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Abstract

The forward-walking Green’s Function Monte Carlo method is used to compute expectation
values for the transverse Ising model in (1 + 1)D, and the results are compared with exact
values. The magnetisation Mz and the correlation function ρz(n) are computed. The algorithm
reproduces the exact results, and convergence for the correlation functions seems almost as
rapid as for local observables such as the magnetisation. The results are found to be sensitive
to the trial wavefunction, however, especially at the critical point.

1. Introduction

Monte Carlo methods are a powerful and effective tool for exploring the
behaviour of complicated systems, and their use is increasing rapidly in every
area of physics. Here we are interested in quantum Hamiltonian lattice systems,
particularly quantum spin models and ‘Hamiltonian’ lattice gauge theories (Kogut
and Susskind 1975). The use of quantum Monte Carlo methods (Ceperley and
Kalos 1979; Ceperley 1997) has not been very extensive in these areas as yet;
although some lengthy and accurate studies of the Heisenberg antiferromagnet
on the square lattice have appeared recently (Trivedi and Ceperley 1990; Runge
1992a, 1992b; Sandvik 1997; Sorella 1998). In particular there have been very
few attempts to calculate correlation functions in these models by Monte Carlo
techniques. Yet the calculation of correlation functions is essential: for instance,
it is the only way to reliably extract information about the bound-state spectrum
in lattice gauge theories within a weak-coupling representation, for both the
Euclidean and Hamiltonian formulations (Hamer et al . 1996).

Trivedi and Ceperley (1990) did calculate ground-state correlations in the case
of the S = 1

2 Heisenberg antiferromagnet on the square lattice. They used a
‘mixed’ estimator for the correlation function, which involves taking the overlap of
the stochastic Monte Carlo ‘wave function’ with a trial state |ΨT 〉. The method
appears to work very well in this case, by comparison with other approaches.
Nevertheless, it is intrinsically a ‘biased’ estimate, depending on the quality of the
trial wavefunction |ΨT 〉. They find that it is essential to include the zero-point
motion of the elementary excitations (spin waves) in this case in order to obtain
long-range correlations in the trial wavefunction.
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Our aim in this paper is to try out a different Monte Carlo method for the
calculation of correlation functions, by testing it on a case where some exact
analytic results are already known, namely the transverse Ising model in (1 + 1)
dimensions. This is the quantum Hamiltonian corresponding to the classical 2D
Ising model and has been used as a test-bed for many numerical techniques. The
method we shall use is the ‘forward-walking’ method (Liu et al . 1974; Whitlock
et al . 1979; Kalos 1966) in conjunction with the so-called Green’s Function
Monte Carlo algorithm (Ceperley and Kalos 1979), as used by Trivedi and
Ceperley (1990) or Runge (1992a, 1992b) to calculate the ground-state energy
and magnetisation for the Heisenberg antiferromagnet on a square lattice. The
forward-walking method does not depend explicitly on any trial state |ΨT 〉, as
the mixed-estimate method does; although one generally uses a trial state to
‘guide’ the Monte Carlo random walk towards the most important regions of
configuration space (Ceperley and Kalos 1979), as we shall see later.

There are no new physical results in the paper, but we believe it is a
useful exercise to show that the GFMC method combined with forward-walking
techniques can give correct results for the correlation functions, as compared with
the known exact results in this model. There is also a discussion of the asymptotic
behaviour of the correlation functions which should be of some pedagogical value.
In Section 2 the exactly known analytic results relevant to these calculations are
summarised. The Monte Carlo algorithms are outlined in Section 3, and results
are presented in Section 4. Finally, our conclusions are given in Section 5.

2. Analytic Results

The (1 + 1)D or ‘transverse’ Ising model has the quantum Hamiltonian

H =
M∑
m=1

[1− σz(m)]− x
M∑
m=1

σx(m)σx(m+ 1) , (1)

where the index m labels sites on a one-dimensional chain of M sites, while
the σi(m) are Pauli matrices acting on a two-state spin variable at each site.
Periodic boundary conditions will be assumed throughout.

