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Abstract

This paper introduces and reviews light forces, atom cooling, and atom trapping. The emphasis
is on the physics of the basic processes. In discussing conservative forces the semiclassical
dressed states are used rather than the usual quantised-field dressed states.

1. Forces

The idea that light exerts mechanical forces on matter arose early in astronomy.
In 1619 Kepler suggested that it was the pressure of sunlight that made comet
tails stream away from the Sun (Minogin and Letokhov 1987). And he was
right. Nearly 250 years later Maxwell's theory of electromagnetism quantified
light pressure. The light force on individual atoms was observed by Frisch, of
Meitner and Frisch fission fame, in 1933. On Earth lasers provide the intensities
necessary for exerting useful light forces. In the early 1970s Arthur Ashkin at
Bell Labs accelerated, levitated and trapped micron-sized plastic spheres (Ashkin
1972). This work has developed into optical tweezers for manipulating small
objects.

Today atoms are routinely cooled and trapped. Light-based mirrors,
beamsplitters and lenses for atoms have been demonstrated (Adams et al.
1994a). These are the subject matter of atom optics, in which atomic de Broglie
waves are manipulated as in classical optics. Atomic interferometers constructed
with atom optics have extraordinary sensitivity (Adams et al. 1994b). Promising
applications include atomic clocks, lithography, optical tweezers, and atom lasers
or bosers (Wiseman and Collett 1995).

In this section we introduce the absorptive and dispersive limits of light forces.
Absorptive forces are dissipative, and hence useful for cooling, while purely
dispersive forces are conservative and hence useful for maintaining coherence.
Section 2 deals with cooling, the first step towards trapping. Cooling has two
important milestones: the Doppler limit and the recoil limit. At each 'limit' a
new approach to cooling must be adopted. At present there appears to be no
fundamental lower limit to the temperatures which can be achieved. Section 3
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surveys methods for trapping ions and atoms. For neutral atoms we survey three
basic approaches: dissipative traps, conservative traps and magnetic traps.

(1a) Classical Electrodynamics

The electric field of an electromagnetic wave sets a charged particle oscillating.
The Lorentz interaction with the wave's magnetic field then pushes the charge
in the direction of wave propagation. Since the wave gives momentum to the
charge, it must itself have momentum. Relativistically, the presence of energy
and momentum in the energy-momentum 4-vector means that field energy in
some frame is momentum in another frame.

A recent experiment at the University of Queensland demonstrated the
transfer of field angular momentum to micron-sized particles (He et al. 1995).
The experiment was interesting because it was electromagnetic orbital angular
momentum rather than photon spin that was transferred (Allen et ale 1992).

The field's intensity I (W cm-2) is given by the modulus of the Poynting
vector P == c2 EoE X B. Using p == Elc2 to convert this to a momentum flux
gives the radiation pressure (N m-2):

R == cEoE x B, IRI == L]c . (1)

The major macroscopic application of this force may well turn out to be solar
sailing (Mallove and Matloff 1989). The solar flux at the Earth's orbit is about
1400 W m-2, corresponding to a pressure of 4·7 J1N m-2. Perfect reflection
doubles this pressure. Aluminium-coated mylar films a few microns thick have
densities of around 5 g m-2 giving a payload, free acceleration of around 2 mm s-2.
This is enough for interplanetary travel, taking about a year to reach Mars.

---~ High index Net force -----~ Low index ----~
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~
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~ ~ ~
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Fig. 1. Optical ray diagrams showing the origin of dispersive forces on transparent macroscopic
particles. The arrows represent light rays with thickness proportional to intensity. The
columns of arrows represent the light beam. The left- and right-hand circles respectively
represent particles with refractive index higher and lower than that of the surroundings. Since
the light has momentum and changes direction by refraction, momentum is transferred to the
particles. The net momentum transfer is determined by the most intense rays, closest to the
beam centre.

The most useful macroscopic light force today is the dispersive force used in
optical tweezers. An object with higher refractive index than its surroundings is
attracted towards high-field regions, while one with lower index is repelled. This
can be understood by considering the momentum changes of light rays refracted
through the particles, as shown in Fig. 1. In Section 1c we shall derive the
corresponding results for atoms. A field detuned above resonance, which induces a
refractive index n < 1, repels atoms from high-field regions, while a below-resonance
field, which induces a refractive index n > 1, attracts atoms (Loudon 1973).
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Fortunately most biological objects have a greater refractive index than water
and so can be stably manipulated with the waist of a laser beam. Ashkin
et al. (1987) showed that live viruses and bacteria could be manipulated with
microscope-based infrared optical tweezers. The list of biophysical applications
to date includes manipulation of single DNA molecules (Chu 1991) and of human
gametes (Tadir et al. 1991), cell micro-surgery (Steubing et al. 1991), and studies of
motor proteins (Ashkin et al. 1990) and mitotic chromosomes (Liang et al. 1991).

(1b) Dissipative Forces

Quantising the field with plane-wave spatial modes exp( ik . r) gives field quanta,
called photons, with momentum hl«. The dissipative, or scattering, force is then
particularly simple to understand. Each photon absorption gives a momentum
kick hk: to the absorber. Each subsequent spontaneous emission gives a kick
of the same magnitude but in a random direction, producing no average force.
However the resultant momentum fluctuations are what limit cooling, as we shall
see in Section 2a.

