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Abstract

The two-layer Heisenberg antiferromagnet exhibits a zero temperature quantum phase transition
from a disordered dimer phase to a collinear Neel phase, with long range order in the ground
state. The spin-wave gap vanishes as ∆ ∝ (J⊥ − J⊥c)ν approaching the transition point. To
account for strong correlations, the S = 1 elementary excitations triplets are described as a
dilute Bose gas with infinite on-site repulsion. We apply the Brueckner diagram approach
which gives the critical index ν ≈ 0 ·5. We demonstrate also that the linearised in density
Brueckner equations give the mean field result ν = 1. Finally, an expansion of the Brueckner
equations in powers of the density, combined with the scaling hypothesis, gives ν ≈ 0 ·67. This
value agrees reasonably with that of the nonlinear O(3) σ model. Our approach demonstrates
that for other quantum spin models the critical index can be different from that in the
nonlinear σ model. We discuss the conditions for this to occur.

The physics of quantum phase transitions in S = 1
2 two-dimensional (2D)

Heisenberg models has recently become a subject of considerable interest in
connection with the high-Tc cuprate superconductors. Haldane (1983) and
Chakravarty et al. (1988) have argued that the phase transition is described
by the (2+1)-dimensional nonlinear O(3) σ model which predicts that as the
transition point is approached the spin-wave gap vanishes as ∆ ∼ (J⊥ − J⊥c)ν
with critical index ν ≈ 0 ·7. The universal dynamic and static properties of
2D antiferromagnets in the vicinity of a zero-temperature phase transition have
been studied in detail by assuming the σ-model description (Sachdev and Ye
1992; Chubukov et al. 1994). However, mapping of the Heisenberg model to the
σ model has been proven only for the one-layer square lattice antiferromagnet
which itself does not exhibit a zero temperature quantum phase transition.

In this paper we consider the two-layer S = 1
2 Heisenberg antiferromagnet

described by

H = J
∑
〈i,j〉

(S1iS1j + S2iS2j) + J⊥
∑
i

S1iS2i . (1)

∗ Refereed paper based on a contribution to the Eighth Gordon Godfrey Workshop on
Condensed Matter Physics held at the University of New South Wales, Sydney, in November
1998.
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The spins S1 and S2 represent two planes coupled by J⊥. Both couplings are
antiferromagnetic (J, J⊥ > 0) and the first sum runs over nearest neighbours on
a square lattice. The system has a zero temperature quantum phase transition
from a disordered dimer phase to a collinear Neel phase as the dimerisation
decreases. For this model the numerical results of Singh et al. (1988) and
Weihong (1997) obtained by series expansions, as well as Monte Carlo calculations
performed by Sandvik and Scalapino (1994), demonstrate reasonable consistency
of the critical index with that in the σ model. At the same time, Sandvik and
Vekic (1995) using quantum Monte Carlo simulations have shown that for some
other 2D antiferromagnetic models (dimers arranged in ladders and dimers in
a staggered pattern) the critical exponents are different from the nonlinear σ
model prediction. In this situation it is very important to analyse the behaviour
near the critical points by an independent analytical method. Such a method,
based on the Brueckner perturbation theory, has been developed by Kotov et al.
(1998). In the present work we apply it for the calculation of the spin-wave gap
critical index in the two-layer Heisenberg antiferromagnet. This method gives an
independent calculation of the index for this model, and additionally it allows us
to formulate the conditions when one could expect deviations from the σ model
behaviour.

