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Abstract

Bond lengths for diatomic molecules are predicted from atomic radii derived from free atom
one-electron densities by postulating shielding factors for their valence electrons that depend
on orbital angular momentum and on the bond order. The predicted values are closer to
spectroscopically measured bond lengths than those based on earlier atomic radii inferred
from a wider range of structural evidence. The bond lengths predicted by the sum of the
atomic radii are corrected by a reduction that allows for charge transfer and by an extension
associated with exchange repulsion of the overlapping electrons in the inter-nuclear region.
Both corrections are related to free atom one-electron densities.

1. Atomic Radii from Structural Data

The distance between atoms is a measure of the nature and strength of the
interactions between them, and thus a bond length should be predictable if
the corresponding bond strength is known. Conversely, detailed information
on atom–atom interactions can be inferred from known structural geometry.
Geometrical data on crystal structures have been provided by diffraction analyses
at an increasing rate since the pioneering experiment of von Laue in 1912
(Friedrich et al. 1912).

By 1920, W. L. Bragg (1920) had ascertained that many crystal structures
could be approximated by tightly packed assemblies of spherical atoms, each of
which was assigned a radius characteristic of that particular element. To first
order those interatomic distances within crystals could be approximated by sums
of radii for spherical model atoms. Using the relatively limited data available,
Bragg derived radii from which it was possible to determine interatomic distances
for several hundred crystals to within an average deviation of 0 ·06 Å. Some
individual discrepancies however, were as large as ∼10%.

Extensive work on the theory of ionic compounds prior to 1920 made it
seem logical to seek better agreement between calculated and measured bond
lengths for ionic crystals by developing separate ionic radii. Ionic radii were first
determined by Landé (1920), and were subsequently adjusted in a long sequence
of progressively more elaborate modifications, aimed at bringing the predictions
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into closer agreement with experiment. A detailed history of atomic/ionic radii
can be found in Pauling (1960), Slater (1965) and Shannon and Prewitt (1969).

Pauling (1927) noted that bond lengths are a function not only of the electron
distribution of the atoms (which extends infinitely), but also of the crystal
structure, and on the nature of the bonding, being ionic, covalent, metallic or
somewhere in between, and realised that it was not possible to assign a single
unique radius to an atom or ion. For example, the O atom size implied by the
bond length of 1 ·21 Å for O2 (Spackman and Maslen 1986) is substantally smaller
than that indicated by the O–O distance of 1 ·49 Å in H2O2 (Wyckoff 1963).

Similarly, Zachariasen (1931) derived a set of radii which could be corrected
for coordination number, bond type (i.e. single, double . . ., which he referred to
as valence) and for radius ratio. He noted that the agreement of his radii with
those of Goldschmidt and Pauling, though excellent for small valences, was not
so good for multiply charged ions. He stated: ‘This lack of agreement in the
latter case may be due to the fact that the conception of ionic bindings cannot
be maintained for such ions.’

With increasing refinements, ionic radii applicable to selected groups of
interatomic distances can indeed be predicted more reliably, but the improved
precision incurs a high cost in reduced generality. For example, cation radii
appropriate for oxides do not predict accurate bond lengths for nitrides and
sulfides (O’Keeffe and Hyde 1981). Such radii often lack clarity or uniqueness in
their definition, e.g. some are obviously un-physical, such as the negative radii
sometimes assigned even to such regularly behaved atoms as carbon (O’Keeffe
and Hyde 1981).

Fumi and Tosi (1964) determined a set of ionic radii for the alkali halides.
Their most significant conclusion was that rc/ra, where rc is the cation radius
and ra the anion radius, is much larger than that in all the other traditional sets
of radii, rc being ∼0 ·2 Å larger, and ra ∼ 0 ·2 Å smaller than the traditional
radii. As traditional radii refer to free ions, it is physically reasonable that ions
in a crystal will be distorted from the free state.

Wavefunctions calculated for ions in crystals show a tightening of the electron
density for anions, and relaxation for cations, compared with free ions (Seiler
and Dunitz 1986). Smaller anions have the advantage of eliminating any need to
assume negative radii for IIIC4+ in the carbonate group and IIIN5+ in the nitrate
group. However, Shannon and Prewitt (1969) noted that, even using the Fumi
and Tosi radii, it is not possible to achieve a completely positive set of crystal
radii, e.g. for HF, r(F−) = 1 ·199 Å, implying that r(H+) must be −0 ·28 Å.

Slater (1964, 1965) noted that: ‘. . . atoms in a crystal tend to be more nearly
neutral than a straight ionic interpretation would suggest.’ He extended Bragg’s
original values to include data for 1200 diatomic molecules. With no elaborate
corrections for coordination number (CN) or other effects such as radius ratio or
ionic charge, those radii determine interatomic distances for elements, inter-metallic
compounds and other non-ionic compounds as well as ionic compounds to an
average accuracy of 0 ·12 Å. Some Slater radii differ significantly from Bragg’s,
mainly because they were optimised to fit many more interatomic distances, some
of which were revised after Bragg’s paper was published. Slater’s radii are within
a few hundredths of an angstrom of the tetrahedral covalent values determined
by Pauling and Huggins (1934). As the latter were calibrated against half the
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elemental interatomic distance by principles similar to those used by Slater, that
is not surprising (Slater 1964, 1965; Pauling 1960). Pauling and Huggins also
determined covalent radii for other coordination numbers which, along with the
metallic radii by Pauling (1960), also resemble Slater’s values.

