotating neutron star) provides a better relativistic laboratory.
Indeed, by evaluating the gravitomagnetic field of the pulsar NP0532 in the
Crab Nebulae (period Tp == 0·033 s, mass M p == 2 X 1030 kg, radius R p == 104 rn)
based on the relation Bg ~ 21rGMp jc2R

p Tp (Forder 1984), we find the value
Bg ~ 28·2 s:'. Under these circumstances for an electron-positron vacuum,
placed in the gravitomagnetic field of the pulsar, the elementary fluxoid radius
becomes Ro ~ 4 X 10-3 m. At the end of this section we discuss some topological
considerations. We emphasise that at the moment we cannot assert that
all the topological properties of the space-time associated with the linearised
gravitational field equations are identical to those of a general Riemannian
space-time corresponding to the nonlinear Einstein field equations. But since
we use only the topological properties of the tangent space extended to a patch
on curved space-time, the linearised theory provides a satisfactory description of
the topological properties.

4. Interaction Spin Gravitomagnetic Field

Let a be the spin operator for the electron of mass m. Then, the Dirac
identity is (Titeica 1984)

H __1 (A A)2- a.p,
2rn

(33)

with p denoting the momentum operator; in the presence of the gravitomagnetic
field this becomes

where

Since

equation (34) becomes

H' == _1_(& • p)2,
2m

A n
Pa == -:- \70 == 00 - 4mAg .

1

A A n
- p. X P == - -:- 4mBg ,

1

1 A A

H' == -P. P-2tL&. B.
2m

(34)

(35)

(36)

(37)

We now define the spin gravitational current density via the expression (Titeica
1984)

j gs == 2n curl(1/1* &1/1) , (38)
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where 'ljJ is the microparticle wave function. From (38), we can obtain the
expression for the gravitomagnetic moment (Titeica 1984)

JLgs=!J(r X igs)dV=-n J[r X curl('ljJ*o-'ljJ)]dV. (39)

Integration over the volume V gives

JLgs = -2n J ('ljJ*o-'ljJ) dV. (40)

Therefore, the spin gravitomagnetic moment is the mean value of the operator

{lgs == - 2nD- . (41)

The elementary gravitomagnetic moment (gravitational magneton) is given by
the quantity

J-tgO == 2n

or, taking into account the gravitational fluxoid, we can write

J-tgO == 1r-14m cPgO ,

(42)

(43)

With these conditions, the second term in the Hamiltonian (37) refers to the
interaction of the spin gravitomagnetic moment with the exterior field B g •

From (41) it is seen that a body placed in an external gravitomagnetic field
(created by a spinning body) can be gravitationally 'magnetised'. This arises
from the gravitationally induced alignment of the gravitomagnetic spin moments
in the external gravitomagnetic field B g •

This phenomenon may be observed in an Einstein-de Haas gravitational
experiment. To this end let us imagine a body made up of a large number of
isolated gravitomagnetic moments (gyroscopes), oriented parallel to each other
and 'suspended' inside the body. If the body is suspended by a torsion thread,
as in the Einstein-de Haas experiment, in an external gravitomagnetic field, then
according to (41) the body must turn. The rotation angle D:g is computed by
equating the rotational energy Wr == CD:~/2, C being the torsion constant of the
thread, with the gravitomagnetic energy

Wg == No l{lgs • Bgl, (44)

where. No is the total number of gyroscopes contained in the body. This yields

1

_ ( 2No l{lgs . B gl)2
D:g -

C
(45)
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(46)

The rotational angle a g is large for bodies containing a large number of 'gyroscopes'
placed in an intense external gravitomagnetic field. On a cosmic scale these
conditions may be fulfilled, thus allowing us to conjecture that, on this scale,
such bodies will rotate. From (41) and (45) we get

_(4Nohla . Bgl)!a g - .c

Such an experiment may be used to determine Planck's constant. In this
context, h is a fundamental constant, not only of the electromagnetic interaction,
but also of the gravitational interaction. It is defined, except for factor 7r- 1 , as
the quantum of the gravitomagnetic (flux) moment.

5. Interaction Kinetic Moment Gravitomagnetic Field

If B g is uniform, then for A g one can choose the expression (Titeica 1984)

A g = ~ (Bg X r).

In this case the Hamiltonian

A 1 2
H= -(p-4mA )2m g

in the weak field approximation becomes

A 1 A

H';::j -p. P- 2hL . B g •
2m

We now define the gravitational current density

jg=4mjp,

with

. h
J p = -2. ('l/;*\l'l/; - 'l/;\l'l/;*).

mi

The expression for JLg (Titeica 1984) becomes

J.Lg=!J(r X ig)dV.

After integration over the volume we obtain

{lg = h((1/;I£lljJ) + (£'l/; I1/;) ) .

(47)

(48)

(49)

(50)

(51)

(52)

(53)

As the kinetic moment operator t is self-adjoint, the last term in (53) becomes

Pg = 2h(1/;I£1/;) . (54)
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Consequently, the gravitomagnetic moment is the mean value of the operator

Pg = 2nL. (55)

In this case, the second term in the Hamiltonian (49) refers to the energy of
the gravitomagnetic moment Pg in the exterior field Bg , i.e.

1\ 1\ 1\ 4 1\ 1\

~E = Pg • Bg = 2nL • Bg = - rn¢gO L . Bg .
11

(56)

Choosing the z axis as the direction for the gravitomagnetic field, i.e, Bx = By = 0
and B; = Bg , equation (56) becomes

~E = 2nmL Bg , (57)

where uit. is the projection of the kinetic moment in the gravitomagnetic field
direction. The expression (57) shows that, in the presence of an external
gravitomagnetic field, a spectral line is split into three distinct lines, according
to the selection rule ~mL = 0, ±1; thus

the width of the splitting is

where

~E = 0 or ± 2nBg ,

~Eg = nWLg,

WLg = 2Bg

(58)

(59)

(60)

is the gravitational Larmor frequency. We refer to this phenomenon as the
gravitational Zeeman effect.

In the Earth's gravitomagnetic field the width is ~Eg ~ 6·62 X 10-48 J,
which corresponds to a wavelength of Ag ~ 1022 m. Since the ratio of
optical wavelengths to Ag is typically 10-29 , the gravitational Zeeman effect
is unlikely to be experimentally observed. However, on a cosmic scale, in the
vicinity of bodies with intense gravitomagnetic fields, the phenomenon may be
evident.

6. Conclusions

We have constructed a U1 gauge invariant Lagrangian with spontaneous
symmetry breaking coupled to a gravitoelectromagnetic field. The topological
charge of this physical model is identified with the gravitational fluxoid. Some
physical effects were studied; namely

(i) the spin gravitomagnetic field interaction which leads to a gravitational
Einstein-de Haas effect,
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(ii) the kinetic moment gravitomagnetic field interaction which leads to a
gravitational Zeeman effect.

In Section 3 we have shown that vortices will appear when a superfluid is
placed in an external gravitomagnetic field; both the gravitomagnetic flux and
the radius of the vortices are quantised. Terrestrial experiments cannot realise
such an effect, but a pulsar provides a good relativistic laboratory.

The analysis in Section 4 shows that a body made up of a large number
of colinear 'gyroscopes', placed in an external gravitomagnetic field, will rotate.
The phenomenon may be observable on a cosmic scale for celestial bodies in
intense gravitomagnotic fields. In this context, Planck's constant (except for a
factor) is identified with the quantum of the gravitomagnetic moment.

The gravitational Zeeman effect was discussed in Section 5 and may lead to
observable effects in highly intense gravitomagnetic fields.
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