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Abstract

We present a physical model that accounts for the motion of rapidly rotating curling rocks.
By rapidly rotating we mean that the rotational speed of the contact annulus of the rock
about the centre of mass is large compared with the translational speed of the centre of mass.
The principal features of the model are: (i) that the kinetic friction induces melting of the ice,
with the consequence that there exists a thin film of liquid water lying between the contact
annulus of the rock and the ice; (ii) that the curling rock drags some of the thin liquid
film around the rock as it rotates, with the consequence that the relative velocity between
the rock and the thin liquid film is significantly different to the relative velocity between
the rock and the underlying solid ice surface. Since it is the former relative velocity which
dictates the nature of the motion of the curling rock, our model predicts some interesting
differences between the motions of slowly versus rapidly rotating rocks. Of principal note is
that our model predicts, and observations confirm, that rapidly rotating curling rocks stop
moving translationally well before rotational motion ceases. This is in sharp contrast to the
usual case of slow rotation, where both rotational and translational motion cease at the same
instant. We have verified this and other predictions of our model by careful comparison with
the motion of actual curling rocks.

1. Introduction

The primary purpose of this paper is to present a physically plausible model
that accounts both qualitatively and quantitatively for the motion of rapidly
rotating curling rocks. This work is an extension of an earlier paper (Shegelski
et al . 1996) in which we presented a model that accounted for the observed
motion of slowly rotating curling rocks. We give here only a brief description of
those aspects of curling that the reader will need to know in order to appreciate
the physics addressed in this paper. More details are given in our previous paper
(Shegelski et al . 1996).

Curling rocks have a small contact area with the ice: the bottom of the rock
is hollowed and curved. Only a thin annulus of radius r ≈ 6 ·25 cm and width
∆r ≈ 3 to 5 mm makes contact with the ice. Moreover, the sheet of ice is not
flat. Instead, the surface of curling ice consists of many rounded protrusions with
accompanying hollows, and is referred to as ‘pebbled ice’. One consequence of
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the nature of the ice surface is that only a fraction of the annulus of the curling
rock makes contact with the ice. This results in higher pressure exerted on the
ice by the rock. The pressure results in melting of the ice as the rock passes
over it. (This melting is not due to the pressure directly , but instead occurs
because of the relative motion between the rock and the ice.)

We begin by explaining our hypotheses and assumptions. We then present the
equations that describe the motion of a rapidly rotating curling rock. By rapid
rotation we mean that the speed with which the contact annulus rotates about
the centre of mass is large compared with the translational speed of the centre of
mass. The equations are solved numerically to obtain the development in time
of the rock’s translational and rotational speeds. The results are compared with
observed motions.

2. Theory of the Motion of Rapidly Rotating Curling Rocks

Consider first the case of no translational motion. Once the rock has been
released and is rotating, the relative motion between the contact annulus and
the ice will induce kinetic melting of the ice. The thin liquid film will then be
subjected to the adhesive force between granite and water. Some of the liquid
will thus be accelerated and will tend to be drawn around the contact ring. As
the rock rotates, the liquid film beneath it will flow/rotate in the same sense
as the rock. The liquid closest to the rock will rotate the fastest, whereas the
liquid nearest the ice will exhibit essentially no rotation. The main consequence
of this is that the velocity of the rock relative to the liquid film immediately
beneath it will be considerably smaller than the velocity of the rock relative to
the underlying solid ice surface. Denoting the velocity of a small portion of the
contact annulus of the rock, relative to the solid ice surface, by ~vr/s ≡ ~vs, and
the velocity of the portion of the rock’s contact annulus relative to the adjacent
liquid film by ~vr/liq ≡ ~vliq, we have ~vr/liq = ε~vr/s, or ~vliq = ε~vs, with 0 < ε < 1.
(Note that ~vliq = ε~vs only when there is no translational motion; see below.)

Consider next the case where the rock rotates rapidly and moves arbitrarily
slowly translationally (i.e. rω0 > > v0, with v0 arbitrarily small). The ideas
of the above paragraph still apply, except we need to include the translational
motion.