The bond valence model (BVM), which originates from Pauling (1929), relates
bond lengths to bond strengths explicitly. In the resulting principle of local charge
balance, the sum of the strengths of the bonds from cations must neutralise the
charge of the anion on which they terminate. The ultimate aim in the BVM
approach is to identify empirical dAB(s) functions which allow bond lengths in
new structures to be predicted accurately when the bond strengths are known.
It would also allow bond strengths to be evaluated when the bond lengths are
known. The BVM, by avoiding the need for individual radii, requires no a
priori assumptions regarding the nature of the bonds. The BVM, while not
affected by bonding character, is strongly constrained by such electronic effects
as Jahn–Teller distortion and the stereo-chemical role of lone pairs of electrons
(Brown 1992; Urusov 1995).

Bonded radii have been defined as the distance from the centre of an atom to
the minimum in the total electron density (e.g. Gibbs et al. 1992). As the electron
density distributes itself in such a manner as to minimise the total energy of
the configuration, such a definition should provide physically reasonable radii. It
would also be consistent with the Hohenberg and Kohn (1964) theorem. Bonded
radii differ from standard crystal and ionic radii in that they are not constant
for a given coordination number. As the definition depends on, for example,
bond length and the anion to which each cation is bonded, such radii are not
unique. However, the Fumi and Tosi (1964) radii match the Gibbs’ values better
than they match more traditional ionic radii.

Taking the saddle points as the dividing points in theoretical electron density
studies yields ionic charges that are significantly less than the formal values.
Attempts to derive experimental ionic radii by dividing experimental electron
density maps into regions of integral charge, while subject to large experimental
uncertainties, also support the view that early sets of radii were too large for
anions, while the values for cations were too small. Although it is often assumed
that attraction between charges of opposite sign reduces the bond lengths in
polar compounds, that argument may be over-simplified and contrary opinions
have been expressed. O’Keeffe (1981) pointed out that it is a mistake to divide
bonds in ratios proportional to properties of free ions where the electrostatic
potential expands cations and contracts anions. This is a mistake because it
does not fit the evidence and it is intrinsically erroneous.

Spackman and Maslen (1986) determined diatomic promolecular radii, with
a minimum number of pre-conceptions on the chemical nature of the bonding
involved, by evaluating the distance from the nucleus to the minimum in the
promolecule electron density ρpro(r) along the internuclear vector. The radii
derived for promolecules were closely similar to those evaluated from molecular
electron densities in the same way. Deformation of the electron density by
bonding thus has little effect on the radii derived from electron distributions,
which are largely determined by the promolecule.

No single set of uncorrected radii can reproduce bond lengths in all different
types of molecules and crystals accurately. As Slater (1964, 1965) and Gibbs et al.
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(1992) have pointed out, the deformations of atoms in crystals are small, indicating
that radii determined from promolecular densities would be an ideal starting
point. These radii can then be corrected for first-order two-atom interactions
such as exchange and charge transfer, to estimate bond lengths. This follows the
idea of Pauling, but the initial radii are for neutral atoms rather than ions.

2. Atomic Radii from Electron Densities

The precision with which interatomic distances can be predicted is limited
ultimately by the understanding of the component interactions that, taken
together, constitute inter-atomic forces. That understanding can be improved
by relating the interatomic distances dAB to electron densities by formulae that
reflect the physical nature of the interactions between the atoms A and B. Atomic
radii that closely approximate the experimental bond lengths dAB ∼ rA + rB

are derived from the atomic electron densities used to calculate a standard set
of atomic form factors (Mann 1988; Mann and Waber 1973). The interatomic
distances predicted by those radii are then modified to allow for charge transfer
and exchange effects related to the bonding scenario. The formulae for predicting
molecular geometry emphasise physical principles, precision in the predictions
being secondary to clarity of understanding.

Atomic radii for limiting cases that serve as upper and lower bounds are readily
calculated from electron densities. The systematic deviations of the measured
bond lengths from the predictions of these limiting models are a guide to the
factors responsible for the deviations. A core radius rc can be defined by

4π

rc∫
0

r2ρ(r) dr = Z − nv , (1)

where nv is the number of valence electrons and the atomic number is

Z = 4π

∞∫
0

r2ρ(r) dr . (2)

The lower bounds to the bond lengths derived from the rc values for fluorides
are shown in Fig. 1.

The true bond lengths correlate well with sums of rc values, but are systematically
larger, by amounts that are proportionately greater for the lighter anions. The
extreme outlier is the H atom, which has no core, and thus rc is zero. An
expectation value for the valence electron radius, defined by

〈rv〉 =

∞∫
rc

r3ρ(r) dr
/ ∞∫

rc

r2ρ(r) dr (3)

sets an upper bound to bond lengths and, as seen for fluorides in Fig. 2, gives
moderately reliable radii for anions. It has serious deficiencies as a measure of
cation radii, for which the averages over their very diffuse valence distributions
are too large.
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Fig. 1. Comparison of
∑
rc versus the experimentally measured bond lengths for the fluorides.