In the bulk limit M →∞, this Hamiltonian has been solved by Pfeuty (1970),
using the methods of Lieb et al . (1961, 1964). The spin Hamiltonian is transformed
to a fermionic Hamiltonian by means of a Jordan–Wigner transformation, and
the resulting quadratic form in fermion operators is diagonalised by a Bogoliubov
transformation.

Finite-size corrections have been discussed by a number of authors (Nightingale
1976; Cardy 1988): for a review see Christe and Henkel (1993). The ground state
energy of the system is given by

E0 = M −
M−1∑
k=0

Λ(θ+
k ) , (2)

where

Λ(θ) = [1 + x2 + 2x cos θ] 1
2 , (3)
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θ+
k =


(2k + 1)π

M
(M even)

2kπ
M

(M odd)
(4)

while the energy of the first excited state is

E1 = 2(1− x) +M −
M−1∑
k=0

Λ(θ−k ) , (5)

with

θ−k =


(2k + 1)π

M
(M odd)

2kπ
M

(M even)
(6)

In the bulk limit, the ground-state energy per site is given in terms of an elliptic
integral:

ε0 = lim
M→∞

(
E0

M

)
= 1− 2(1 + x)

π
E

(
4x

(1 + x)2

)
, (7)

and the energy gap is exactly

E1 − E0 = 2(1− x) (x < 1) , (8)

This gap vanishes at the critical coupling x = 1.

Spacelike Correlation Functions

Expressions for the spacelike correlation functions have also been obtained by
Pfeuty (1970). Let

Mz = 〈0|σz(m)|0〉 (9)

and

ρx(n) = 〈0|σx(m)σx(m+ n)|0〉 (10)

ρy(n) = 〈0|σy(m)σy(m+ n)|0〉 (11)

ρz(n) = 〈0|σz(m)σz(m+ n)|0〉 (12)

(these definitions differ from Pfeuty’s by a factor of 2). Then Pfeuty’s results are

Mz = G(0) , (13)



640 M. Samaras and C. J. Hamer

ρz(n) = M2
z −G(n)G(−n) , (14)

ρx(n) =

∣∣∣∣∣∣∣
G(−1) G(−2) . . . G(−n)
G(0) G(−1) . . . G(−n+ 1)
. . .

G(n− 2) . . . G(−1)

∣∣∣∣∣∣∣ , (15)

ρy(n) =

∣∣∣∣∣∣∣
G(1) G(0) . . . G(2− n)
G(2) . . . G(3− n)
. . .
G(n) . . . G(1)

∣∣∣∣∣∣∣ , (16)

with

G(n) = L(n) + xL(n+ 1) , (17)

L(n) =
1
M

M−1∑
k=0

cos(nθ+
k )

Λ(θ+
k )

, (18)

or in the bulk limit where M →∞

L(n) =
1
π

∫ π

0

dk
cos(kn)
Λ(k)

. (19)

We shall be particularly interested in the ‘connected’ correlation function

ρzc(n) = ρz(n)−M2
z . (20)

The asymptotic behaviour of these functions can be found by adapting the results
of Barouch and McCoy (1971), which were obtained for a more general spin-1

2
XY model in a magnetic field. We consider various cases.

The critical point x = 1

At the critical point, a number of results can be obtained in closed form. The
ground-state energy per site is (Hamer and Barber 1981)

ε0 =
E0

M
= 1− 2

M
csc

(
π

2M

)
(21)

∼
M→∞ 1− 4

π
− π

6M2 +O(M−4) , (22)
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while the energy gap is (Hamer and Barber 1981)

∆E = E1 − E0 = 2 tan

(
π

4M

)
(23)

∼
M→∞

π

2M
+O(M−3) . (24)

The leading-order finite-size corrections have been exhibited in these formulae,
which may be compared with the predictions of conformal invariance theory
(Christe and Henkel 1993):

ε0(M)− ε0(∞) ∼
M→∞ − πcv

6M2 (25)

and

∆E ∼
M→∞

2πxv
M

, (26)

where c is the central charge, v is the ‘speed of light’, and x is the relevant scaling
index. For the transverse Ising model c = 1