The dissipative force from a laser can slow a counter-propagating beam of
atoms. The changing Doppler shift as the atoms slow can be overcome by
chirping the laser frequency or by Zeeman-shifting the atomic transition frequency
with a spatially varying magnetic field. A slowed beam may be transversely
cooled by two-dimensional optical molasses. This consists of two lasers counter­
propagating transversely to the atomic beam and tuned below resonance-so-called
red detuning. Transverse motion Doppler-shifts the counter-propagating beam
towards resonance and the co-propagating beam away from resonance. Hence
more counter-propagating photons are absorbed and the atom slows. This process
is called Doppler cooling.

There is a limit to the temperature achievable by Doppler cooling-the so-called
Doppler limit,

fi1
kBTDop == 2' Doppler limit, (2)

where 1 is the transition linewidth or inverse lifetime. Note that here and
hereafter we use 'temperature' in a conventional sense to denote the mean energy
without implying thermal equilibrium. For the D line of Na, TDop ~ 240 JlK.
The Doppler limit is interesting because it depends only on the linewidth. The
molasses cools the atoms until their kinetic energy equals half the transition
energy uncertainty fi1 (Stenholm 1986). This is reasonable since the atoms are
inelastically scattering photons. Scattered photons will typically differ in energy
by the linewidth. The difference between the scattered photon energy and the
absorbed photon energy appears as the atomic kinetic energy. In Section 2a we
derive the Doppler limit by balancing the cooling rate with the heating rate due
to the spontaneous emission recoils.

(1c) Conservative Forces and Semiclassical Dressed States

Forces arise when there is a spatial gradient in the expectation value of a
system's energy, i.e, its Hamiltonian. A two-level atom interacting with the
electric field E (r, t) has the Hamiltonian (Allen and Eberly 1987)
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H == n(wA/2)(le) (el - Ig)(gl) - d- E(r, t),

c. Savage

(3)

where Ig) and Ie) are the ground and excited atomic states respectively, t~wA is
the transition energy, and d its electric dipole moment operator. Assuming no
spatial dependence of WA, the Heisenberg equation of motion for the momentum
p is

dp 1
F == dt == in [p,H] == -\lH == \l(d. E(r, t)), (4)

since the time derivative of the momentum is the force F. Forces arising from a
gradient in the Hamiltonian are conservative, and there is no energy dissipation
as in Doppler cooling. The force described by equation (4) is known as the
gradient force or dipole force.

The eigenstates of the Hamiltonian, equation (3), are called dressed states
(Cohen-Tannoudji et al. 1992). The energy expectation value is the sum over
the dressed states of the product of their energies and populations. Dipole forces
arise due to gradients in the dressed state energies, or due to dressed state
population gradients, or both.

In this paper we only consider the semiclassical case in which E(r, t) ==
£(r) exp( -iwt) + £*(r) exp(iwt) is a classical field. Ignoring the kinetic energy
and making the rotating wave approximation, the Hamiltonian becomes

HBe == n(wA/2)(le) (el - Ig) (gl)

- id (Ie)(gl£(r )e- i w L t
- Ig) (el£* (r )ei WL t) , (5)

where WL is the field frequency and d is the dipole matrix element related to the
transition linewidth by '1 == 4wld2 /3t~c3. We eliminate the time dependence of
the field by working in the interaction picture with Hi, == t~(wL/2)(le)(el-lg)(gl)

and with the interaction Hamiltonian

HSC,I == -n(~/2)(le)(el-lg)(gl)

- id(le)(gl£(r) -Ig)(el£*(r)), (6)

where we have defined the field-atom detuning as ~ == WL - wA. The semiclassical
dressed states are the eigenstates of this Hamiltonian. They and their energies
are

11) == cos(O)lg) + i sin(O)le),

12) == sin( 0)Ig) - i cos(0)Ie),

n
E 1 == --no

2 '

n
E 2 == +-n·

2 '

(7)

(8)

cos(2B) == -~/n, sin(20) == n/n. (9)
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We have introduced the Rabi frequency and the generalised Rabi frequency

o == 2dl£l/fi, Rabi frequency,

R == V~2 + 0 2 , generalised Rabi frequency.

(10)

(11)

The difference between the generalised Rabi frequency and the detuning is referred
to as the light shift. It is the shift in the transition frequency due to interaction
with the light field.

Consider a ground-state atom slowly moving into a laser beam. The adiabatic
theorem (Messiah 1966) implies that it remains in the Hamiltonian eigenstate
continuously connected to the zero-field ground state. Which dressed state this
is depends on the field detuning:

~ > 0 => cos 2(} == -1 => cos (} == 0 => 12) == Ig) ;

~ < 0 => cos 2{} == 1 => cos (} == 1 => 11) == Ig) .

(12)

(13)

Consequently the Hamiltonian expectation value is just the eigenvalue ±fiR/2.
In the limit of detuning ~ large compared to the Rabi frequency 0, we have

(H) ~ ±~n ~ ±~Itll (1 + ~ (~) 2) . (14)

For constant detuning only the second term contributes to the gradient,
corresponding to an effective potential

V(r) = 1.1iD.
2

4~·
(15)

This is the mechanical potential produced by intensity gradients of a far-detuned
field. It has the same sign as ~ == WL - WA so for ~ > 0, blue detuning, it rises
in high-intensity regions from which atoms are therefore repelled. Otherwise, for
~ < 0, red detuning, atoms are attracted to high-intensity regions.

