
C S I R O  P U B L I S H I N G

Australian Journal 
of Physics

Volume 52, 1999
© CSIRO Australia 1999

A journal for the publication of 
original research in all branches of physics 

w w w. p u b l i s h . c s i r o . a u / j o u r n a l s / a j p

All enquiries and manuscripts should be directed to 
Australian Journal of Physics
CSIRO PUBLISHING
PO Box 1139 (150 Oxford St)
Collingwood Telephone: 61 3 9662 7626
Vic. 3066 Facsimile: 61 3 9662 7611
Australia Email: peter.robertson@publish.csiro.au

Published by CSIRO PUBLISHING
for CSIRO Australia and 

the Australian Academy of Science

http://www.publish.csiro.au/journals/ajp
http://www.publish.csiro.au


Aust. J. Phys., 1999, 52, 887–93.

Observation of Fractal Conductance Fluctuations

over Three Orders of Magnitude∗

R. P. Taylor,A A. P. Micolich,A R. Newbury,A T. M. Fromhold B

and C. R. Tench B

A School of Physics, University of New South Wales,
Sydney, NSW 2052, Australia.

rpt@newt.phys.unsw.edu.au

B Physics Department, Nottingham University,
Nottingham, NG7 2RD, UK.

Abstract

Fractal magneto-transport properties of mesoscopic semiconductor billiards are highly topical.
In these studies, the magnetic field range over which fractal behaviour can be observed is
crucial. Previous observations have been limited to approximately one order of magnitude.
We present fractal conductance fluctuations observed over three orders of magnitude and
discuss the physical conditions required to extend this range.

1. Introduction

Measurements of device conductance as a function of magnetic field serve
as a powerful probe of electron transport phenomena in semiconductor systems
(Beenakker and van Houten 1991). This is particularly true for semiconductor
billiards—cavities which are smaller than the electron mean free path. The use
of electrostatic gates to define billiards within the two-dimensional electron gas
(DEG) formed at the interface of AlGaAs/GaAs heterostructures has become
well-established (Beenakker and van Houten 1991). In such a high mobility
environment, ballistic electron trajectories are predominantly shaped by the
confining walls of the billiard rather than scattering events induced by the
host material. Magneto-conductance fluctuations (MCF) then act as ‘magneto-
fingerprints’ of the classical electron trajectory statistics generated by the billiard’s
geometry (Jalabert et al . 1990; Marcus et al . 1992). Traditionally, billiards
have been modelled using hard walls, where the billiard has a flat bottom and
vertical walls of infinite height. More recent models, which incorporate the
realistic softwall profiles defined by electrostatic gates, predict that the classical
trajectory phase space will be ‘mixed’—containing both regions of chaotic and
stable behaviour (Ketzmerick 1996; Fromhold et al . 1998). At low temperatures,
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Fig. 1. Schematic diagram and
corresponding scanning electron
micrograph of the Sinai billiard.
Dimensions are in microns.

the electrons maintain phase coherence whilst traversing the billiard and quantum
interference effects become a probe of ‘quantum chaos’—the quantum behaviour
of a classical chaotic system. Following predictions that the quantum chaos
of a soft-walled billiard would be detected as fractal behaviour in the MCF
(Ketzmerick 1996), recent experiments have shown MCF to follow fractal scaling
across one order of magnitude in the magnetic field (Micolich et al . 1998; and see
the comment on Sachrajda et al . 1998 by Taylor et al . 1999). To investigate this
novel phenomenon, we consider the Sinai billiard shown in Fig. 1. For a Sinai
billiard described by hard walls, the circle at the centre of the square cavity acts
as a ‘Sinai diffuser,’ generating exponentially divergent trajectories (Sinai 1970;
Ott 1993). The role of a soft-walled Sinai diffuser, and in particular its effect on
fractal MCF, is of considerable interest. We present experimental results where
fractal MCF are observed over three orders of magnitude and discuss ways in
which this range could be extended further.
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2. Correlation Function F : Characterisation of Self-similarity