2 and x = 1
8 for the magnetic scaling

index, which shows that the speed of light v = 2 for this particular Hamiltonian.
The function G(n) reduces to

G(n) =
(−1)n

M sin[(n+ 1
2 )π/M ]

(27)

and hence

Mz =
1

M sin(π/2M)
∼

M→∞
2
π
, (28)

and

ρzc(n) =
2

M2[cos(π/M)− cos(2nπ/M)]
. (29)

In the bulk limit M → ∞ with n finite, the correlation functions reduce to
(Pfeuty 1970)

ρzc(n) ∼
M→∞

4
π2(4n2 − 1)

, (30)

ρx(n) ∼
M→∞

(
2
π

)n
22n(n−1)H(n)4

H(2n)
(31)
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with

H(n) = 1n−12n−2 . . . (n− 1) , (32)

whence (Wu 1966)

ρx(n)
∼

M→∞
n→∞ n−1/4e1/421/12A−3 , (33)

where A = 1 ·282 . . . is Glaisher’s constant: and

ρy(n) ∼
M→∞ − ρx(n)

4n2 − 1
. (34)

In the ‘continuum’ limit M →∞, τ = n/M finite, we find

ρzc(n)
∼

n→∞
M→∞

1
[M sin(πτ)]2

, (35)

which is precisely the form predicted by the theory of conformal invariance (Cardy
1984, 1990).

Régime x < 1

This is the ‘high-temperature’ régime in which there is no ferromagnetic order
in the x -direction. In the bulk limit M →∞, n finite, the function G(n) becomes

G(n) →
M→∞

1
2π

∫ π

−π
dqeiqn

[
1 + xeiq

1 + xe−iq

] 1
2

. (36)

Writing this as a contour integral, contracting the contour onto the cut from
z + eiq = 0 to z = −x, and expanding about z = −x, one finds for large n

G(n)→ (−1)n

π
xn

[
(1− x2) 1

2B(n+ 1
2 ,

1
2 ) +

x2

2(1− x2) 1
2
B(n+ 1

2 ,
3
2 ) + . . .

]
(37)

and similarly

G(−n) ∼ (−1)n−1

π
xn

[
1

(1− x2) 1
2
B(n− 1

2 ,
3
2 )− x2

2(1− x2) 3
2
B(n− 1

2 ,
5
2 ) + . . .

]
(38)

and hence

ρzc(n) ∼
n→∞

x2n

2πn2 [1 +O(n−1)] (39)
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as previously derived by Barouch and McCoy (1971) (up to an overall sign).
They also find

ρx(n) ∼
n→∞

xn√
πn

(
1− x2

)− 1
4 [1 +O(n−1)] , (40)

ρy(n) ∼ − xn

2
√
πn3

(1− x2) 3
4 [1 +O(n−1)] . (41)

We want to compare these results with the exponentially decreasing behaviour

ρ(n) ∼ exp

[
−n∆E

v

]
(42)

expected for a general correlation function, where ∆E is the energy gap, and v
is the ‘speed of light’, or anisotropy parameter between space and time. Near
x = 1, the result of equation (39) can be rewritten as

ρzc(n) ∼
n→∞

1
2πn2 e

2n ln(x) (43)

∼
x→1

1
2πn2 e

−2n(1−x) . (44)

For the operator σz, the relevant energy gap is that in the vacuum sector, i.e.
∆E = 4(1− x), and so equation (43) corresponds to equation (42) provided that
the speed of light v = 2, as already deduced from the finite size corrections (or
alternatively from the dispersion relation of the excitations at x = 1). For the
correlation function ρx(n) the exponent is only half as big, because there the
relevant gap is the even-odd gap, ∆E = 2(1− x). Thus the ansatz equation (42)
holds good in the neighbourhood of the ‘continuum limit’, i.e. the critical point
x = 1. Away from that region, however, the ansatz breaks down: one can no
longer treat the model as an anisotropic continuum system.