This far-detuned potential has a simple interpretation in terms of the bare
atomic states. The excited-state population P; ~ 8/2 is given by equation (19),
and the atom is excited by absorbing photons with energy fi~ greater than
that of the excited atom. The energy excess Pefi~ is exactly the potential,
equation (15); the energy excess appears as mechanical potential energy.

The red-detuned dipole force can be used to construct an atom trap called
the far off-resonance trap or FORT. It is essentially optical tweezers for atoms.
A FORT trap has been demonstrated to operate at 65 nm detuning, confining
Rb atoms at O·4 mK (Miller et ale 1993).

Since it is non-dissipative, the dipole force is most suitable for constructing
atom optics devices which preserve quantum coherence. This is a requirement for
atom interferometry. Proposed atom waveguides constructed from hollow optical
fibres utilise the dipole force to repel the atoms from the fibre walls (Marksteiner
et ale 1994).
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(1d) A Sense of Scale
Let's get an idea of the scale of the forces, masses, accelerations and so on that

are typical of atom optics. For concreteness we consider a sodium atom which has
a mass of M == 23 au == 3·8 X 10-26 kg. The yellow D-line transition is 3S1/2 ~
3P3/2, with wavelength 589·0 nm and lifetime 16·4 ns (Adams et ale 1994a). A
saturated sodium atom has 50% probability of being excited, so on average it
absorbs and emits one photon every 33 ns or 3 x 107 photons s-l. The impulse from
the absorbed photon momenta is I == (3 x 107)nk == 3·4 X 10-20 (kg m s-l) s-l.
The corresponding acceleration of the atom is I IM ~ 106 m s-1 ~ 105 g. At this
acceleration a 500 m s-l atom is brought to rest in half a millisecond over about
13 cm.

The Doppler limit temperature, equation (2), of 240 ILK corresponds to a
thermal velocity

Jh"( = 30 em s-1 .
Vd == 4M (16)

By comparison, at a temperature of 300 K the average thermal speed in a
Maxwellian distribution is y'8kB T I1rM ~ 530 ms-1.

The recoil speed from a photon emission or absorption is

v _ lik
r - M = 3 ems-1

. (17)

A thermal speed of 3 cm s"! corresponds to a temperature of about 1 ILK. This
recoil limit speed will turn out to be the lower limit to speeds attainable by
cooling mechanisms for which the cold atoms interact with light. Since p == hiA
for both matter and light, the corresponding atomic de Broglie wavelength is,
by momentum conservation, just that of the photon: AdB == Alight == 589 nm.
The corresponding kinetic energy is M v; 12 == 1· 7 X 10-29 J. This is nearly 10
orders of magnitude smaller than the energy of a photon, Iu» == 3·4 x 10-19 J.
It corresponds to a detuning of about ~ == 1· 7 X 10-29In == 1· 6 X 105 rad s-l.

2. Cooling

A great variety of cooling methods have been demonstrated (Metcalf and van
der Straten 1994). They can be classified with respect to two limits representing
the lowest temperatures attainable with the particular method, the Doppler limit
and the recoil limit:

TDop = h
k"

Doppler limit,
2 B

(nk)2
Trecoil = 2Mk

B
' recoil limit. (18)

For Na these are respectively 240 J1K and 1· 2 ILK. Cooling using Doppler tuning
of an atomic transition is Doppler-limited due to heating by the scattered photon
recoils. Sub-Doppler cooling utilises the multi-level nature of atoms to approach
the recoil limit. It is limited by the fact that the coldest atoms have scattered a last
photon and hence have at least the photon recoil energy. Sub-recoil cooling requires
passive velocity groups for the atoms to accumulate in without scattering photons.
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(2a) Doppler Cooling

Doppler cooling was introduced in Section lb. In this section the Doppler
cooling limit is derived by balancing the viscous cooling with the recoil heating. We
assume a two-level atom with velocity v and transition frequency WA interacting
with 1D optical molasses at frequency WL. The optical molasses consists of two
counter-propagating laser beams: beam 1 with wavevector k and beam 2 with
wavevector -k. The field-atom detuning is denoted by ~ = WL - WA. From the
semiclassical Bloch equations (Allen and Eberly 1987) the steady-state excited
state population is

81 __ ,
Pe=21+8

0.2 / 2
S=---....:...----

- (~-k.v)2+,2/4'
(19)

where S is the saturation parameter, expressed in terms of the Rabi frequency
0., equation (10), for the atom-field interaction.

We now assume that the transition is sufficiently far from saturation 8 « 1
that the absorption from each beam is independent. Then the force on the atom
is the sum of the momentum absorption rate from each beam

F ~ nk,Pe,l - nk,Pe,2

~ nk,~(81 - 82), si « 1. (20)

For the small velocities at the Doppler cooling limit we can expand 8 in
v = Ik. vl/lkl to get

(
2~kV)

81/2 ~ 80 1 ± tl2 + ,..'? /4 ' (21)

where So is the zero-velocity saturation parameter. Substituting these expansions
into the force equation (20) gives

2~k v.
F ~ hk')'80 tl2 +')'2/4 (22)

For red detuning, ~ < 0, this is a viscous-type damping force proportional to
the atomic velocity. The associated kinetic energy cooling rate is

2tlk (v2 ) ,d(E
coo1

) = (Fv) = hk')'80 tl2 + ,),2/4
dt

(23)

where the angle brackets denote an average over the atomic ensemble. We next
consider the photon recoil heating of the atom.