Consider a given portion of the contact annulus of the rock. This portion will
have a velocity ~vs relative to the solid ice surface. Given that the rock is rotating
rapidly and moving translationally very slowly, the contact annulus will still tend
to drag some of the liquid film around it. We see that the adhesion of the liquid
film will be such that the liquid will be dragged around primarily tangent to
the contact annulus, and almost not at all perpendicular to the contact annulus.
The consequence of this is that the velocity ~vliq of the portion of the contact
annulus relative to the adjacent liquid film will be given by

~vliq = ε~vt + ~vr , (1)

where ~vt and ~vr are the tangential and radial components of the velocity relative
to the solid ice surface and 0 < ε < 1; see Fig. 1.
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Fig. 1. (a) The contributions ~vtrans and ~vrot (with vrot = rω) to the net velocity ~vs ≡ ~vs(θ),
relative to the ice, of a portion of the contact annulus located at an angle θ relative to
the x-axis: ~vs = ~vtrans + ~vrot. (b) The tangential and radial components of ~vs, ~vt and ~vr:
~vs = ~vt + ~vr. (c) The net velocity ~vliq ≡ ~vliq(θ), relative to the underlying thin liquid film:
~vliq = ε~vt + ~vr. The figures shown are for a portion located in the first quadrant; similar
figures are readily constructed for the other three quadrants. The angle θ in each case is from
the x-axis toward the y-axis. Note that the parallelogram in part (c) is the same as the one
in part (a). Also note that the force ∆~F exerted on the portion is in the direction opposite
to ~vliq, and that this direction is different to the direction opposite to ~vs.
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We emphasise that ~vliq and ~vs are not in the same direction! We have

~vs = ~vtrans + ~vrot , (2)

where ~vtrans is the translational velocity of the centre of mass relative to the ice,
and ~vrot is the ‘rotational’ velocity of a given portion of the contact annulus
relative to the centre of mass, as shown in Fig. 1. In order to convey ideas
as clearly as possible, we next consider the extreme limit ε → 0. In the ε → 0
limit, ~vliq would be radially outward for the front half of the rock, and radially
inward for the back half. In this extreme, there would be no torque to slow
the rotation of the rock, but there would still be a net force in the direction
opposite to the velocity of the centre of mass, and thus the rock would exhibit
decreasing translational motion until it came to a stop.

In the case that 0 < ε < 1 with ε small enough, we again have that the
direction of the force acting on a given portion of the contact annulus is opposite
in direction to ~vliq, and not ~vs, as is clear in Fig. 1. Consequently, the torque
will once again be diminished, and the rotational motion will continue for a
longer time than the translational motion.

We may regard equation (1) for ~vliq as a hypothesis. We will see that
the predictions of equation (1) are confirmed. In particular, that translational
motion ceases well before rotational motion for rapidly rotating curling rocks is
a prediction of equation (1) that is confirmed by observation of actual curling
rocks. Such agreements will then elevate our proposal to that of a model. We
emphasise that the alternative proposal that ~vliq = ε~vs has the consequence that
rotational and translational motion cease simultaneously, contrary to what is
observed, thus rendering this alternative proposal incorrect.

In summary, our model predicts that the motion of the rock over the ice gives
kinetic melting and a thin liquid film; the thin film is dragged around the rock
by adhesion, with the result that, in the case of rapid rotation, the forces on the
contact points are not opposite to the directions of motion of the contact points
relative to the solid ice surface. The consequence is that translational motion
ceases before rotational motion.

We tested this prediction by projecting curling rocks with large initial angular
speeds and small initial translational speeds. We observed that the duration of
translational motion was shorter than that of rotational motion, and found that
the larger the ratio rω0/v0, the greater the difference in the times taken for
rotation to stop and for translation to stop.

3. Equations of Motion of a Rapidly Rotating Curling Rock

We next give the equations which determine the motion of a rapidly rotating
curling rock. This is a straightforward exercise in determining the net force and
torque exerted on the rock by the thin film adjacent to the contact annulus.

We find that the lateral motion of the rock is, both theoretically and
observationally, negligible: a rapidly rotating curling rock exhibits essentially no
curl. Consequently, we focus on only the time-dependence of the translational
speed v(t) and rotational speed ω(t).