Fig. 2. Comparison of
∑
〈rv〉 versus the experimentally measured bond lengths for the

fluorides.

A best valence shielded atomic (VSA) radius rVSA for the atom with electron
density ρ(r) can be defined by

4π

rVSA∫
0

r2ρ(r) dr = Z − nv +Nv , (4)
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where the number Nv =
∑
s wsNs of valence electrons that shield the neighbouring

nucleus from the electrostatic field of each atom is determined by a weighted
sum over the valence electron subshells, each containing Ns electrons.

The weights ws that measure the impenetrability of the valence subshells
depend both on the number and electronic states of the electrons as well as
on their involvement in bonding. Each subshell’s valence electrons, subdivided
into bonded and non-bonded categories, are assigned the weights, which were
empirically determined to give the best fit for the largest number of compounds,
indicated in Table 1. These values are consistent with bonding ‘ability’, e.g.
the singly bonded p electron’s low weight reflects the p state’s effectiveness in
bonding. Although d electrons are not involved strongly in chemical bonding (see
e.g. Harrison 1980), it is known from the change in effective radii for metals, when
undergoing transitions from low to high spin states, that interatomic distances
between atoms with unpaired d electrons are affected significantly by their electron
spin configurations (e.g. van Santen and van Wieringen 1952; Blasse 1965).

Table 1. Valence electron weights

Valence electron type ws

Singly bound s electron 0 ·16
Doubly or triply bound s electron 0 ·21
Unbonded s electron 0 ·55
Singly bound p electron 0 ·10
Doubly or triply bound p electron 0 ·20
Unbonded p electron 0 ·64

Unbound s and p electrons are in the outer subshells where the overlap is less,
and hence have large weights. For a small number of d electrons the d subshell
is extended. Its properties are closer to those of valence electrons than those for
d subshells which are more nearly complete. Heavily occupied but incomplete d
subshells resemble core electrons more closely. In contrast with s and p subshells,
where the simple weights in Table 1 suffice, the d electron weights postulated
depend on the d subshell occupancy according to the formulae:

Ns(d) =
∑
s

[w ↑s N ↑s +w ↓s N ↑↓s] , (5)

where w ↑= wtd1 ↑ +wtd ↑ ×N ↑↓, and w ↓= wtd1 ↓ +wtd ↓ ×N ↑↓ and
wtd1 ↑= wtd1 ↓, wtd2 ↑= wtd2 ↓.

Here N ↑ is the larger of the numbers of d electrons in the up or down
spin configurations, and N ↑↓ is the number of spin paired electrons. The bond
lengths involving atoms with paired d electrons on the right-hand side of the
transition series may also involve factors additional to those encountered for the
first half of the transition series. The d electron contribution to Nv ideally
requires two sets of weights, but for the limited number of diatomic molecules for
which accurate spectroscopic bond lengths are available it suffices to choose the
empirically optimised weights, wtd1 = 0 ·6 and wtd2 = 0 ·078. Applying Hund’s
maximum multiplicity rule, five or fewer d electrons all occupy the same spin
state. In such cases Nv(d) =

∑
s wsNs resembles the form used for s and p

electrons.
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Table 2. VSA single bond radii in Å compared with values by Slater (1964, 1965)

Element Slater (Å) VSA radii (Å) Element Slater (Å) VSA radii (Å)

H 0 ·25 0 ·36 K 2 ·20 1 ·88
Ca 1 ·80 1 ·73

Li 1 ·45 1 ·24 Sc 1 ·60 1 ·45
Be 1 ·05 1 ·01 Ti 1 ·40 1 ·32
B 0 ·85 0 ·88 V 1 ·35 1 ·28
C 0 ·70 0 ·76 Cr 1 ·40 1 ·13
N 0 ·65 0 ·66 Mn 1 ·40 1 ·40
O 0 ·60 0 ·59 Fe 1 ·40 1 ·21
F 0 ·50 0 ·53 Co 1 ·35 1 ·11

Ni 1 ·35 1 ·08
Na 1 ·80 1 ·40 Cu 1 ·35 1 ·32
Mg 1 ·50 1 ·28 Zn 1 ·35 1 ·18
Al 1 ·25 1 ·26 Ga 1 ·30 1 ·23
Si 1 ·10 1 ·17 Ge 1 ·25 1 ·20
P 1 ·00 1 ·07 As 1 ·15 1 ·14
S 1 ·00 0 ·98 Se 1 ·15 1 ·08
Cl 1 ·00 0 ·90 Br 1 ·15 1 ·02

Although most of the resulting VSA radii listed in Table 2 are within a few
hundredths of an angstrom of those determined by Slater (1964), differences for
some alkali and transition metals range up to a few tenths of an angstrom.
In so far as the accuracy of bond length predictions is limited mainly by our
restricted understanding of two-atom contributions, there is little point in trying
to evaluate the atomic radii more precisely. If our understanding of the two atom
effects progresses to a degree such that the errors in their prediction are reduced,
more elaborate specification of the valence electron weights would be justified.