Each spontaneous emission kicks the atom in a random direction with momentum
magnitude hk; producing a random walk in momentum space. After N emissions
the mean squared momentum magnitude is (p2) = N (nk)2. The total momentum
diffusion rate is four times this. One factor of 2 comes from spontaneous emission
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from the two beams. The other factor of 2 comes from the absorption, which is
also a random process (Cohen-Tannoudji 1992). Using the spontaneous emission
rate 180/2, we then have the following expression for the kinetic energy heating
rate:

d(Eheat ) _ 4d( (p2) /2M) ~ 4-1- 1 80 (nk)2, 80« 1 ,
dt - cit 2M 2

(24)

where we have used the zero-velocity saturation parameter, as our goal is to find
the temperature minimum. At equilibrium the sum of this heating rate and the
cooling rate, equation (23), is zero:

d(Ecool) d(Eheat ) - 0
dt + dt - =>

n
- ~(v2)+ M =o=} (25)

('!Mv2 ) = _!!:.,6,2 +"'-//4 = _ try (2~ + l).
2 2 2~ 8 1 2~

(26)

The last bracketed expression has a minimum of -2 at 2~/1 == -1 => ~ == -21,
so this detuning gives the minimum mean kinetic energy. This defines the Doppler
limit energy kBTDop/2, so

n1
TDop = 2k

B
'

a result explained heuristically at the end of Section 1b.

(27)

(2b) Sisyphus Cooling

The Doppler cooling discussed in the previous section only works for light
intensities below saturation. Above saturation stimulated processes become
important and cooling only occurs for blue detuning! This blue cooling is stronger
than Doppler cooling but does not achieve such low temperatures (Aspect et al.
1986). This is because although the damping is stronger so are the fluctuations.

It is an example of a more general mechanism called Sisyphus cooling, after
the mythological Sisyphus, king of Corinth, who was doomed by Zeus to roll a
rock uphill forever. In a standing wave the Rabi frequency n varies with the
spatial mode function from zero at the nodes (zero field) to a maximum at the
anti-nodes. Hence so does the energy splitting of the semiclassical dressed states
t~n, equation (11). Cooling occurs because, as we shall see, spontaneous emission
is most likely to occur from energy maxima into energy minima. The atom then
moves up the energy hill and is again most likely to emit at the maximum. On
average, kinetic energy is converted to atom-field interaction energy which is lost
by spontaneous emission.

A detailed explanation using dressed atomic states with a quantised field
has been given by Dalibard and Cohen-Tannoudji (1985). By contrast, we use
semiclassical dressed states, which were introduced in Section Lc. Any dressed
state with an excited state component can spontaneously emit into any dressed
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state with a ground state component. In general a dressed state can spontaneously
emit into itself as well as into the other dressed state.

1Intensity / . 1anti-noc e

/ -, node
0

IE2

Ig) + c Ie)

/Ig)

1 Ie)

~ fEl

Ie)+ c lg)

Fig. 2. Mechanism for blue Sisyphus cooling. The top curve is the
standing-wave field intensity as a function of position. The lower two
curves are the energies E; and E2 of the dressed states 11) and 12).
The vertical arrows denote spontaneous emissions, which are shown
at their most probable locations. The diagonal arrows denote the
atomic motion and e is a number «1.

We now explain blue Sisyphus cooling with reference to Fig. 2. In a
standing-wave field the electric field is zero at the nodes and is a maximum at
the anti-nodes. Hence the generalised Rabi frequency, equation (11), varies from
ILlI at the nodes to VLl2 + 0 2 at the anti-nodes. Here 12) is the higher-energy
state and for blue detuning, Ll > 0, it equals the ground state Ig) at a node.
It increases in energy and mixes in the excited state Ie) as the field increases.
Here 11) is the lower energy state and for blue detuning it equals Ie) at the
nodes; it decreases in energy and mixes in the ground state with increasing field.
Consequently at anti-nodes 12) has its maximum energy and 11) its minimum
energy, while at nodes the opposite holds. But 12) is most likely to spontaneously
emit at anti-nodes since there it has the largest excited state component. It can
decay either to itself, in which case only the photon energy fiWL is lost, or to
11), in which case the larger energy fi( WL + R) is lost. (Recall that the dressed
states are defined in a picture rotating with frequency WL, so fiWL is the energy
zero.) In contrast, the dressed state 11) is most likely to spontaneously emit at
nodes, where it is exactly the bare excited state, Ie). At a node it has no ground
state component and hence can only decay to 12), losing energy fi(WL - Ll). Since
this is smaller than fi(WL + R) more energy than fiWL is lost on average per
spontaneous emission. This energy cannot be provided by the photons absorbed
from the field, which have energy fiWL. It comes from kinetic energy and hence
cools the atom.