Where the ansatz (42) holds, we may hope to estimate the energy gap from
measurements of the spacelike correlation functions, provided that the speed of
light is known. The presence of the power-law terms such as the factor 1/n2

in equation (43) tends to complicate the process, however, and makes it more
difficult to obtain a phenomenological exponent value from measurements of the
correlation functions. This may be illustrated as follows. Assuming the correlation
function ρ(n) ∼ exp(−n/ξ), a naive estimate of the correlation length is

R(n) = ln

[
ρ(n)

ρ(n+ 1)

]
∼

n→∞
1
ξ
. (45)
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Fig. 1. The ratio R(n) plotted against n for lattice sizes 32, 64 and 128 at: (a) x = 0 ·7 and
(b) x = 0 ·9. The asymptotic value is shown as a horizontal line.
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Fig. 1 shows the value of the quantity R(n) as a function of n, calculated for
the correlation function ρzc(n), at (a) x = 0 ·7 and (b) x = 0 ·9. The exact results
(from equation 12) for lattice sizes 32, 64 and 128 are shown, with the asymptotic
value ξ−1 = −2 lnx shown as a straight line for comparison. It can be seen that
the estimate R(n) only approaches its asymptotic value very slowly. The finite
lattice results follow the bulk limit for some distance, and then drop suddenly
to zero as n approaches M/2, where symmetry demands that the correlation
function flattens out. Thus it requires a lattice of 64 sites or bigger to see
anything like the true correlation length, even at x = 0 ·7. At x = 0 ·9, 128 sites
or more are required.

The situation may be improved somewhat by taking account of the expected
corrections to the asymptotic behaviour. From equation (43), we expect that

R(n) ∼
n→∞ 2 ln

(
n+ 1
n

)
− 2 lnx ∼n→∞ 2

n
− 2 lnx , (46)

so that by plotting R(n) against 1/n one should be able to perform a sensible
extrapolation to the bulk limit. Fig. 2 shows such a plot for the case x = 0 ·7.
It can be seen that one could make an accurate linear extrapolation to the bulk
limit, for M = 64, but for M = 32 one would only be accurate to about 10%. It
requires rather large lattice sizes to get an accurate correlation length for this
model.

Fig. 2. The ratio R(n) as a function of 1/n for lattice sizes 32, 64 and 128 at x = 0 ·7. The
asymptotic value is shown as a diamond on the axis.
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Régime x >1

Corresponding results apply in the ‘low-temperature’ régime x > 1. In this
region, there is a spontaneous magnetisation in the x direction, which has been
calculated by McCoy (1968):

Mx =

(
1− 1

x2

) 1
8

, (47)

corresponding to the critical index β = 1
8 . In the bulk limit M → ∞, n finite,

the function G(n) becomes as before

G(n) →
M→∞

1
2π

∫ π

−π
dqeiqn

(
1 + xeiq

1 + xe−iq

) 1
2

. (48)

Contracting the contour onto the cut from z = eiq = 0 to z = −1/x, and expanding
about z = −1/x, one finds

G(n)→ (−1)n

πxn

[
(x2 − 1)−1/2B(n+ 1

2 ,
3
2 )− 1

2(x2 − 1) 3
2
B(n+ 1

2 ,
5
2 ) + . . .

]
(49)

and similarly

G(−n)→ (−1)n−1

πxn

[
(x2 − 1) 1

2B
(
n− 1

2 ,
1
2

)
+ . . .

]
(50)

and hence

ρzc(n) ∼n→∞ x−2n

2πn2 [1 +O(n−1)] (51)

∼ 1
2πn2 e

−2(x−1)n, (x→ 1+) (52)

which again agrees with the ansatz (41), with v = 2. For the other correlation
functions, we find (Barouch and McCoy 1971)

ρx(n) ∼
n→∞M2

x +
x−2n−2

2πn2

(
1− 1

x2

)−7/4

[1 +O(n−1)] , (53)

ρy(n) ∼
n→∞

x−2n

2πn3

(
1− 1

x2

)−3/4

[1 +O(n−1)] . (54)
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All these correlation functions decay with the same exponent in this region,
controlled by the energy gap to a ‘kink–antikink’ state in the vacuum sector.
None of the local spin operators can excite a lower energy, single kink state, by
reason of topological considerations.