3. Diatomic Molecule Bond Lengths from Atomic Radii

The diatomic molecules are an archetypal set of compounds suitable for testing an
electron density approach to predicting interatomic distances. Spectroscopically
measured bond lengths (Huber and Herzberg 1979) for diatomic fluorides, hydrides
and oxides are compared with the sum of the VSA radii in Tables 3 to 5. The
r.m.s. discrepancies between the sum of the VSA radii and the experimental
bond lengths for the first, second and third row hydrides, fluorides and oxides,
is 0 ·12 Å, compared with 0 ·24 Å for the sum of Slater’s atomic radii for the
same set of 72 diatomic molecules. The former is the same as Slater’s value of
0 ·12 Å reported for a more extensive set of compounds. The r.m.s. deviation for
the sum of the Bragg (1920) radii for the relevant subset of these compounds is
0 ·32 Å.

The best atomic values for most first, second and third row hydrides approximate
spectroscopic measurements within 0 ·05 Å, with the exceptions being dNaH(0 ·12
Å), dMgH(0 ·08 Å), dCaH(−0 ·09 Å) and dGaH(0 ·07 Å). The best atomic values for
the first, second and third row fluorides are poor approximations to spectroscopic
measurements, being approximately 10% longer at the electropositive end of the third
row, and 34%, 14% and 8% too short at the electronegative end of the first, second
and third rows respectively. The best atomic values for the oxides are too large at
the electropositive end of the third row (11%), and too short at the electronegative
end (19%, 6%, 5%), but the discrepancies are less serious than those for the fluorides.
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Table 3. Bond lengths for fluorides

Experimental (Huber and Herzberg 1979),
∑

VSA radii,
∑

VSA radii corrected for charge
transfer,

∑
VSA radii corrected for exchange and

∑
VSA radii corrected for both charge

transfer and exchange

dexp (Å) d∑VSA (Å) dct (Å) dexch (Å) dct+exch (Å)

H 0 ·916808 0 ·8892 0 ·8022 0 ·9564 0 ·8694
Li 1 ·563864 1 ·7616 1 ·5615 1 ·7627 1 ·5626
Be 1 ·3610 1 ·5391 1 ·3494 1 ·5449 1 ·3552
B 1 ·26259 1 ·4071 1 ·2524 1 ·4227 1 ·2680
C 1 ·2718 1 ·2885 1 ·1896 1 ·3241 1 ·2251
N 1 ·31698 1 ·1902 1 ·1408 1 ·2666 1 ·2172
O 1 ·326 1 ·1132 1 ·0937 1 ·2727 1 ·2532
F 1 ·41193 1 ·0519 1 ·0519 1 ·4119 1 ·4119
Na 1 ·925947 1 ·9288 1 ·7763 1 ·9298 1 ·7772
Mg 1 ·7500 1 ·8087 1 ·6444 1 ·8119 1 ·6477
Al 1 ·654369 1 ·7839 1 ·6007 1 ·7899 1 ·6068
Si 1 ·6011 1 ·6952 1 ·5321 1 ·7067 1 ·5437
P 1 ·5897 1 ·5940 1 ·4716 1 ·6163 1 ·4939
S 1 ·600574 1 ·5025 1 ·4188 1 ·5455 1 ·4618
Cl 1 ·628313 1 ·4227 1 ·3712 1 ·5145 1 ·4630
K 2 ·171457 2 ·4019 2 ·2327 2 ·4025 2 ·2332
Ca 1 ·967 2 ·2542 2 ·0473 2 ·2558 2 ·0489
Ga 1 ·774369 1 ·7558 1 ·6168 1 ·7634 1 ·6245
Ge 1 ·7452 1 ·7212 1 ·5874 1 ·7329 1 ·5991
As 1 ·7360 1 ·6647 1 ·5553 1 ·6842 1 ·5748
Se 1 ·7408 1 ·6040 1 ·5188 1 ·6381 1 ·5529
Br 1 ·75894 1 ·5455 1 ·4820 1 ·6124 1 ·5489

However, it is important to note that the oxides differ from the fluorides and
hydrides in that a number of them contain double bonds. This requires Ns (the
number of valence electrons) to change from one to two. The double bond O–O
calculated is 10 ·6% too short.

Hydrides differ from oxides and fluorides, in that hydrogen does not have a core.
Obviously, the agreement between calculated and experimental bond lengths can
be improved if the weights in Table 1 are made dependent on quantum number.
The agreement can, in fact, be made almost perfect by using a sufficiently large
set of empirically determined parameters.