The transfer of kinetic energy to atom-field interaction energy is the Sisyphus
mechanism. An atom which has just spontaneously emitted is most likely to be
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in the energy minimum for its dressed state. Any motion increases the atom-field
interaction energy until it is most likely to spontaneously emit again at the top
of the energy hill. Thus kinetic energy is transformed into interaction energy
which is dissipated by spontaneous emission.

Consider a sequence of spontaneous emissions which start and end in the
same dressed state while passing through the other dressed state. The most
likely starting point is at an energy maximum and the most likely end point an
energy minimum. Hence the total process of (at least) two spontaneous emissions
dissipates the energy difference between the maximum and minimum, which is
just the light shift. Sequences which increase the energy are possible, but less
likely.

The limiting temperature is determined by the heating due to spontaneous
emissions. Emission from 12) is most likely to leave the atom in 12) with no
cooling effect, but recoil heating still occurs.

(2c) Spatially Dependent Optical Pumping

To cool below the Doppler limit, equation (27), requires multi-level atoms.
Since atoms are multi-level and since theorists like two-level atoms it is perhaps
not surprising that sub-Doppler cooling was discovered experimentally (Lett et
al. 1988). A common feature of the various sub-Doppler, but super-recoil, cooling
schemes is optical pumping.

In -3/2 -112 1/2 3/2

cr-

ill -112 1/2

Fig. 3. Optical pumping in a J == ! f-+ J == ~ transition. States are
labelled by their magnetic quantum number, m. The thick arrowed
lines represent transitions induced by either a+ or a- polarised light.
The thin single arrows represent spontaneous emission.

Optical pumping is the transfer of population between atomic magnetic sub­
levels. For definiteness we consider a total angular momentum J == ~ f-7 J ~ ~

transition, see Fig. 3. Circularly polarised light is either a+ or a- with photon
angular momentum +n or -n respectively. An atom in the m == -~ ground state
sub-level can be excited into the m == +~ excited state sub-level by absorbing
a a+ photon, and into the m == - ~ excited state sub-level by absorbing a a­
photon. Similarly the m == +~ ground sub-level is excited into either the m == +~
or m == -~ excited sub-levels by absorbing a a+ or a- photon respectively.
Absorption of a+ polarised light increases the magnetic quantum number m
while absorption of a- polarised light decreases it. The net result of cycles
of absorption and spontaneous emission in circularly polarised light is optical
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pumping: the preferential population of ground sub-levels with extremal m; in
this case either the m == ~ or m == -~ sub-level. In the following we are only
concerned with weak fields so that the excited state population is negligible.

Spatially dependent optical pumping occurs when the pumped sub-level depends
on position. In 3D this is unavoidable and is usually achieved with three pairs
of counter-propagating laser beams. Because the atoms are moving, the state of
the atom lags behind the local steady state. Cooling is achieved when this lag
is used to remove energy from the atoms as they are optically pumped towards
local equilibrium. Since polarisation gradient cooling is one of the more effective
of such mechanisms, we consider it next.

(2d) Polarisation Gradient Cooling

Polarisation gradient cooling uses counter-propagating beams with perpendicular
linear polarisations to achieve spatially dependent optical pumping, see Fig. 4.
This is known as the 'lin perp lin' configuration. Atoms lose kinetic energy by
a Sisyphus mechanism in which the hills are due to light shifts. 3D lin .-L lin
cooling to within a few recoil velocities, about 25 ILK for Na, has been achieved
(Cohen-Tannoudji and Phillips 1990).

-~~- -~~-

~ ~ ~~

Energy

light 1
shift

ill =+112

ill =-1/2

I I I I I •
IIIIl.....-

.. laser I p

lin

o

0'+

IJ8

lin'

IJ4

0'-

3IJ8

lin

')J2
..... >

lase

Fig. 4. Mechanism for polarisation gradient lin .1 lin cooling. A J = ~ ground level, as
shown in Fig. 3, is assumed. The top atomic energy level diagrams indicate the local direction
of optical pumping. The curves show the energies of the dressed ground sub-levels for
red-detuned light. The pairs of vertical arrows show optical pumping at the positions where
it is most probable. The horizontal axis shows how the polarisation of the field varies over
half a wavelength due to the perpendicularly polarised counter-propagating lasers.

The polarisation varies with a period of A/2 from linear to ()+, to the orthogonal
linear, to ar , and back to linear, see Fig. 4. The linear polarisation is at angle
1T/4 to the input linear polarisations. This can be seen from the expression for
the electric field in the lin .-L lin configuration,

E == x sin(kz - wt) + y sin(kz + wt) , (28)
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where. x and yare unit vectors in the x and y directions. Using k = 27r/ A and
some trigonometric identities gives

E = (y - x) coS(27rZ/A) sin(wt) + (x + y) sin(27rz/A) cos(wt). (29)

At Z = 0 the field is linearly polarised in the y - x direction. At Z = A/8,
sin(27rz/A) = coS(27rZ/A) = 1/J2" and the magnitude of the field is constant in
time and hence it is circularly polarised. At Z = A/4, sin(27rz/A) = 1 and the field
is linearly polarised in the x+y direction. At Z = 3A/8, sin(27rz/A) = 1/J2" and
coS(27rZ/A) = -1/J2", and the field is again circularly polarised, but this time
with the opposite rotation sense. This polarisation gradient produces spatially
dependent optical pumping.