We choose coordinate axes as follows. The y-axis is in the direction of the
initial velocity of the rock, and the x-axis is perpendicular to the initial velocity.
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We break up the rock into four quadrants, and define θ as the angle from the
x-axis toward the y-axis with 0 ≤ θ ≤ π/2.

We take the friction exerted on a small section of the annulus of the rock to
be in the direction opposite to the velocity ~vliq(θ) of the point relative to the
adjacent liquid film. The magnitude of the friction is ∆F = µMg(∆θ/2π), where
µ is the coefficient of kinetic friction, M is the mass of the rock, and g is the
acceleration due to gravity. (In the case of a curling rock, the nonuniformity in
the normal force around the rock is negligible in our model; the nonuniformity
is a consequence of the acceleration due to friction.)

In order to simplify the treatment of rapid rotation, we take the magnitude
∆F of the friction to be approximately constant; i.e. we take µ to be constant.
In our previous work, we took the magnitude of the wet friction to increase
with velocity, in analogy with the increased drag on an object moving in a fluid.
In the case of rapid rotation, this is not the most appropriate approach. Our
reasoning is as follows.

We expect that both ε and µ will exhibit complicated time-dependencies.
This expectation will be supported upon comparing our model with detailed
observations (see Fig. 5 below). However, it is beyond the scope of this work
to obtain and employ a first-principles derivation of the time-dependent forms
of ε(t) and µ(t). Our focus will be, instead, to take ε and µ as effective values
which reproduce the principal features of the overall motion. We will see below
that this is indeed a fruitful approach, and we will comment on this later in the
paper.

By considering each quadrant of the rock separately, the following equations
for the net force and the net torque on the rock are readily obtained. We have

F = − 1
π
µMg

∫ π/2

0

dθ

[
cos
(
θ + tan−1

[
v sin θ

ε(rω + v cos θ)

])

− cos
(
θ − tan−1

[
v sin θ

ε(rω − v cos θ)

])]
. (3)

The equation for the torque is

τ = − 1
π
rµMg

∫ π/2

0

dθ

[
cos
(

tan−1

[
v sin θ

ε(rω + v cos θ)

])

+ cos
(

tan−1

[
v sin θ

ε(rω − v cos θ)

])]
. (4)

In these equations v(t) ≡ v ≡ vtrans is the instantaneous speed of the centre
of mass of the rock; ω(t) ≡ ω is the instantaneous angular speed of the rock;
and θ in each quadrant is measured from the x-axis toward the y-axis, as shown
in Fig. 1.
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Fig. 1 is presented to assist in understanding the above equations. Fig. 1a
shows the contributions ~vtrans and ~vrot (with vrot = rω) to the net velocity
~vs ≡ ~vs(θ), relative to the ice, of a portion of the contact annulus located at
angle θ; recall that ~vs = ~vtrans + ~vrot, and recall that the velocity of the centre
of mass of the rock relative to the ice is simply ~vtrans. Fig. 1b shows ~vs in
terms of its tangential component ~vt and its radial component ~vr: ~vs = ~vt + ~vr.
Note that vt = rω ± v cos θ and vr = v sin θ. Fig. 1c shows the velocity, ~vliq, of
the portion of the contact annulus at angle θ, relative to the underlying thin
liquid film: ~vliq = ε~vt + ~vr. Also shown in this figure is the force ∆~F exerted on
the portion of the contact annulus. We emphasise that ∆~F is in the direction
opposite to ~vliq, and that this is not the same as the direction opposite to ~vs, as
is manifest from Fig. 1.

Similar figures are readily constructed for the other three quadrants of the rock.
The equations above include the contributions from each of the four quadrants.

The velocity of the rock at any time t is readily obtained numerically from
the above equations along with ~F = Md~v/dt, and initial conditions:

v(t) = v0 +
∫ t

0

dt′a(t′) , (5)

where a = F/M is simply the acceleration of the centre of mass. The angular
speed ω is given by

ω(t) = ω0 +
∫ t

0

dt′α(t′) , (6)

where τ = 1
2MR2α determines the time development of the angular acceleration

α of the rock; M is the mass of the rock and R is the radius of the rock. Note
that the radius of the contact annulus is smaller than the radius of the rock:
r ≈ 6 ·25 cm; R ≈ 14 ·0 cm. (In our previous paper we used a different value for
r. With the value cited in this paper, the results and conclusions of our previous
work are unchanged.)