Considering the ‘J terms’ in equation (1) as a perturbation, one can introduce
the bond operator representation (Chubukov 1989; Sachdev and Batt 1990) and
exactly map the Hamiltonian (1) to the effective Hamiltonian (Kotov et al. 1998):

Heff = H2 +H4 +HU , (2)

H2 =
∑
k,α

Akt
†
k,αtk,α +

Bk

2
(t†k,α, t

†
−k,α + h.c.) , (3)

H4 =
J

2

∑
〈i,j〉,αβ

{t†αit
†
βjtβitαj − t

†
αit
†
αjtβitβj} , (4)

HU = U
∑
i,αβ

t†αit
†
βitβitαi, U →∞, (5)

where t†αi is the creation operator of the triplet at the bond i and α = x, y, z
is the polarisation of the triplet. The operator t†k,α is the Fourier transform
of t†αi: t†k,α = (1/

√
N)
∑

r tr,αe
i(k+k0)r. As usual the momentum takes values

inside the Brillouin zone −π < kx ≤ π, −π < kx ≤ π, but we shift the argument
in the Fourier transform by k0 = (π, π). In this notation the minimum of the
spin-wave dispersion is at k = 0. The coefficients are of the form Ak = J⊥+2Jξk,
Bk = 2Jξk, with ξk = − 1

2 (coskx + cosky). An infinite on-site repulsion between
triplets HU is introduced to take into account the hard-core constraint t†αit

†
βi = 0

(only one triplet can be excited on a bond). The interaction HU gives the dominant
contribution to the renormalisation of the spin-wave spectrum. It has been
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demonstrated (Kotov et al. 1998) that in the Brueckner approximation this
renormalisation is described by the self-energy operator

Σ(k, ω) =
4
N

∑
q

Zqv
2
qΓ(k + q, ω − ωq) , (6)

where the scattering amplitude is

Γ(q, ω) = −
(

1
N

∑
p

ZpZq−pu
2
pu

2
q−p

ω − ωp − ωq−p

)−1

, (7)

and the spin-wave spectrum ωk, quasiparticle residue Zk and Bogoliubov parameters
uk, vk are given by the formulas:

ωk = Zk

√
Ã2

k − B̃2
k , (8)

Ãk = J⊥ + 2Jξk + Σ(k, 0) + 4Jξk
∑
q

ξqZqv
2
q,

B̃k = 2Jξk − 4Jξk
∑
q

ξqZquqvq , (9)

Zk =

(
1− ∂Σ

∂ω

∣∣∣∣∣
ω=0

)−1

, u2
k, v

2
k =

ZkÃk

2ωk

± 1
2 . (10)

These equations also take into account the quartic interaction (4) in the one-loop
approximation. In order to find spectrum, equations (6)–(10) have to be solved
self-consistently for Σ(k, 0) and Zk. The plot of the spin-wave gap ∆ versus
J⊥/J is presented in Fig. 1. In the same figure we present results from the
papers by Weihong (1997) and Kotov et al. (1998) obtained by the dimer series
expansions.

Close to the critical point (∆ ¿ J) and for small momenta (k ¿ 1), the
dispersion can be represented as

ωk ≈
√

∆2 + c2k2 , (11)

where c = 1 ·85J is the spin-wave velocity (Weihong 1997; Kotov et al . 1998;
Gelfand 1996). To find the critical index let us write equation (8) at the point
k = 0 as

∆2 = Z2
0 (Ã2

0 − B̃2
0) . (12)
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Fig. 1. Triplet gap ∆/J as a function of x = J⊥/J . Solid and
dashed lines are the results of the self-consistent solution using
the Bruekner approach and the Bruekner equations linearised
in density respectively. The dots (with error bars) are estimates
obtained by dimer series expansions.

It is convenient to introduce the values of Ã0 and B̃0 at the critical point:
Ã0c = −B̃0c. Let us vary J⊥ keeping J fixed, and let us introduce the deviation
from the critical point δJ⊥ = J⊥ − J⊥c. Considering δJ⊥ and ∆ as independent
variables and using equations (9)–(11), we find the variations of Ã0 and B̃0:

Ã0 = Ã0c + δJ⊥ + δΣ(0, 0)− Z0JÃ0c

πc2
∆,

B̃0 = B̃0c +
Z0JÃ0c

πc2
∆ . (13)

To find the variation of the self-energy notice that, according to equation (7),
Γ(q,−ωq) ∝ q at ∆/c ∼ q ¿ 1. Therefore from (6) we find

δΣ(0, 0) ∝
∑
q

qδv2
q ∝ ∆2 ln

J

∆
. (14)
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Fig. 2. Functions f1(x) = [(d ln(∆/J)/dx)]−1 and f2(x) =
−[d ln(∆/J)/dx]2/d2 ln(∆/J)/dx2 versus x = J⊥/J (see text).