Lin .L lin cooling uses light shifting of the ground sub-levels. Light shifting was
discussed for two-level transitions in Section 1c. The total shift of the m = ±~

sub-levels is the sum of the shifts due to each of the two transitions to which
they are coupled by the lasers. The proportion of 0'- and 0'+ varies spatially,
and since each transition has a different coupling strength, as determined by the
Clebsch-Gordon coefficients, the light shifts of the ground sub-levels depend on
position.

These shifts are negative for red detuning and for the m = -~ sub-level are
maximum in magnitude where the field is 0'- polarised, and minimum where it
is 0'+. The opposite is true for the m = +~ sub-level, Fig. 4. At the minimum
light shift positions, optical pumping into the other sub-level is strongest. The
result is that atoms move uphill until they are optically pumped into the other
sub-level.

This pumping takes energy out of the atom provided that the atomic state lags
the local equilibrium by somewhat less than the optical pumping time T p . This is
the average time for optical pumping to transfer population between the ground
sub-levels and is proportional to the intensity. Hence lin .L lin cooling works best
for velocities Videal such that the atom travels A/4 in Tp , Videal ~ A/(4Tp ) . Atoms
which are moving too fast do not respond to the local pumping and hence do
not lose energy. Atoms which are moving too slowly are pumped to the other
sub-level before reaching the top of the hill and hence lose less energy.

Polarisation gradient cooling does not achieve the recoil limit. Cooling closer
to the recoil limit can be achieved after trapping the atoms in an optical
lattice. Adiabatically expanding the lattice cools the atoms. Reduction of the
Cs temperature from the 3 J1K achievable with polarisation gradient cooling to
0·7 J1K has been demonstrated with adiabatic cooling (Kastberg et al. 1995).
This is short of the Cs recoil limit of 0 ·13 J1K.

Velocity-selective Coherent Population Trapping (VSCPT)

For cooling below the recoil limit the problem is to avoid having the recoil
from the last photon emitted determine the temperature. There are two
successful approaches: momentum diffusion into a passive zero-velocity group, and
evaporation of the hottest atoms, avoiding photons altogether. Velocity-selective
coherent population trapping (VSCPT) and Raman cooling use the first approach.

In this section we discuss a simple model of 1D VSCPT based on a three-level
lambda transition. More detailed discussions and the extension to 3D can be
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found in the 1990 Les Houches lectures of Cohen-Tannoudji (1992). The 2D
VSCPT cooling of metastable He to 250 nK, a factor of-If below the recoil limit,
was reported in 1994 (Lawall et ale 1994).

.........
~

12) r r

~

........

11)

Fig. 5. Schematic diagram of the
atomic levels, lasers and transitions
used in VSCPT.

(30)

We assume that the ground levels are degenerate and that the two counter­
propagating lasers have the same frequency, and opposite circular polarisations,
see Fig. 5. The interaction picture Hamiltonian is

2

HVSCPT = :M -n~13)(31+ d£[e i k Z I3)(11+ e-ikz I3)(21+ h.c.] ,

where for simplicity we have assumed that the two transitions have the same
dipole moment, d. Note that the plane-wave spatial dependence of the mode in
the direction of propagation z has been made explicit. A set of states closed
under this Hamiltonian is {INC,p), IC,p), 13,p)}. The first two states are defined
by

INC,p) == fi.(ll,P -nk) - 12,p + nk)),

IC,p) == fi.(ll,P - nk) + 12,p + nk)).

(31)

(32)

(33)

The 'NC' stands for non-coupling and the 'C' for coupling. The interesting
thing is the action of the Hamiltonian equation (32) on INC,p). Since exp(ikz)
generates a momentum-space displacement of the momentum eigenstate Ip) to
Ip+ nk), then

fi.{
(p -nk)2 (p + nk)2 }

HVSCPTINC,p) == 2" 11,p -nk) - 12,p+ nk)
2JvI 2M

=={L (nk)2}INC )_nkP
IC ).

2M + 2M ,p M ,p

For p == 0 INC, p) is an eigenstate of the kinetic energy and has no coupling
to any other state. This is called a dark state because it does not interact
with the field. VSCPT works by accumulating atoms in the non-coupling states
INC,p ~ 0). The non-coupling states are populated via momentum diffusion due
to spontaneous emission from the excited state. The coupling amplitude out of
them into IC, p) states is proportional to p and hence their lifetime increases as
their momentum p decreases.
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In principle there is no minimum temperature for VSCPT. The range of
populated non-coupling states near p = 0 decreases with time as they are
pumped out via the coupling state. This is because the momentum diffusion
into a particular momentum group is independent of its momentum, while the
INC,p) ~ IC,p) coupling amplitude is proportional to p, and hence vanishes as
p~O.

The dark state INC, p = 0) is a quantum mechanical superposition of the atom
moving to the left and to the right with the recoil momentum hle, In the 2D
case the corresponding dark state is a superposition of four atomic momentum
states. These states were observed in a Paris experiment (Lawall et al. 1994).
To confirm the superposition, rather than an incoherent mixture, would require
interferometry, which remains to be done.

(21) Raman Cooling

Like VSCPT, Raman cooling works by isolating the atoms near zero velocity
from the cooling fields. However, there is no dark state in Raman cooling; rather
the extremely narrow linewidths possible for Raman transitions enable tuning of
the Raman pulses so that they do not affect the zero-velocity group.