3. Timelike Correlation Functions

Information about the energy spectrum can also be obtained from the timelike
correlation functions, although it is not possible to exploit this possibility with
the present algorithm, where no time appears. Timelike correlation functions for
the transverse Ising model have been discussed by Niemeijer (1967), McCoy et al .
(1971) and Lajzerowicz and Pfeuty (1975). Define the space–time correlation
functions

ρvv(n, t) = 〈0|eiHtσv(m)e−iHtσv(m+ n)|0〉 , (55)

where v = x, y, z (this definition differs by a factor of 4 from previous ones—see
Niemeijer 1967, McCoy et al . 1971 and Lajzerowicz and Pfeuty 1975); and
consider the limit n fixed, imaginary time τ = it → ∞. The most interesting
régime for our purpose is the ‘high-temperature’ régime x < 1. There, the results
of McCoy et al . (1971) for the transverse correlation function translate to

ρvv(n,−iτ)
∼

τ→∞
nfixed cvτ

−1/2 exp[−2(1− x)τ ] (56)

for v = x, y, where cv is a constant depending on x. These results should be
compared with the form obtained by inserting a complete set of eigenstates of H :

ρvv(n,−iτ) =
∑
k

〈0|σv(m)|k〉〈k|σv(m+ n)|0〉e−(Ek−E0)τ . (57)

Thus the exponent in equation (56) corresponds to the mass gap (E1 − E0) of
equation (8) as expected; but the exponential is modulated by an extra factor of
τ−1/2, which can be viewed as arising from an integration over the continuum of
different momentum states above the threshold. Once again, this extra power-law
term will make it more difficult to extract an accurate phenomenological value
for the energy gap from numerical estimates of the timelike correlation function.
One will need to enhance or select out by some means the contribution to the
signal coming from the lowest, zero momentum state.

4. Monte Carlo Methods

The Green’s Function Monte Carlo (GFMC) method is used to simulate
the Schrödinger equation for many-body systems (Ceperley and Kalos 1979;
Nightingale and Blóte 1986; Ceperley 1997). The wavefunction is represented by
a weighted distribution of ‘random walkers’ in configuration space: after many
iterations of a stochastic process simulating the Schrödinger equation, the walkers
approach an equilibrium distribution representing the ground state.

We implement the ‘forward-walking’ algorithm (Kalos 1966; Liu et al . 1974;
Whitlock et al . 1979) in conjunction with the GFMC method, in order to calculate
expectation values in the ground state. This technique was first used for a lattice
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spin model by Runge (1992a, 1992b) in the case of the Heisenberg model. For
completeness, let us summarise these methods.

The Hamiltonian H is used as the projection operator for this discrete system,
after a rearrangement so as to make the ground state the dominant eigenvector.
The GFMC method then produces the dominant eigenvector and eigenvalue by
forming a sequence of unnormalised approximations to the exact eigenvector |ψ0〉.
Define

K = Ecut −H , (58)

where Ecut is a suitably large energy cutoff so that K, the new Hamiltonian, is
positive definite. The initial trial wavefunction is defined as |ψT 〉. Each iteration
corresponds to a multiplication by K. After L iterations

KL|ψT 〉 ∼
L→∞ const EL0 |ψ0〉 , (59)

where E0, the ground state energy, is the dominant eigenvalue of K. Hence
repeated iterations project out the ground state |ψ0〉.

Working in the spin basis |S〉, where S = (Sz1 , . . . , S
z
N ) is the spin configuration

of the system, we define a walker as a spin and weight pair (Si, wi) (Nightingale
and Blöte 1986). The MC algorithm simulates the Hamiltonian matrix elements
K(S′, S) = 〈S′|K|S〉 as transition probabilities, and the ground state wavefunction
ψT (S) = 〈S|ψT 〉 as the steady-state distribution of walkers, weighted by {wi}.