Although judgement of the reliability of the model bond lengths for transition
metal diatomics is impeded by a paucity of data, the consistent accuracy of the
predictions for the first, second and third row hydrides and oxides encourages
confidence in the transition metal radii. The densities used to predict bond
lengths for Cr (in CrO) and for Cu (in CuH and CuO) are those for 3d44s2

and 3d94s2 configurations (Abdallah and Mann 1995), whereas the free atom
ground state configurations are 3d54s1 and 3d104s1 for Cr and Cu respectively.
The 3dn4s2 and 3dn+14s1 states are almost degenerate (Maslen and Trefry
1988), and thus the use of a non ground-state configuration is an acceptable
approximation. The longer bond lengths calculated using the 3d54s1 and 3d104s1

densities were anomalous, producing discordant peaks in the plots of calculated
versus experimental bond lengths. Those determined from the 3d44s2 and 3d94s2

densities fit more smoothly on to the curve defined by the experimental bond
lengths for the remaining diatomic transition hydrides and oxides.
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Table 4. Bond lengths for hydrides

Experimental (Huber and Herzberg 1979),
∑

VSA radii,
∑

VSA radii corrected for charge
transfer,

∑
VSA radii corrected for exchange and

∑
VSA radii corrected for both charge

transfer and exchange

dexp (Å) d∑VSA (Å) dct (Å) dexch (Å) dct+exch (Å)

H 0 ·74144 0 ·7265 0 ·7265 0 ·7390 0 ·7390
Li 1 ·5957 1 ·5989 1 ·5356 1 ·5991 1 ·5358
Be 1 ·3426 1 ·3764 1 ·3330 1 ·3775 1 ·3341
B 1 ·2324 1 ·2444 1 ·2259 1 ·2473 1 ·2288
C 1 ·1199 1 ·1258 1 ·1196 1 ·1325 1 ·1262
N 1 ·03621 1 ·0275 0 ·9932 1 ·0418 1 ·0074
O 0 ·96966 0 ·9505 0 ·8887 0 ·9803 0 ·9184
F 0 ·916808 0 ·8892 0 ·8022 0 ·9564 0 ·8694
Na 1 ·8874 1 ·7661 1 ·7117 1 ·7663 1 ·7119
Mg 1 ·7297 1 ·6460 1 ·5997 1 ·6466 1 ·6003
Al 1 ·6478 1 ·6212 1 ·5763 1 ·6223 1 ·5774
Si 1 ·52010 1 ·5325 1 ·4988 1 ·5346 1 ·5009
P 1 ·42234 1 ·4313 1 ·4160 1 ·4355 1 ·4201
S 1 ·3409 1 ·3398 1 ·3359 1 ·3478 1 ·3439
Cl 1 ·274552 1 ·2600 1 ·2366 1 ·2771 1 ·2537
K 2 ·2425 2 ·2392 2 ·1813 2 ·2393 2 ·1814
Ca 2 ·0025 2 ·0915 2 ·0304 2 ·0918 2 ·0307
Sc
Ti
V
Cr
Mn 1 ·7311 1 ·765 1 ·7246 1 ·7705 1 ·7306
Fe
Co
Ni 1 ·4756 1 ·4396 1 ·4071 1 ·4491 1 ·4166
Cu 1 ·46263 1 ·4591 1 ·4312 1 ·4681 1 ·4402
Zn 1 ·59490 1 ·5424 1 ·5167 1 ·5501 1 ·5244
Ga 1 ·6630 1 ·5931 1 ·5583 1 ·5945 1 ·5598
Ge 1 ·5880 1 ·5585 1 ·5291 1 ·5607 1 ·5313
As 1 ·5344 1 ·5020 1 ·4865 1 ·5056 1 ·4901
Se 1 ·475 1 ·4413 1 ·4388 1 ·4477 1 ·4451
Br 1 ·414435 1 ·3828 1 ·3727 1 ·3953 1 ·3852

For the transition metal hydrides the sum of the VSA radii is a good
approximation to the experimentally determined bond lengths, the discrepancies
being within 0 ·05 Å. In comparison, for the transition metal oxides, sums of
the VSA radii poorly approximate the bond lengths, especially for the metals of
lower atomic number. The predicted bond length for ScO is 14% longer than
the experimental value.

All calculated transition metal oxide bond lengths are larger than the
experimental values, except for the case of CuO (1 ·55 Å calculated versus 1 ·72437
Å experimental). This discrepancy raises the remote possibility that the CuO
bond is single, which is reinforced by the fact that Cu is the only heavy transition
metal for which a stable diatomic oxide has been reported. The possibility that
the properties of CuO differ from those of the oxides for Co, Ni and Zn was
explored by ab initio calculations. Attempts using Spartan 3 ·1 ·4d (1994) failed
to converge. Similar calculations using Gaussian 92/DFT (1993) with methods
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Table 5. Bond lengths for oxides

Experimental (Huber and Herzberg 1979),
∑

VSA radii,
∑

VSA radii corrected for charge
transfer,

∑
VSA radii corrected for exchange and

∑
VSA radii corrected for both charge

transfer and exchange

dexp (Å) d∑VSA (Å) dct (Å) dexch (Å) dct+exch (Å)