Terms linear in ∆ are cancelled out after substitution of (13) and (14) into
equation (12) and, neglecting logarithmic dependence, we find that

∆ ∝
√
δJ⊥ . (15)

Thus, the critical index in the Brueckner approximation is ν = 0 ·5. It is
known from nuclear and atomic physics (Dzuba et al. 1989) that the Brueckner
approximation usually works quite well even in systems with high density, but
parametrically it is justified only at the low density limit. In essence it is the
dilute gas approximation. It has been demonstrated (Kotov et al. 1998) that for
the model under consideration the actual small parameter is nb ln(J/∆), where
nb ≈ 0 ·1 is the density of the triplet excitations. It is clear that when the gap
is very small this parameter becomes large and the gas approximation can fail.
To analyse the situation numerically we plot in Fig. 2 the functions

f1(x) =

(
d ln(∆/J)

dx

)−1

, f2(x) = −
(
d ln(∆/J)

dx

)2/
d2 ln(∆/J)

d2x
, (16)
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where x = J⊥/J and ∆ is found from equations (6)–(10). For pure scaling
behaviour [∆ ∝ (δJ⊥)ν ] the function f1(x) is linear and the function f2 gives the
index: f2(x) = ν. Keeping in mind that when the gap is small [ln(J/∆)À 1] our
approximation is not justified, we conclude from the plot of f2 that the estimate
of the critical index is ν ∈ [0 ·6, 0 ·75] or

ν ≈ 0 ·67± 0 ·07 . (17)

Another way to look at the critical index is to expand the Brueckner equations
in powers of the density nb. In the leading approximation Zq = uq = 1 and
therefore the vertex (7) takes the form

Γ(q,−ωq) =

(∫
d2p

(2π)2

1
ωq + ωp + ωp−q

)−1

. (18)

In contrast to (7) it does not vanish at q → 0. Let us denote Γ(0, 0) = Γc. The
last terms in equations (13) are due to the quartic interaction H4 (4). This
interaction is relatively small and therefore we neglect these terms. Below we
prove that they are really small. So instead of equations (13) we have

Ã0 = Ã0c + δJ⊥ + δΣ(0, 0)

B̃0 = B̃0c . (19)

If we substitute this into (12) and neglect terms quadratic in ∆ we find that
variation of Ã0 must vanish:

δÃ0 = δJ⊥ + δΣ(0, 0) = 0 . (20)

The variation of the self-energy should be found from equation (6):

δΣ(0, 0) = 4
∫

d2q
(2π)2 Γ(q,−ωq)δv2

q + 4
∫

d2q
(2π)2 δΓ(q,−ωq)v2

q . (21)

The main contribution to the first integral in this formula comes from small
momenta (q ∼ ∆/c¿ 1) since

δv2
q = 1

2

{
δÃq

ωq

+ Ãqδ

(
1
ωq

)}
≈ − Ã0c∆2

4(∆2 + c2q2) 3
2
. (22)

The variation of Ã in this formula vanishes according to (20). Then the integral
can be easily evaluated and the result is −ΓcÃ0c∆/πc2. The main contribution
to the second integral in (21) comes from large momenta (q ∼ 1), where we can
write δΓ(q,−ωq) = Γ′δJ⊥. It is obvious from (18) that at J⊥ À J the derivative
is Γ′ = 3. However, we need this derivative near the critical point where the
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numerical calculation shows that Γ′ ≈ 2 ·9 independent of momenta. Altogether
the variation (21) can be represented as