The eigenvector |ψ0〉 expands as

|ψ0〉 =
∑
i

ai|Si〉 , (60)

where the amplitudes ai obey the Schrödinger equation

ak =
1
E0

∑
i

Kkiai . (61)

In the GFMC, the wavefunction is represented at the Lth iteration by

|ψ(L)
0 〉 =

∑
i

w
(L)
i |Si〉 , (62)

where w(L)
i is the weight of the ith walker at iteration L. The walkers (Si, w

(L)
i )

evolve to (Si′ , w
(L+1)
i′ ), according to

w
(L+1)
i′ =

∑
Si

[
K(Si′ , Si)w

(L)
i

S(L)

]
(63)
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simulating equation (61), where the ‘score’ S(L) is an approximation to the
eigenvalue E0. The score is updated after each iteration according to the following
rule:

S(L+1) =
W (L+1)

W (L)
S(L) , (64)

where W (L) is the ‘ensemble’ size or total weight

W (L) =
∑
i

w
(L)
i . (65)

In order to contain the number of walkers to a manageable size and to maintain
statistical accuracy, the new weights are adjusted by a stochastic ‘branching’
process at each iteration, represented by the square brackets in equation (63).
When a weight wi exceeds (say) 2, the walker is split into two identical copies,
each with 1

2 the original weight. Conversely, walkers with weights less than
(say) 1

2 are combined in a stochastic fashion such as to leave the total weight
unchanged (Runge 1992a, 1992b).

After many iterations, the walkers approach a steady-state distribution, and
the score reaches an equilibrium value, which can be averaged to give an estimate
of the ground-state energy (the ‘normalisation’ estimate).

It is well known that to obtain good accuracy from this sort of approach one
must use ‘variational guidance’ to herd the ensemble towards the most important
regions of configuration space (Ceperley and Kalos 1979). This is achieved by
means of a similarity transformation:

K̃(S′, S) = ψT (S′)K(S′, S)ψ−1
T (S) , (66)

ψ̃0(S) = ψT (S)ψ0(S) , (67)

where ψT (S) is some variational estimate of the ground state wavefunction. If
ψT (S) were actually identical to ψ0(S), one can show that the GFMC procedure
gives the energy E0 exactly, with no error.

Forward Walking

The forward-walking method is an unbiased technique for estimating expectation
values, based on the following equation for an operator Q:

〈Q〉 =
〈ψ0|Q|ψ0〉
〈ψ0|ψ0〉

(68)

∼
J→∞

〈ψT |KJQ|ψ0〉
〈ψT |KJ |ψ0〉

(69)

=

∑
K̃(SJ , SJ−1) . . . K̃(S2, S1)Q(S1)ψ̃0(S1)∑

K̃(SJ , SJ−1) . . . K̃(S2, S1)ψ̃0(S1)
, (70)
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where for simplicity we have assumed that the operator Q is diagonal in the
basis of spins S.

This equation is implemented by (Kalos 1966; Liu et al . 1974; Whitlock et al .
1979):

(i) recording the value Q(Si) for each walker (‘ancestor’) at the beginning
of a measurement;

(ii) propagating the ensemble as normal for J iterations, keeping a record of
the ‘ancestor’ of each walker in the current population; and

(iii) taking the weighted average of the Q(Si) with respect to the weights of
the descendants of Si after the J iterations.

The drawback to this procedure is that after a large number of iterations J many
of the ‘ancestors’ will die out, leaving no descendants, which leads to a progressive
loss of statistical accuracy. Thus, it is even more crucial in this connection to
use a good guiding wavefunction ψT (S) so as to minimise ‘branching’.

5. Results

The Green’s function method has been used to calculate the ground-state energy,
the magnetisation Mz and the longitudinal correlation function ρz(n) for lattice
sizes of up to 32 sites with periodic boundary conditions. These are technically
the easiest quantities to calculate in the ‘high temperature’ representation where
σz is diagonal. The guiding wavefunction was taken to be of the simple form

ψT (s) = exp

(
−c
∑
m

σz(m)

)
. (71)

One could easily find more complicated and more accurate guiding wavefunctions,
but since our purpose is to test the algorithms rather than to obtain accurate
results for the Ising model per se, there seemed to be no point in using
unnecessary refinements. For a review see Runge (1992a). At each coupling x,
the variational parameter c was adjusted to minimise the error by a series of
trial runs. Production runs typically employed an ensemble size of 2000 walkers
for 10000 iterations. A certain number of the initial iterations (between 1000 and
4000) were discarded to allow for equilibration, and the results were averaged over
blocks of up to 64 iterations before estimating the error to minimise correlations
between measurements.