H 0 ·96966 0 ·9505 0 ·8887 0 ·9803 0 ·9184
Li 1 ·728 1 ·8230 1 ·6619 1 ·8234 1 ·6624
Be 1 ·3309 1 ·4482 1 ·2691 1 ·4519 1 ·2728
B 1 ·2045 1 ·2938 1 ·1490 1 ·3056 1 ·1608
C 1 ·128323 1 ·2298 1 ·1306 1 ·2551 1 ·1560
N 1 ·15077 1 ·1546 1 ·1138 1 ·2073 1 ·1665
O 1 ·20752 1 ·0913 1 ·0913 1 ·1986 1 ·1986
F 1 ·326 1 ·1132 1 ·0937 1 ·2727 1 ·2532
Na 2 ·07 1 ·9902 1 ·8627 1 ·9906 1 ·8631
Mg 1 ·7490 1 ·7085 1 ·5550 1 ·7106 1 ·5571
Al 1 ·6179 1 ·6379 1 ·4618 1 ·6424 1 ·4664
Si 1 ·509739 1 ·6123 1 ·4468 1 ·6204 1 ·4548
P 1 ·4759 1 ·5401 1 ·4144 1 ·5550 1 ·4293
S 1 ·481087 1 ·4664 1 ·3833 1 ·4944 1 ·4113
Cl 1 ·56963 1 ·4840 1 ·4432 1 ·5247 1 ·4839
K 2 ·22 2 ·4633 2 ·3056 2 ·4635 2 ·3058
Ca 1 ·8221 2 ·1412 1 ·9166 2 ·1422 1 ·9177
Sc 1 ·66826 1 ·9029 1 ·6693 1 ·9542 1 ·7206
Ti 1 ·62022 1 ·7885 1 ·5658 1 ·8529 1 ·6301
V 1 ·58932 1 ·7502 1 ·5393 1 ·8210 1 ·6101
Cr 1 ·615 1 ·7752 1 ·5860 1 ·8449 1 ·6556
Mn 1 ·769 1 ·8671 1 ·7215 1 ·9289 1 ·7834
Fe 1 ·6395 1 ·6924 1 ·5369 1 ·7719 1 ·6164
Co
Ni
Cu 1 ·72437 1 ·5883 1 ·4784 1 ·6819 1 ·5721
Zn
Ga 1 ·7436 1 ·6452 1 ·5140 1 ·6513 1 ·5201
Ge 1 ·624648 1 ·6461 1 ·5058 1 ·6545 1 ·5142
As 1 ·6236 1 ·6114 1 ·4991 1 ·6246 1 ·5123
Se 1 ·6484 1 ·5661 1 ·4836 1 ·5884 1 ·5059
Br 1 ·7172 1 ·6069 1 ·5533 1 ·6365 1 ·5829

such as UHF, MP2 and QCISD and with basis sets such as lanl1dz and lanl1mb,
converged slowly to anomalously long bond lengths ranging from 1 ·86 to 2 ·02
Å. Other investigators have achieved somewhat shorter bond lengths for CuO,
such as 1 ·79 Å (Moriarty 1995), which while being a closer approximation to
the experimental bond length, is still too long.

The alkali diatomics provide a further comparison of VSA radii with Slater’s
(1965) values (shown in Table 6) that is particularly definitive because two-atom
corrections for charge transfer and exchange effects should be very small for
these molecules. The bond lengths calculated using Slater’s atomic radii are on
average about 0 ·42 Å too large for these compounds. The VSA radii infer bond
lengths that are on average 0 ·22 Å too small. Slater’s predictions of diatomic
bond lengths for diatomic molecules are too large, mainly because they were
derived from data that include the longer bond lengths that occur in solids. In
this electron density approach it is expected that the increased bond lengths for
solids will be described by the two-atom contributions.
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Table 6. Comparison of Slater and VSA radii bond lengths for the alkali diatomics

dexp (Å) dSlater (Å) ∆ Slater (Å) d∑VSA (Å) ∆
∑

VSA (Å)

Li2 2 ·6729 2 ·90 0 ·23 +2 ·471 −0 ·20
Na2 3 ·07887 3 ·60 0 ·52 +2 ·806 −0 ·27
K2 3 ·9051 4 ·40 0 ·49 +3 ·752 −0 ·15
LiNa 2 ·81 3 ·25 0 ·44 +2 ·639 −0 ·17
LiK 3 ·27 3 ·65 0 ·38 +3 ·112 −0 ·16
NaK 3 ·589 4 ·00 0 ·41 +3 ·279 −0 ·31

Fig. 3. Comparison of the calculated and Pauling electronegativities for the hydrides.

4. Electron Density and Electronegativity

The relationship between electron density and electronegativity was previously
reported by Sanderson (1952, 1954). Similarly, in these studies, a strong correlation
is noted between χPauling and the electron density at the VSA radius, ρb. This
correlation follows from the empirically determined relationship

χcalc = 0 ·88 + 0 ·30ρb . (6)

The close agreement between χcalc and χPauling is shown in Fig. 3. The r.m.s.
discrepancy between the χcalc and χPauling for first row atoms is 0 ·27. There is
closer agreement for the second row (r.m.s. deviation = 0 ·06) and for the latter
half of the third row (r.m.s. deviation = 0 ·09). While following the general shape
given by the Pauling electronegativities, the electronegativities calculated for the
transition metals are generally lower by a factor of 0 ·1, the r.m.s. deviation
being 0 ·13 for those elements. The largest difference between χcalc and χPauling

is for H, and could be the extreme case of the tendency for χ to increase beyond
what is allowed for in equation (6) at low atomic radius. Hydrogen, due to
its lack of a core, tends to be an outlier in chemical bonding theory generally.
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The consequences for bond length prediction are minor, because the exchange
corrections for the hydrides are small.