The coefficient of friction µ may be estimated by observation of rapidly rotating
rocks. This would leave ε as the single parameter in the problem. Alternatively,
if an estimate of ε is made, µ may be regarded as the single parameter.

Equations (3)–(6) are readily solved to leading order in either of the two
extremes εrω À v or rω ¿ v. [Equations (3) and (4) for the force and torque, as
given above, are for the case rω > v. The corresponding expressions for rω < v
are slightly different (see Shegelski et al . 1996); attention must be paid to these
differences when considering all ranges of the ratio rω/v.] The results for the
two limits are as follows:

For εrω À v:

v(t) = v0

(
1− t

t0

)φ1

, ω(t) = ω0

(
1− t

t0

)
, (7)
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with

t0 =
R2

2r2

rω0

µg
, φ1 =

R2

4εr2 ; (8)

for rω ¿ v:

v(t) = v0

(
1− t

t0

)
, ω(t) = ω0

(
1− t

t0

)φ2

, (9)

with

t0 =
v0

µgI0(ε)
, φ2 =

2r2I1(ε)
R2I0(ε)

, (10)

where

I0(ε) =
2
π

∫ π/2

0

dθ cos

(
tan−1

[
1
ε

tan θ

]
− θ
)

(11)

and

I1(ε) =
2ε
π

∫ π/2

0

dθ
sin θ

sin2 θ + ε2 cos2 θ
sin

(
tan−1

[
1
ε

tan θ

])

=
2ε
π

∫ π/2

0

dθ
sin2 θ[

sin2 θ + ε2 cos2 θ
] 3

2
. (12)

In these equations, t0 represents the approximate stopping time. It is very
important to recognise that these asymptotic forms are good approximations
provided either rω ¿ v or εrω À v, as the case may be, and that these
approximations may well break down as t→ t0.

The exact numerical results shown in the figures in the next section will be
compared to these asymptotic forms. We will see that the approximations are
very good, and break down only toward the end of the motion of the rock. We
comment on this more fully later.

4. Results

We have examined several numerical runs for a variety of choices of v0, ω0

and ε. In Figs 2–4 we show curves for v(t)/v0 and ω(t)/ω0 as functions of time
t for selected values of ε and the ratio s0 ≡ v0/rω0. We compare the (exact)
numerical results to the leading asymptotic analytical expressions whenever the
motion is in one of the two extremes εrω À v [part (a) in Figs 2 and 3] or
rω ¿ v (Fig. 4). In Figs 2–4, the values of ε are 0 ·1, 0 ·4 and 1 ·0. In part (a)
in Figs 2 and 3 we have s0 = 0 ·1, while in part (b) s0 = 1. In Fig. 4, we have
s0 = 20.
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The insight gained from Figs 2 and 3 will be used for comparison of the model
with observations of the motions of actual, rapidly rotating curling rocks. In all
these figures, the same value for µ was used; we chose µ = 0 ·0125 as this is a
typical value for curling rocks (Shegelski et al . 1996).

Fig. 2. Plots of ω(t)/ω0 (solid curve) and v(t)/v0 (dashed curve) as
functions of time t (in seconds) for ε = 0 ·1 for the following values of
the ratio s0 ≡ v0/rω0: (a) s0 = 0 ·1, with the initial speed v0 = 0 ·1
m s−1, and the initial angular speed ω0 = 16 s−1; (b) s0 = 1, with
v0 = 1 ms−1, and ω0 = 16 s−1. In both cases we have µ = 0 ·0125.
Note the agreement between the analytical curves (lighter lines) and
numerical curves (heavier lines) in part (a).

In these figures we see that the time trot taken for rotational motion to cease
exceeds the time ttrans taken for translational motion to cease, especially for
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Fig. 3. As in Fig. 2, but with ε = 0 ·4.

small ε (Fig. 2). For example, in Fig. 2a, with ε = 0 ·1 and s0 = 0 ·1, we have
ttrans < 7 s, while trot ≈ 20 ·5 s. We find that ttrans < trot in all cases where
0 < ε < 1. In such cases, the motion is purely rotational for ttrans < t < trot.
We also find that ttrans = trot for ε = 1.