Table 1. Ground state energy per site ε0 at x = 1 ·0, for lattice sizes 8, 16, 32. Monte Carlo
estimates with c = 0 ·3 compared to exact results

Lattice size 8 16 32

Monte Carlo estimate −0 ·2816(1) −0 ·2754(1) −0 ·2737(1)
Exact −0 ·281458 −0 ·275287 −0 ·273751

Ground State Energy

The results for the ground state energy per site ε0 at the critical point x = 1
are shown in Table 1, and compared with the exact results from equation (2).
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Fig. 3. Estimates of Mz as a function of J , the number of forward walking iterations, for
lattice size M = 32 at: (a) x = 0 ·7 and (b) x = 1 ·0. The horizontal line indicates the exact
value.
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Fig. 4. Monte Carlo estimates of the magnetisation Mz as a function of the variational
parameter c for lattice size 32 at: (a) x = 0 ·7 and (b) x = 1 ·0.
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For all three lattice sizes 8, 16 and 32 the best result for the ground state energy
occurs at c ≈ 0 ·3. It can be seen that the errors in the Monte Carlo estimates
are of order 0 ·04%: away from the critical point they are substantially less.

Magnetisation

As a first example of an expectation value estimated by the ‘forward-walking’
technique, we consider the magnetisation in the z -direction Mz. Measurements
were started every 250 iterations, and the ancestor weights were tracked for up
to twenty ‘forward-walking’ iterations, J , each time; the results of the iterations
were then block-averaged in the same way as the ground state energy.

Fig. 3a shows the estimated value of Mz as a function of J , the number of
forward-walk iterations, for various values of the variational parameter c, at a
coupling of x = 0 ·7. It can be seen that the results converge to the correct value,
within errors, after 10–20 iterations, for a range of different values of c. The
convergence appears to be best for an optimal value of c ≈ 0 ·5. If c is chosen
too large, however, then an incorrect estimate may be obtained, as in the case
c = 1 ·0.

Fig. 3b shows a similar graph at the critical point x = 1 ·0. It can be seen in
this case that the estimates take a good deal longer to relax to their asymptotic
value; and also that the results are much more sensitive to the variational
parameter c. To obtain accurate results at a critical point by this technique, it is
crucial to have a good trial wavefunction, and choose the variational parameter
judiciously.

Fig. 5. Forward-walking estimates of magnetisation Mz as a function of x compared with
the exact results (curve) for 32 lattice sites.
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Fig. 6. Estimate of ρz(16) on theM = 32 lattice, as a function of the number of forward-walking
iterations J , for various values of c and for: (a) x = 0 ·7 and (b) x = 1 ·0.
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In Fig. 4 the final Monte Carlo results for Mz versus the coupling parameter
c are plotted at (a) x = 0 ·7 and (b) 1 ·0, with the exact value (horizontal line)
used as a comparison. At x = 0 ·7 (Fig. 4a), the estimates form a reasonably
stable ‘plateau’ for 0 ·1 < c < 0 ·7, corresponding to the correct value for M − z
within errors; but as c increases further towards 1 ·0, the estimates drift away
from the correct value. The ‘best’ estimate of c is obtained by choosing a value
in the middle of the ‘plateau’ where the result for the observable are stable and
the error is least; for the energy this occurs at c = 0 ·5 and for Mz it lies between
c = 0 ·4 and c = 0 ·5. At x = 1 ·0 (Fig. 4b), the ‘plateau’ is not quite so obvious,
but the estimates are reasonably stable, and cluster about the correct value, for
0 ·3 ≤ c ≤ 0 ·6. The ‘best’ value for both the energy estimate and Mz seems to
lie around c = 0 ·3.