Fig. 2 shows the low temperature (50 mK) MCF generated by applying a
magnetic field perpendicular to the plane of the billiard. The electronic mean
free path (l = 25 µm) is significantly larger than the 1 µm cavity width, ensuring
ballistic transport. A striking similarity exists between the MCF patterns observed
at different magnifications. This scaling property is called exact self-similarity. In
contrast, the scaling properties of previous observations of fractal MCF followed
statistical self-similarity (Micolich et al . 1998; Taylor et al . 1999), where only the
statistical properties of the trace were invariant under scaling. More generally,
this occurrence of exact self-similarity in a physical system is rare: whereas
many mathematically generated fractal patterns possess exact self-similarity, most
physical fractals obey statistical self-similarity. To quantify this remarkable exact
self-similarity, we have introduced a correlation function F which mathematically
assesses the similarity of the MCF observed at different magnifications. The
self-similarity occurs at the four magnifications shown in Fig. 2 and we label these
levels as the ultra-coarse (uc), coarse (c), fine (f ), and ultra-fine (uf ) MCF levels.
Consider the similarity between the coarse and fine levels as an example. Defining
the c scale conductance amplitude as δGc(B) = Gc(B) − 〈Gc(B)〉 (where 〈 〉
represents an average performed over magnetic field) and the f scale conductance
amplitude as δGf (B) = Gf (B)− 〈Gf (B)〉, then conductance and magnetic field
scaling factors λG and λB can be determined which give the required result
δGc(B) ≈ λGδGf (λBB). The correlation function F quantifies the similarity:

F = 1−

√
〈{δGc(B)− λGδGf (λBB)}2〉

N
, (1)

Fig. 2. Four levels of exact self-similarity observed in the magneto-conductance of the Sinai
billiard: uc, c, f and uf . The temperature is T = 50 mK.
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where N is a normalisation constant which sets F = 1 when δGc(B) and
λGδGf (λBB) are identical traces and F = 0 if they are decorrelated. A
comparison between the coarse and fine levels gives F = 0 ·97, confirming the
exact self-similarity of the MCF.

3. Fractal Dimension DF: Characterisation of Fractal Behaviour

For the self-similar patterns to be fractal, the four levels must be described
by a fractal dimension DF which satisfies 1 < DF < 2 (Mandelbrot 1998). Most
definitions of DF are based on a concept by Hausdorff, where the amplitude
of the fractal structure observed at different magnifications has to scale as a
power law and DF is extracted from the exponent of this power law behaviour
(Mandelbrot 1998). Extending this concept to MCF, we quantify the magnetic
field scale of the nth level using ∆Bn, the full width at half maximum of the
central trough feature. The amplitude ∆Gn of the fractal structure in the nth
level is quantified by the height of this central trough feature. If fractal, ∆Gn
should scale with ∆Bn according to the following expression:

∆Gn ∝ (∆Bγn) , (2)

where DF = 2−γ. This behaviour is confirmed in Fig. 3 for the four levels shown
in Fig. 2. The four levels lie on a power law line (see later for the explanation
of why the uf level lies slightly below this line) and the result DF = 1 ·5 is
extracted from the gradient. We note that the levels lie at equal intervals along

Fig. 3. A linear fit to log10(∆G) versus log10(1/∆B). The solid dots represent the measured
values for the uc, c, f and uf levels. The open dot represents the anticipated zero-temperature
coordinate for the uf level based on the λG and λB values.
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this line, indicating a common magnetic field scaling factor ∆Bn/∆Bn+1 = λB
and a common scaling factor ∆Gn/∆Gn+1 = λG. For the data shown, λG = 3 ·7
and λB = 18 ·6.

The four MCF levels described by DF = 1 ·5 are observed across 3 ·7 orders of
magnitude in magnetic field. In contrast, previous observations of fractal MCF
have been restricted to approximately 1 order of magnitude (Micolich et al . 1998;
Taylor et al . 1999) and, more generally, a recent survey of fractal measurements in
physical systems revealed that the average range over which fractals are observed
is only 1 ·3 orders of magnitude (Avnir et al . 1998). Whereas fractals which are
observed over limited ranges are, in theory, no less fractal than those observed
over larger ranges (Mandelbrot 1998), the reliability of fitting to a power law
behaviour is intrinsically linked to the range over which the fit can be applied. A
larger range therefore lends confidence to the observation of fractal behaviour. In
light of this, we now discuss the physical parameters which determine the range
over which fractal behaviour is observed and also methods to extend this range.

4. Upper and Lower Cut-off Fields of Fractal Behaviour

The dashed vertical lines shown in Fig. 3 represent the observation limits.
Self-similarity is currently restricted to points lying between these dashed lines—the
experimentally observed levels of uc, c, f and uf MCF. We first consider the
lower cut-off. The ‘resolution limit’ is determined by the minimum separation
between data points taken in the experiment, which is 0 ·01 mT. Data lying to
the right of this line, corresponding to smaller ∆B values, cannot be resolved in
the present experiment. The close proximity of the uf structure to the resolution
line restricts the comparison of similarity between the f and uf structure in
Fig. 2. We note that the present resolution is already high: ∆Bu is two orders of
magnitude smaller than the fields scales observed in typical billiard experiments
and ∆Gu is less than 0 ·01% of the signal and approaches the experiment’s noise
floor. Further improvements to the resolution limits are expected to increase the
resemblance between the uf and f structures.