In the ε = 1 case, we are dealing with motions of cylinders over surfaces for
which there is little or no melting, and thus the forces exerted on the contact areas
are opposite to the directions of motion relative to the surface. That ttrans = trot
for such cases is observed in numerous examples, such as rotation and sliding of
an overturned glass on a smooth surface, or for the motion of a hockey puck on
flat ice (Voyenli and Eriksen 1985, 1986). We also find ttrans ≈ trot when ε ≈ 1,
as is the case for curling rocks when rω0 < < v0 (slow rotation); this applies
for almost all shots made by competent, experienced curlers. We further note
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that the ratio ttrans/trot increases with increasing ε, and differs significantly from
unity only for somewhat small values of ε.

In Fig. 4, where s0 = 20 and ε = 1, we have the motion corresponding to a
slowly rotating curling shot, namely one where the rock travels down the ice and
stops after traveling a total distance of about 29 m. Since ε = 1, we see that
translational and rotational motion cease at the same instant (ttrans = trot). (We
point out that s0 ≈ 20 corresponds to a typical value for most slowly rotating
curling rock shots.)

Fig. 4. Plots of ω(t)/ω0 (solid curve) and v(t)/v0 (dashed curve)
as functions of time t (in seconds) for ε = 1 and s0 = 20; v0 = 2 ·7
m s−1, and ω0 = 2 ·16 s−1. The analytical curves (lighter lines) and
numerical curves (heavier lines) deviate just before motion ceases,
and are in excellent agreement otherwise.

Upon examining all of the curves in Figs. 2–4 collectively, some notable features
are evident. Perhaps most striking is the excellent agreement between the (exact)
numerical results and the approximate, asymptotic analytical forms. Consider
first part (a) in Figs 2 and 3. The analytical and numerical curves are almost
indistinguishable in Fig. 3a, and are very close even in Fig. 2a. Such good
agreement is surprising, especially upon realising that the value of the ‘small’
expansion parameter, v(t)/εrω(t) ≡ s(t)/ε has, initially, the value s0/ε = 1 in
Fig. 2a and s0/ε = 0 ·25 in Fig. 3a. Consider next Fig. 4. The analytical and
numerical curves are almost indistinguishable except for the final second or so of
the motion. The deviation between numerical and analytical curves near the end
of the motion is expected, because the expansion parameter, rω(t)/v(t), becomes
arbitrarily large as v(t)→ 0. Consequently, the numerical and analytical curves
must deviate just before motion ceases. The stopping time given by equation
(10) is a good approximation, but is not the same as that given by the numerical
curves.

Another interesting feature is that ω(t) is very nearly linear in t in part (a)
of Figs 2 and 3, while v(t) is very nearly linear in Fig. 4. If one generates the
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curves of Fig. 4 changing only the value of ε, one finds very little change, even
for ε as small as 0 ·1. Figs 2–4 collectively give a comprehensive picture of the
motion as it depends upon ε and µ.

Before comparing our model with observed motions, we note that it is important
to be aware of a key aspect of the cessation of translational motion. Recall that
curling ice is not perfectly flat: it is pebbled, having rounded protrusions and
accompanying valleys. Consequently, as the rock moves over the ice, its centre
of mass will experience small changes in its vertical position, and thus also in
its gravitational potential energy. There is a minimum translational speed which
the rock must have if the leading edge of the rock is to be able to rise a vertical
distance hpeb higher than the trailing edge. A simple calculation shows that
the minimum speed is given by vmin ≈ (ghpeb)

1
2 . For example, if hpeb ≈ 0 ·01

mm, then vmin ≈ 1 cm s−1. The value of vmin will depend on the nature of the
pebbled ice. In one observed motion we found vmin ≈ 4 cm s−1 (see Fig. 5 below).
Note that hpeb is the scale over which the vertical position of the rock’s centre
of mass varies, and is not the size of the pebbles themselves. The important
consequence of this minimum speed is that real curling rocks will stop somewhat
suddenly, albeit at a rather slow speed.