5. Two Atom Components

The experimental values deviate from the first order approximations obtained
by summing atomic radii partly because of effects that depend on the nature of
the bonding interactions involved. Thus changes in bond length originate in the
transfer of electrons between atoms with different electronegativities. Electron
transfer from atom A to atom B is expected to reduce dAB because of Coulomb
attraction between opposite charges that involve integrals over electron densities.
The promolecule charges ∆Qpro (Maslen and Etschmann 2000, present issue p.
299) determined by partitioning overlapping atomic electron density in proportion
to atomic potentials are approximately proportional to real charges. A charge
transfer correction, arbitrarily calibrated on LiF which has a large ∆Qpro, has
the form

∆dct = −∆dLiF

∣∣∣∣ ∆Qpro

∆Qpro(LiF)

∣∣∣∣ , (7)

where ∆dct is the change in the bond length due to the charge transfer correction,
∆dLiF = 0 ·20 Å is the difference between the experimental bond length and that
calculated from the sum of the VSA radii, and ∆Qpro(LiF) = 0 ·975e.

For the same set of the first, second and third row hydrides, fluorides and
oxides, the r.m.s. bond length deviation, corrected for charge transfer increases
slightly to 0 ·13 Å. The charge transfer correction has the effect of shortening
dAB and thus reducing the bond lengths at the electropositive end of the row
which are too long in most cases. Discrepancies between predicted and observed
bond lengths for the strongly hetero-nuclear diatomics such as the alkali halides
are generally brought to within 5%. The exceptions contain Na or Mg, for which
all calculated bond lengths are consistently too short.

Bond lengths at the electronegative end that are already too short decrease
further. The charge transfer correction improves the agreement between calculated
and experimental bond lengths for electropositive third row fluorides significantly
(Table 3), but mildly impairs the agreement for hydrides (Table 4). It also
improves the agreement for the electropositive third row oxides (Table 5). A
slight improvement wrought by the charge transfer correction for MnH was offset
by slight deteriorations for the other transition metal hydrides. The charge
transfer correction improves the agreement markedly for the first half of the
transition metal oxides, but agreement for CrO, FeO and CuO deteriorates.
Although the charge transfer correction effectively introduces a discontinuity at
FeO, lack of experimental data for the heavier transition metal oxides precludes
the development of more reliable corrections for those compounds.

The largest systematic discrepancies between measured and predicted bond
lengths corrected for charge transfer are the under-estimated lengths of bonds
between strongly electronegative atoms such as F2, for which the experimentally
measured bond lengths exceeds the predicted value by 0 ·36 Å. Those discrepancies
are the expected consequence of exchange depletion of the electron density in
the inter-nuclear region that increases the effective repulsion between the nuclei.
Exchange terms in electron wavefunctions are due to the antisymmetrising of
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the atomic wavefuntions. Exchange concentrates density in the overlap region
for paired electrons with antisymmetric spin states, and reduces electron density
in overlap regions for electron pairs with symmetric spin states. If electron
distributions for which ↑ and ↓ spins have equally probable overlap, exchange
reduction for overlap of symmetric spin state electrons outweighs the exchange
concentration due to overlap of paired spin electrons. Exchange depletion of
the electrons is strongest in bonds between atoms with nearly filled valence
electron subshells, for which the number of ↑ and ↓ spins involved are nearly
equal. Exchange thus increases bond lengths for diatomic molecules containing
electronegative atoms.

As the bond length correction for exchange should be affected by both atoms,
a correction is sought that is proportional to the product of the ρb for the two
atoms in the bond. An exchange correction

∆dAB
ex =

∆dF2
ex

ρF
b ρ

F
b

√
hAhB

ρA
b ρ

B
b , ∆dF2

ex = 0 ·36 and ρF
b = 2 ·92 (8)

can be calibrated on F2 which has the largest exchange correction. The additional
factor hAhB, where h is the number of holes in the valence shell, has the effect
of minimising the exchange correction for the left-hand side of the periodic table
compared to the right, where exchange considerations are more important.

By incorporating the vacancies in the valence shell, the electron–hole approach
to bonding is emphasised. Compounds involving high coordination numbers can
be better explained by the electron–hole bond, i.e. we regard a bond as an
electron–hole pairing. This can explain ‘standard’ bonds, as well as electron
deficient bonds. Thus vacancies (holes) are essential to bond formation. Electrons
are shared between atomic states with the same spin and comparable energies,
one of which is occupied, and the other is empty.

The limited effect of the exchange correction on the first, second and third
row hydrides is shown in Table 4. The r.m.s. deviation for bond lengths with
only the exchange correction applied is 0 ·098 Å, which is an improvement on
the r.m.s. value with only the charge transfer correction applied. The exchange
corrections for the transition metal hydrides improve some bond lengths slightly,
at the expense of others. For the transition metal oxides, the exchange correction
lengthens all bond lengths, causing the agreement between most calculated and
experimental bond lengths to deteriorate.