Fig. 5 shows the final Monte Carlo estimates of Mz for the 32 site lattice as
a function of x (at the best variational parameter c). It can be seen that the
Monte Carlo estimates are generally in good agreement with the exact results,
with the largest error 1% occurring at the critical point x = 1 ·0.

Correlation Functions

Our major interest in this study is the computation of correlation functions—
more specifically, ρz(n). These expectation values were estimated in exactly the
same way as the magnetisation. Fig. 6a shows estimates of ρz(16) on the M = 32
lattice at x = 0 ·7, as a function of the number of forward-walking iterations J ,

Fig. 7. Monte Carlo estimates of the connected correlation function ρzc(n) as a function of
n for x = 1 ·0 and lattice size M = 32 sites. The exact result (solid curve) and asymptotic
form of equation (35) (dotted curve) are shown for comparison.
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for various values of c. It can be seen that the results converge just as well as for
the magnetisation in Fig. 3a, and the same comments apply. The asymptotic
estimates cluster around the correct value for 0 ·1 ≤ c ≤ 0 ·7, but drift away as c
increases further. Fig. 6b shows a similar graph at the critical point x = 1 ·0,
which again looks very similar to the magnetisation results of Fig. 3b. The
estimates converge at close to the true value, except for the case c = 1 ·0, where
they are much too high. The conclusion seems to be that it is no more difficult
to measure the absolute value of a correlation function than it is to measure a
‘local’ observable such as the magnetisation.

The snag is, of course, that the absolute value of the ‘connected’ correlation
function ρzc(n), obtained when one subtracts off M2

z , dies off rapidly towards
zero as n increases, and thus the relative error in ρzc(n) rapidly increases. Fig. 7
shows our Monte Carlo estimates of ρzc(n) as a function of n at x = 1 ·0 for
the 32 site lattice, together with the exact result and the asymptotic form given
by equation (35). It can be seen that the Monte Carlo estimates agree with
the exact results within errors, but with our present crude trial-wavefunction
and limited statistics, the errors are too large to obtain useful estimates beyond
about n = 4. A good trial wavefunction and high statistics will be required, in
general, to track the correlation functions at large distances.

6. Conclusions

The forward-walking Green’s Function Monte Carlo method has been used to
compute expectation values such as the magnetisation Mz and the correlation
function ρz(n) for the transverse Ising model in (1 + 1)D. The algorithm
successfully reproduces the exact results within 1% or better at criticality, and
gives substantially better results away from the critical point. One encouraging
feature is that the results for ‘non-local’ properties such as long-range correlations
converge almost as rapidly as for local quantities such as the magnetisation.

As expected (Ceperley and Kalos 1979; Ceperley 1997), the results are quite
sensitive to the trial wavefunction (or in this case the parameter c), particularly
at the critical point. If one chooses a bad value for the parameter c, such as
c = 1 in Fig. 6b, one can obtain quite wrong values for the expectation values.
The trial wavefunction provides such a sharp cutoff in this case that it does
not allow a proper sampling of the configurations with many ‘flipped’ spins. To
achieve good accuracy, it is important to use a good trial wavefunction, and to
optimise the variational parameters carefully. This can be done by performing
a separate variational Monte Carlo calculation, or by looking for a ‘valley’ in
parameter space where the ground-state energy estimate is a minimum and its
variance is least. At x = 1, this procedure points to c ' 0 ·3 as optimum, far
from c = 1 ·0. In most cases a ‘plateau’ region is observed, where the estimates
are reasonably stable against the variational parameter, and agree with the exact
results within errors. Thus we conclude that the method should be suitable for
use in calculating correlation functions for more complicated and more interesting
lattice models.

We have also spent some time analysing the exact results for the model. It
has been shown that in the neighbourhood of the critical point the correlation
functions have the exponential behaviour in space and (imaginary) time which
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is expected of the corresponding continuum field theory, and that the mass gaps
can in principle be measured from the exponents. It was also seen, however,
that the presence of extra power-behaved terms modulating the exponentials
is liable to complicate the process of estimating the exponents. A method of
plotting the data was discussed which allows one to overcome this problem to
some extent—see Fig. 2.
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