Because the energy difference between the levels in a Raman transition can
be very small, they can have narrow linewidths. This can be used to select
correspondingly narrow velocity groups, and push them around. Kasevich and
Chu (1992) used this method to push atoms towards zero velocity and achieved
100 nK for Na in 1D, which is 10 times below recoil. In 2D and 3D they did not
quite get to recoil although they beat polarisation gradient cooling by a factor
of nearly 20 (Davidson et al. 1994).

Raman cooling uses a sequence of Raman pulses from counter-propagating
lasers to push atoms towards zero velocity. Each Raman transition changes the
atomic velocity by 2fik. The pulses are designed so that zero-velocity atoms are
unaffected, and the accuracy with which this can be achieved is one of the limits
to the cooling. Since many Raman cycles are needed for cooling, the atoms
must be repumped to their original state. The zero-velocity state is populated
randomly by atoms which have zero velocity after repumping.

(2g) Evaporative Cooling

Evaporative cooling has achieved the lowest 3D temperatures to date, 170 nK
for Rb (Anderson et al. 1995), and 100 nK for Li (Bradley et ·al. 1995). These
temperatures should be compared to the recoil limit temperatures, equation (18),
of Trecoil = 230 nK for Rb and Trecoil = 5·5 ILK for Li. This is what made
Bose-Einstein condensation of these atoms possible. The cooling is achieved
by bleeding off the highest-energy atoms from the trap. Thermalisation of
the remaining atoms by elastic collisions produces cooling. After a subsequent
adiabatic expansion, Anderson et al. (1995) reported a temperature of 20 nK.

The trap is magnetic, see Section 3d, so that no optical heating occurs. Only
atoms in magnetic states such that their magnetic dipole is attracted to the trap
centre are trapped. If the magnetic state is changed the atoms are no longer
trapped and they escape. Such spin flips are induced by RF fields tuned to a
Zeeman splitting frequency. Since this frequency depends on the local magnetic
field strength, spin flips can be selectively induced in the outer parts of the traps.
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These are precisely the regions occupied by the high-energy atoms. Progressive
cooling is achieved by ramping down the RF frequency. This moves the resonance
region towards the centre of the trap, where fields are lowest, and allows colder
atoms to evaporate.

3. Trapping

The optical Earnshaw theorem states that atoms for which the dissipative
force (see Section 1b), is proportional to the intensity cannot be trapped by
static configurations of laser beams (Ashkin and Gordon 1983). It is true for the
same reason that the classical Earnshaw theorem is true, see Section 3c. In a
region of space without sources or sinks for light there is as much energy flowing
in as out, and the dissipative force is in the same direction as the energy flow.

Fortunately the conditions of the theorem can be violated by adding external
fields (Pritchard et ale 1986). In the case of the highly successful magneto-optical
trap this is an inhomogeneous magnetic field which Zeeman-shifts the transition
so that the force is not just proportional to the local intensity.

(3a) Optical Molasses

Optical molasses, discussed in Section 2a, does not trap atoms. However,
because the atomic motion is diffusive rather than ballistic, the atoms can
take seconds to travel centimetres (Chu et al. 1985). The dynamics is that
of Einstein-Langevin Brownian motion (Gardiner 1985). Using the damping
constant of equation (22),

2bt.k
a == nkys

0 ,6, 2 +"?/4' (34)

we have the Langevin equation for the 1D position x of a Doppler-cooled atom,

d2x
M-2 == oov N:

dt
(35)

where we have introduced the zero mean noise term N. An equation for (x2 )

may be found after multiplying equation (35) by x and using (!vIv2 /2) == kBT/2,

d(x
2

) _ 2kBT + C exp( -atjM) ,---
dt a

(36)

where C is an integration constant. For long times the exponential on the
right-hand side can be ignored and then

(x2 ) _ (x5) = 2kBT t .
a

(37)

For Na the root mean squared displacement over 1 s is about a few centimetres
for T == 100 ILK.
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Fig. 6. The magneto-optical trap (MOT). The left part of the diagram schematically shows
Zeeman-shifting of a J == 0 f---+ J == 1 transition associated with positive and negative magnetic
fields. The right part schematically shows the magnetic field and laser configuration in a
MOT. The lasers are labelled by their circular polarisation, either a+ or a>, The resultant
net forces on atoms at two locations are shown.

(3b) Magneto-optical Traps (MOTs)

Magneto-optical traps are now quite common (Wieman et ale 1995). They
are also known as Zeeman-optical traps, or ZOTs. They use an inhomogeneous
magnetic field to produce a position-dependent scattering force. The magnetic
field Zeeman-shifts transitions towards or away from resonance with red-detuned,
counter-propagating, oppositely circularly polarised laser beams. Consider a
J == 0 ~ J == 1 system. The two transitions coupling to circularly polarised light
are shifted by positive and negative magnetic fields as shown in Fig. 6. The
magnetic field generated by anti-Helmholtz coils is also shown in Fig. 6. For
an atom displaced towards the (J"- polarised beam, the magnetic field becomes
more positive and it Zeeman-shifts the (J"- transition into resonance and the
(J"+ transition away from resonance. Hence the scattering from the (J"- beam
dominates and the atom is pushed back towards the centre of the trap. The
magnetic field and laser polarisations are such that atoms are pushed back to
the centre after displacement in any direction.