The r.m.s. deviation for bond lengths including both charge transfer and
exchange corrections is 0 ·097 Å. The fluoride bond lengths, for which the sums of
VSA radii are generally too long at the electropositive end and too short at the
electronegtive end, improve considerably in the first row, when both corrections
are applied, although the systematic nature of the residual discrepancies in
Table 3 indicates that there may be scope for further improvement. For the
latter half of the second and third row fluorides, simply using the sum of the
VSA radii proves to be a better predictor of actual bond lengths than when
both corrections are applied. NaF and GaF are outliers. On the whole, the
hydrides are actually predicted better by simply summing VSA radii, the r.m.s.
deviation changes from 0 ·044 with no correction to 0 ·062 with both corrections
applied. There is no improvement for the transition metal hydrides or alkali



330 B. E. Etschmann and E. N. Maslen

metal diatomics, for which bond lengths are predicted equally well by summing
atomic radii without applying two-atom corrections. The alkali diatomics, having
minimal charge transfer and only one valence electron, are unaffected by the
charge transfer and exchange corrections. The application of both corrections
improves half of the oxides to the detriment of the other half. Although the
charge transfer correction introduced the anomaly at Fe, a paucity of data for
both the transition oxides and hydrides does not permit the development of a
more reliable model.

6. Conclusions

The electron density approach presented here attempts to predict interatomic
distances with as few ad hoc assumptions on the nature of bonding as possible.
The interatomic distances are related to the electron density either directly,
or via physical properties evaluated simply from that density. Bond lengths
for diatomic molecules are typically 0 ·8 to 0 ·9 Å longer than the sums of
the core radii, estimated by setting an integral of the electron density within
the core to the expected number of core electrons. For each bonded s and p
electron, about 1

10 ∼ 1
5 are effective in screening the nuclei from their mutual

repulsion. About 1
2 of each non-bonded s valence electron and about 2

3 of
each non-bonded p electron is effective in screening the nuclei. The d electron
screening factor of 0 ·678 when there is only one electron in the partly filled
d subshell increases to 0 ·954 (per electron) when that subshell is nine-tenths
occupied. In alkali metal diatomics where the two-atom effects of charge transfer
and exchange corrections are negligible, the calculated bond lengths are up to
10% shorter than the experimentally determined values. The accuracy of most
other bond lengths predicted from atomic radii is limited by charge transfer
and exchange. Charge transfer corrections can be estimated from promolecular
charges, calculated by partitioning overlapping atomic densities based on the
free atom potentials. Exchange corrections can be estimated from products of
the atomic electron densities at the ‘best’ one-atom radii. Whereas applying
either the charge transfer correction or the exchange correction alone increases
the r.m.s. deviations between calculated and experimental bond lengths slightly,
applying both corrections simultaneously reduces the r.m.s. discrepancy. Bond
lengths for some diatomic molecules, notably all hydrides and the alkali metals
are not much affected by the corrections, but others, especially those for all
fluorides and the transition metal oxides improve appreciably. The corrections
also improve agreement for the third row oxides. The close relationship between
the experimental bond lengths and the values predicted from atomic electron
densities using a limited number of physically reasonable parameters, justifies
confidence that those parameters have some physical significance. The bond
length formulae in the model may indeed describe cause and effect relationships.

Although Bragg (1920) regarded adding atomic radii as simply a ‘working
approximation, an aid to the analysis of complex structures’, interatomic distances
can convey far more information. Deviations of interatomic distances from
the values predicted should be indicators of unexpected characteristics of the
atom–atom interactions. The dependence of the effective radii on the nature
of the other atoms with which it combines is exemplified by the dependence
of diatomic molecule bond lengths on the electronegativities of the constituent
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atoms. To the limited extent to which interatomic distances are sensitive to
deformation of atomic electron densities, they will be related to electronegativity.
Electronegativities can indeed be related to the electron densities at standard
radii. By expressing electronegativity in terms of atomic electron densities,
it was possible to express those changes in bond length that are related to
electronegativity differences in terms of the atomic densities.

Although the present model is relatively successful, some aspects are not yet
explained. All bond lengths for diatomics containing Na or Mg as one of the
constituent atoms are consistently too short. That is most likely to be due to
limitations of the model, but the strong contrast with the success for chemically
similar atoms raises the possibility that the underlying densities or wavefunctions
might be responsible.

Further improvements in these formulae relating electron density to bond
lengths are certainly feasible. Additional data for the transition metal hydrides
and oxides would allow bond length defining formulae involving d electrons to
be refined. Extensions to f electron systems could be envisaged. The two atom
terms could be tested further and possible three atom contributions investigated
if more extensive structural information were available on triatomic molecules.
Because of strong evidence that charge transfer is exchange dependent, combining
the charge transfer and exchange corrections should be considered. Extension of
this philosophy for predicting bond lengths from electron densities from molecules
to solids should also be productive.
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