Fig. 5. Calculated curves for ω(t)/ω0 (solid curve) and v(t)/v0

(dashed curve) as functions of time t (in seconds) for comparison
with the actual motion of a rapidly rotating curling rock. Observed
values of ω(t)/ω0 (diamonds) and v(t)/v0 (squares) are also shown.
The observed values of v0 and ω0 are v0 = 0 ·22 m s−1 and ω0 = 11 ·8
s−1. Values for ε and µ were estimated from the observed stopping
time for rotational motion along with equations (7) and (8): we
estimated ε = 0 ·7 and µ = 0 ·012.

In Fig. 5 we compare our model with the observed motion of a rapidly
rotating curling rock. The shot for Fig. 5 was a short shot, traveling a total
distance ytot ≈ 1 ·6 m, with translational motion ceasing after about 10 s, while
rotational motion ensued for a total of about 16 s. The theoretical curves are
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in qualitative agreement with the observed data. There is good quantitative
agreement as well. The theoretical curves for both v(t)/v0 and ω(t)/ω0 agree
with the data for 0 < t <∼ ttrans ≈ 10 s. As anticipated, v(t) drops quickly to
zero once v(t) ≈ vmin; from Fig. 5, we estimate vmin ≈ 4 cm s−1. The observed
values of ω(t) are not linear for ttrans < t < trot. One possible explanation is that
µ for purely rotational motion could be smaller than for translational motion.
This is in accord with our expectation that ε and µ could have complicated
time-dependencies. There are of course other possibilities; further work will be
needed to examine this part of the motion.

From Fig. 5 we also see that ω(t) drops rapidly to zero once ω(t) ≈ ωmin; this
could have been predicted on the basis of the following physical argument. The
contact annulus must have some minimum speed to induce kinetic melting. Once
ω drops to a small enough value, the liquid film can no longer be sustained and
thus freezes, with rotational motion ceasing almost immediately thereafter.

The data for Fig. 5 were obtained by videotaping the short shot, with the
rock moving parallel to a distance indicator, and with the camera far enough
away (approximately 20 m) that the error with changing angle was negligible.
The translational and rotational speeds were obtained by simply counting frames
to determine the time elapsed to move a given distance or to execute half a
rotation. The dominant sources of error were thus the time lag (1/60 s) between
successive frames and the time intervals over which the speeds were measured.

In Table 1 we compare our model with other observed motions of rapidly
rotating curling rocks. The values of v0 and ω0 given are observed values. The
results are arranged in order of increasing v0 and also increasing s0 ≡ v0/rω0.

Table 1. Observed and calculated quantities for rapidly rotating curling rocks

Shown are the initial speed v0, initial angular speed ω0, the ratio s0 ≡ v0/(rω0),
and ε for three distinct shots. The observed and calculated values of the duration
of translational motion, tobstrans and tcalctrans, the duration of rotational motion, tobsrot
and tcalcrot , and the total distance traveled, yobstot and ycalctot , are also compared. The

effective coefficient of kinetic friction µ is 0 ·0125 in all cases

Shot Short Medium Long

v0 (m s−1) 0 ·28 0 ·84 2 ·4
ω0 (s−1) 19 ·8 19 ·8 11 ·1
s0 0 ·23 0 ·68 3 ·46
ε 0 ·2 0 ·4 0 ·5
tobstrans (s) 10 19 25
tcalctrans (s) 11 22 26
tobsrot (s) 26 26 27
tcalcrot (s) 26 28 29
yobstot (m) 1 ·2 8 ·2 30
ycalctot (m) 1 ·1 6 ·5 27

The values used for ε were selected using the insight gained from Figs 2 and
3. For example, for the short shot, the total distance traveled was ytot ≈ 1 ·2
m, with translational motion ceasing after about 10 s, while rotational motion
ensued for a total of about 26 s. Assuming a small value for vmin, we see from
Figs 2 and 3 that this motion corresponds to small ε, and we chose ε = 0 ·2 for
the short shot in Table 1. Having chosen ε, we are at liberty to adjust slightly
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the value of µ from its original value of 0 ·0125. It turns out, however, that the
value µ = 0 ·0125 gives the best agreement with observed values for the choices
of ε.