The lVIOT lasers cool the atoms too. An atom stopping at its turning point is
accelerated back towards the centre. However, once the Doppler shift kv exceeds
the linewidth 1, it is no longer accelerated. Hence the maximum rebound speed
is about 1/k, corresponding to a temperature of about M (1/k)2/ kB (Metcalf and
van der Straten 1994). This is much higher than the Doppler limit, equation (27).
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(3c) Ion Traps

Ion traps have certain advantages over optical traps (Blatt 1992). Most
importantly, the trapping does not rely on interaction with light. The potentially
extremely small dissipation in ion traps has allowed the demonstration of quantum
logic gates (Monroe et al. 1995). They are one of the more promising ways of
realising quantum computers (Cirac and Zoller 1995).

Since the divergence of the electric field in free space is zero, any region must
have field lines both going in and coming out. Equivalently, there can be no
maxima or minima of the electrostatic potential in free space. This is the content
of Earnshaw's electrostatic theorem. Consequently an ion cannot be trapped by
electrostatic fields alone. This problem has been solved in two ways: by adding
a magnetic field, the Penning trap, or by oscillating the electric field, the Paul
trap. A quadrupole potential

v == Va(r2
- 2z 2

) , (38)

where r is the radial coordinate, is produced by the ring and endcap electrode
configuration shown in Fig. 7.

L>

Fig. 7. Ion trap electrodes. Only half the ring electrode is shown.
The z direction is vertical and the radial direction is horizontal.

The Penning trap achieves radial confinement with an axial magnetic field in
the z direction. This inhibits radial motion by converting it to circular cyclotron
motion about the magnetic field lines. The overall motion of the ion is the
combination of a slow magnetron rotation (~10 kHz) about the z axis and the
fast cyclotron motion (~1000 kHz) about the local magnetic field lines. The
electrostatic field provides confinement in the z direction. The axial oscillation
frequency lies between these two.

The Paul trap adds RF time dependence to the potential equation (38) of
the form Va == VDC+ VAC cos cot, This allows a dynamic stability. Again the ion
motion has two components: slow, approximately harmonic motion in the axial
and radialdirections, and rapid micromotion oscillation about the local position
at the driving frequency (~10 MHz).
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(3d) Magnetic Traps

Magnetic traps confine atoms by exerting a force on the atomic magnetic dipole
moment. Many different trap configurations have been proposed (Bergeman et
ale 1987). Since they avoid laser heating, and the Coulomb repulsion of ions,
magnetic traps have been used to Bose-Einstein condense atoms.

The force is the gradient of the dipole energy -~.B, where ~ is the dipole
moment of the magnetic sub-level of the atom and B is the magnetic field.
For sufficiently slow atomic motion the magnetic sub-level adiabatically follows
the changing direction of the magnetic field as it moves around the trap. For
example, an atom in the local ground state remains in the local ground state.
Consequently its magnetic moment changes. Atoms in magnetic sub-levels whose
Zeeman energy - ~ . B decreases with magnetic field strength are forced towards
the field minimum.

Anderson et ale (1995) used a variation on the simple quadrupole trap formed
with anti-Helmholtz coils (Midgall et ale 1985), called the time-averaged orbiting
potential, or TOP, trap. This overcomes a problem with the simple quadrupole
trap caused by its minimum being zero magnetic field. Close to B == 0 the Zeeman
levels are nearly degenerate and the atomic state may no longer adiabatically
follow the magnetic field. Non-adiabatic transitions to non-trapped magnetic
sublevels can occur, leading to trap loss.

This problem is particularly bad in quadrupole traps because the field increases
linearly in all directions away from the minimum, so the field derivative is not
zero at zero field. The TOP trap adds an RF field which rotates the field zero
in a circle. The time-averaged field then has a non-zero, quadratic minimum
where the zero previously was. Atoms are still lost from the instantaneous zero,
but they are high-energy atoms with respect to the time-averaged potential and
hence contribute to evaporative cooling.

Bradley et ale (1995) used an arrangement of six permanent magnets to
produce a field with a non-zero minimum in which they reported Bose-Einstein
condensation of Li.

(3e) Gravitational Traps

Gravity is an important consideration for cold atoms. The energy gained by a
Na atom falling through 1 mm is about 4 x 10-28 J, or more than twenty times the
recoil energy. Gravity can be used to trap atoms in a trampoline configuration.
Ten bounces of about 3 mm height have been observed experimentally off a
parabolic evanescent wave reflector (Aminoff et ale 1993). This corresponds to a
trapping time of about O·1 s. This result can probably be substantially improved
by enhancing the evanescent field. Confinement times at least 50 times longer
have been obtained using two sheets of blue-detuned light to form a 'V' in which
atoms bounce (Davidson et ale 1995).

Other reflector shapes such as pyramids and cones have been analysed (Soding
et ale 1995; Dowling and Gea-Banacloche 1995). Recoil-limited Sisyphus cooling
mechanisms which utilise gravity can be incorporated. For example, if the
sub-level changes during the bounce, the average force on the way out can be
less than that on the way in (Ovchinnikov et ale 1995), leading to an inelastic,
cooling bounce.
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