Improvements to the resolution limit alone will not allow the observation of a
fifth level at smaller ∆B. This is due to limitations imposed by the electrons’ phase
coherence length Lφ. The MCF originate from quantum interference of pairs of
electron trajectories which form closed loops and ∆B is inversely proportional to
the loops’ enclosed areas (Beenakker and van Houten 1991; Jalabert et al . 1990;
Marcus et al . 1992; Ketzmerick 1996). Thus points to the right of the diagram
are generated by loops with larger areas A and hence longer trajectory lengths L.
The fractal power law behaviour of Fig. 3 requires all the trajectories to remain
phase coherent. Trajectories longer than the phase coherence length Lφ contribute
less than expected to the quantum interference processes, resulting in smaller
contributions to ∆G. This will cause deviations from the power law line. The
condition L¿ Lφ must hold for the phase-breaking processes to have a minimal
effect on ∆G. As a rough estimate, if we assume ∆B = h/2eA (Beenakker and
van Houten 1991; Jalabert et al . 1990; Marcus et al . 1992; Ketzmerick 1996)
and that the loop of area A is circular, then we obtain characteristic trajectory
lengths L of 0 ·6, 1 ·5, 6 and 26 µm for the first (uc), second (c), third (f ) and
fourth (uf ) levels. For the uc, c and f levels, the coordinates lie on the power
law line, indicating that L ¿ Lφ. However, the uf coordinate lies below the
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power law line. The deviation is small (the adjacent bar represents 0 ·01% of the
signal: less than 0 ·05 Ω) suggesting that L is of the order of Lφ for the uf level.
Therefore the trajectories associated with higher levels (i.e. with L longer than
that of the uf level) will not be phase coherent and self-similar MCF are not
expected. There are two possible solutions to this problem. The first solution is
to increase Lφ by defining billiards in higher quality host material. The second
solution is to move the levels up the power law line. This can be achieved by
reducing the billiard area AB, which in turn reduces the characteristic loop areas
(hence reducing L and the damping of ∆G due to phase breaking) and increases
the ∆B values of each level of MCF structure (hence allowing features to be
better resolved).

It is not clear, however, how a decrease inAB will affect the nature of the quantum
interference processes. For the 1 µm billiard, the energy level spacing in the billiard
∆E = 2πh̄2/m∗AB is 9 µeV. The corresponding Heisenberg time τH = h̄/∆E can
be converted into an approximate ∆B assuming L = vFτH (≈15 µm), A = L2/4π
and ∆B = h/2eA. This is indicated in Fig. 3 as the ‘SC limit’. To the right of
this value, the trajectory traversal times exceed τH and the semiclassical picture
of quantum interference processes do not necessarily hold (Clarke et al . 1995).
For the 1 µm billiard, the uc, c and f levels satisfy the semiclassical condition but
the uf data lie slightly beyond. If the size of the billiard is reduced, the SC limit
will shift to the left and may start to affect the self-similarity of all the levels.
Experiments are planned to investigate the effect of billiard size on self-similarity.
This potential problem with scaling the billiard size also restricts improvements
to the upper cut off. The ‘field limit’ represents the magnetic field BL = h̄kF/eW
at which the radius of curvature of the electron trajectories becomes comparable
to that of the Sinai billiard’s width W . At higher magnetic fields the electron
trajectories begin to form skipping orbits: data lying on different sides of this
‘field limit’ line will be in different transport regimes and cannot be used for
comparisons of self-similarity. In Fig. 3, the uc level lies on the upper cut-off line
and this causes the reduced similarity observed in Fig. 2 between the uc and c
levels. One possible way to move the ‘field limit’ line to the left is to reduce the
size of the billiard, but as discussed above, this might affect the self-similarity
of the existing levels. An alternative solution is to lower the electron density
ns which reduces kF through kF = (2πns)1/2. In particular, billiards fabricated
with a back-gate could fine tune ns in order to move the field limit to the left.

Finally, in addition to increasing the magnetic field range over which the
power law behaviour is observed, it is also desirable to increase the number of
levels observed within a given magnetic field range. Our results indicate that
an increase in the number of modes in the entrance and exit ports reduces λB
and hence the spacing between the different levels. Experiments are planned to
examine this effect further.
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