In the second entry in Table 1, the shot traveled a distance ytot ≈ 8 m.
Translational motion lasted for about 19 s, rotational motion about 26 s. Again,
from Figs 2 and 3, we see that an appropriate choice is ε = 0 ·4.

In the final entry, the shot traveled a distance ytot ≈ 30 m. Translational
motion lasted for about 25 s, rotational motion about 27 s. We take ε = 0 ·5 for
the numerical run. Note also that we have v0 ≈ 3 ·5rω0, so we do not expect
much difference between ttrans and trot, even though this shot has a much greater
rotational speed than shots commonly made by competent curlers.

The observed and calculated values of various physical quantities, such as
ttrans and trot, are also compared in Table 1. In examining Table 1, recall that
ttrans is given by v(ttrans) ≈ 1 cm s−1. (Note that the shots in Table 1 were
made on a different sheet of ice than the sheet for the shot in Fig. 5.) The
observed values and the values obtained from our model are in good agreement.
This agreement supports our decision to use constant, effective values for µ and
ε, as discussed earlier.

5. Discussion and Conclusion

We conclude that the essential ideas in this manuscript are viable candidates
for the explanation of the motion of a rapidly rotating curling rock. We emphasise
that the results for v(t) and ω(t) in our model simulations exhibit the correct
qualitative motion as well as good quantitative results. More work is required to
fully understand and explain the purely rotational phase of the motion.

Rapidly rotating curling rocks are observed to stop moving translationally
long before they stop rotating; our model successfully accounts for this rather
novel feature of the motion of curling rocks. We emphasise that our idea of the
existence of the liquid film and its tendency to be drawn around the rock is
crucial for explaining the phenomenon of translational motion ceasing prior to
rotational motion.

We point out that other models appear to be unable to explain the motion of
rapidly rotating curling rocks. One example is a model proposing that the lateral
motion of slowly rotating curling rocks results as a consequence of the nonuniform
pressure distribution around the contact annulus, the leading semi-circle being
subjected to a higher pressure than the trailing semi-circle in order to counteract
the lateral torque caused by friction (Johnston 1981). It was argued that the
higher leading pressure results in lower friction. In this model, the frictional
force exerted on any portion of the rock is opposite in direction to the velocity
relative to the ice, which thus requires the translational and rotational motions to
stop at the same time, contrary to what is actually observed. Another paper by
Denny (1998) considered a ‘left–right’ asymmetry. We have carefully examined
the approach taken in that publication, and have found that there are serious
inadequacies in the approach. The biggest problem with the approach is the
following. It predicts that two curling rocks, released at different times and from
different initial locations, but such that they are moving in the same direction
and with the same speed at a later time (i.e. are moving ‘side by side’) will,
subsequently, follow different trajectories, and upon stopping can have a lateral
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separation by as much as 0 ·4 m. This is clearly physically unreasonable, and
is in severe disagreement with observed motions of slowly rotating curling rocks.
Our findings are reported in Shegelski and Reid (1999). Since this approach
(Denny 1998) fails to explain why a slowly rotating curling rock curls, it is not
appropriate to consider it for the case of rapidly rotating curling rocks.

The work in this paper and that presented in our previous paper (Shegelski
et al . 1996) combine to account both qualitatively and quantitatively for several
aspects of the observed motions of real curling rocks, both slowly rotating and
rapidly rotating. Some of the successes of our model are as follows.

Slowly rotating curling rocks. Our model accounts for the following: (1) why
curling rocks curl; (2) the direction and amount of curl; (3) the time taken to
go from hog line to hog line; (4) the time taken to go from hog line to tee line;
and (5) the total number of rotations of the rock from release to stopping.

Rapidly rotating curling rocks. In this paper we have shown that our model
further explains the following: (6) that translational motion ceases prior to
rotational motion; (7) the nature of the time-dependencies of v(t) and ω(t);
and (8) the total distance travelled. Other successes of the model are noted in
Shegelski et al . (1996).

In view of these agreements between the observed motions of curling rocks
and the motions given by our model, we conclude that our model presents a
reasonable picture of the underlying physics of the motions of curling rocks.
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