δΣ(0, 0) ≈ −ΓcÃ0c

πc2
∆ + 4

3Γ′nbδJ⊥ , (23)

where nb = 3
∑

q v
2
q ≈ 0 ·12 is the density of spin-wave excitations at the critical

point. At this step we can check how small the neglected quartic interaction
term is in equations (13). The ratio of this term to the ‘∆-term’ in (23) is
J/Γc ≈ 0 ·15, since Γc ≈ 6 ·3J . After substitution of (23) into (21), we find the
relation between the gap and δJ⊥:

∆ ≈ πc2

ΓcA0c

(1 + 4
3Γ′nb)(J⊥ − J⊥c) ≈ 1 ·1(J⊥ − J⊥c) . (24)

The coefficient 1 ·1 corresponds to Γc ≈ 6 ·3J , A0c ≈ 2 ·4J , c ≈ 1 ·9J , Γ′ ≈ 2 ·9
and nb ≈ 0 ·12, which have been found by numerical solution of the linearised
in density equations (6), (8), (9) and (10). We remind the reader that the
linearisation means that the vertex is taken from (18) and the residues in (9)
are replaced by unity (Zq = 1). The numerical solution also gives ∆(J⊥) shown
in Fig. 1. The slope at J⊥ = J⊥c is in perfect agreement with the semianalytical
formula (24). Thus the leading term in powers of the density gives the critical
exponent ν = 1, the same as the mean field approximation.

Now, consider the first correction due to the triplet density nb. We keep
only those terms which contain additional ln q or ln(∆/J), so the parameter is
nb ln(∆/J). The nb ln(∆/J) terms arise only from expansion of the vertex (7).
Replacing u2

pu
2
q−p = (1 + v2

p)(1 + v2
q−p) ≈ 1 + v2

p + v2
q−p, we obtain

Γ(q,−ωq) =

(∫
d2p

(2π)2

1 + v2
p + v2

q−p

ωq + ωp + ωq−p

)−1

. (25)

After simple integration one can find that for small q (q ∼ ∆/c¿ 1) the vertex is

Γ(q,−ωq) ≈ Γc +
Γ2
cÃ

4πc2
lnq . (26)

Substitution into (21) gives the variation of the self-energy

δΣ(0, 0) ≈ −ΓcÃ0c

πc2
∆

(
1 +

ΓcÃ0c

4πc2
ln

∆
J

)
+ 4

3Γ′nbδJ⊥ , (27)

which together with equation (20) results in

∆ =
πc2

ΓcÃ0c

(1 + 4
3Γ′nb)δJ⊥

(
1− ΓcÃ0c

4πc2
ln
δJ⊥
J

)
. (28)
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Let us assume the scaling behaviour ∆ ∝ (δJ⊥)ν with ν = 1− β. Expanding this
formula in powers of β and comparing with (28), we find

ν = 1− ΓcÃ0c

4πc2
≈ 0 ·67± 0 ·04 , (29)

which agrees with the estimate (17) and with the result of the σ-model approach
ν ≈ 0 ·70 (Ferer and Hamid-Aidinejad 1986).

In conclusion, we have calculated the spin-wave critical index for the zero
temperature quantum phase transition in a two-layer Heisenberg antiferromagnet
using the Bruekner approach. The result is in agreement with that of the nonlinear
O(3) σ model. This agreement is due to the relative smallness of the quartic
interaction for the model under consideration. In this situation the hard-core
constraint is the most important and it is very natural that the result is similar
to that of the σ model. However, this situation is not general. There are many
models where the quartic interaction is very important. It can even produce
bound states of triplet spin waves (Sushkov and Kotov 1998) which effectively
changes the number of relevant degrees of freedom. In this situation one can
expect a very substantial deviation from the simple σ model. An important
example of such a system is the 2D J1− J2 model where the singlet bound state
has an extremely low energy (Kotov et al . 1999).
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