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Abstract

The full linear causal Israel–Stewart–Hiscock theory of bulk viscous processes in relativistic
cosmological fluids is reformulated as an effective phenomenological theory for describing
particle production processes in the early universe. Explicit expressions for the particle balance
law and particle production rates are obtained that relate the particle creation rate to the
bulk viscous (creation) pressure. The general formalism is applied to the case of a full causal
cosmological fluid with bulk viscosity coefficient proportional to the Hubble function. In this
case the general solution of the gravitational field equations can be expressed in an exact
parametric form. For an appropriate choice of the physical parameters, the dynamics of the
universe can be modelled as starting from a vacuum quasi-Minkowskian geometry, followed
by an inflationary period but ending in a non-inflationary phase. The influence of the matter
creation processes on the evolution of the universe and the behaviour of the energy density,
temperature and entropy are investigated.

1. Introduction

Dissipative processes are supposed to play a fundamental role in the evolution
and dynamics of the early universe. Over thirty years ago Misner (1966) suggested
that the observed large-scale isotropy of the universe is due to the action of the
neutrino viscosity, which was effective when the universe was about one second old.
Bulk viscosity may arise in many physical phenomena during the evolution of the
early universe. Some of the physical processes that generate bulk viscosity could
be the evolution of cosmic strings due to their interaction with each other and
with the surrounding matter, the classical description of the (quantum) particle
production phase, interaction between matter and radiation, quark and gluon
plasma viscosity, different components of dark matter, etc. see Chimento and
Jakubi (1996). The first attempts at creating a theory of relativistic dissipative
fluids were those of Eckart (1940) and Landau and Lifshitz (1987). These theories
are now known to be pathological in several respects. Regardless of the choice
of equation of state, all equilibrium states in these theories are unstable, and
signals may be propagated through the fluid at velocities exceeding the speed
of light (Israel 1976). The problems arise due to the first-order nature of the
theory, i.e. it considers only first-order deviations from equilibrium, leading to
parabolic differential equations and hence to infinite speeds of propagation for
heat flow and viscosity, in contradiction with the principle of causality. While such
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paradoxes appear particularly glaring in relativistic theory, infinite propagation
speeds already constitute a difficulty at the classical level, since one does not
expect thermal disturbances to be carried faster than some (suitably defined) mean
molecular speed. Conventional theory is thus applicable only to phenomena that
are ‘quasi-stationary’, i.e. slowly varying on space and time scales characterised
by mean free path and mean collision time (Israel 1976). This is inadequate
for many phenomena in high-energy astrophysics and relativistic cosmology that
involve steep gradients or rapid variations. The deficiencies can be traced to the
fact that the conventional theories (both classical and relativistic) make overly
restrictive hypotheses concerning the relation between the fluxes and densities of
entropy, energy and particle number.

A relativistic second-order theory was found by Israel (1976) and developed by
Israel and Stewart (1976) into what is called ‘transient’ or ‘extended’ irreversible
thermodynamics. In this theory the deviations from equilibrium (bulk stress,
heat flow and shear stress) are treated as independent dynamical variables,
leading to a total of 14 dynamical fluid variables to be determined. However,
Hiscock and Lindblom (1989) and Hiscock and Salmonson (1991) have shown that
most versions of the causal second-order theories omit certain divergence terms.
The truncated causal thermodynamics of bulk viscosity leads to pathological
behaviour in the late universe, while the solutions of the full causal theory are
well behaved for all times. Therefore, the best currently available theory for
analysing dissipative processes in the universe is the full Israel–Stewart–Hiscock
causal thermodynamics.

On the other hand, it has been suggested by Zeldovich (1970) and later by
Murphy (1973) and Hu (1982) that the introduction of viscosity in the cosmological
fluid is nothing but a phenomenological description of the effect of creation of
particles by the non-stationary gravitational field of the expanding cosmos. A
non-vanishing particle production rate is equivalent to a bulk viscous pressure in
the cosmological fluid, or, from a quantum point of view, with a viscosity of the
vacuum. This is due to the simple circumstance that any source term in the
energy balance of a relativistic fluid may be formally rewritten in terms of an
effective bulk viscosity. Quantum corrections of the macroscopic stress–energy
tensor can be described by a viscous-type pressure that is a polynomial function
of the expansion factor (Vereshkov et al . 1977). Barrow (1988) has considered
creation processes in string-driven inflation within a fluid model, and concluded
that this process may be described phenomenologically in terms of an effective
bulk viscosity. From the point of view of the kinetic theory based on a
Boltzmann-type equation, it follows that this simple phenomenological approach
is compatible with the kinetic theory in homogeneous spacetimes but not in
inhomogeneous ones (Triginer et al . 1996). A simple kinetic model describing
particle production processes in the expanding universe and the equilibrium
conditions for Maxwell–Boltzmann gas with variable particle number has been
investigated by Zimdahl et al . (1996). The creation of particles is dynamically
equivalent in this context to a non-vanishing bulk pressure, and exponential
inflation is shown to become inconsistent with the second law of thermodynamics
after a time interval of the order of the Hubble time.

Consequently, if it is possible to describe particle production processes
consistently by means of an effective viscous pressure, one is able to study, at
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least on a simple classical phenomenological level, the impact of these processes
on the early dynamics of the universe.

Zimdahl (1996) has considered in detail the possibility that the bulk viscous
pressure of the full Israel–Stewart–Hiscock theory may also be interpreted as an
effective description for particle production processes. The creation process leads
to considerable changes in the thermodynamical behaviour of the universe. If
the chemical potential of the newly created particles is zero, µ = 0, then the
non-vanishing bulk pressure Π associated with an increase in the number of fluid
particles satisfies formally the same equation as in the case of the presence of a real
dissipative bulk viscosity. The reheating process in inflationary universe models,
considered as an out-of-equilibrium mixture of two interacting and reacting fluids,
has been studied within the framework of causal irreversible thermodynamics by
Zimdahl et al . (1997). The particle decay and creation rates are determined by
the causal thermodynamics and are estimated by the authors at different stages of
the reheating process. Zimdahl (1998) has defined generalised equilibrium states
for cosmological fluids with particle production. The equivalence between the
creation rate for particles with non-zero mass and an effective viscous fluid pressure
follows as a consequence of the generalised equilibrium properties, and leads to
the possibility of a power-law inflationary behaviour. The two distinct irreversible
phenomena of matter creation and bulk viscosity, considered independently but
giving rise to cross effects, have been applied to Friedmann–Robertson–Walker
(FRW) cosmologies by Gariel and Le Denmat (1995). It was shown that the cross
effects could play a non-negligible role in the early universe evolution. Gariel et al .
(1997) accounted for bulk viscosity and matter creation in a simple cosmological
fluid and studied the wavefront speed associated with the characteristics of the
fluid. They have shown that power-law inflation can be a causal solution for FRW
cosmologies and is thermodynamically admissible, whereas exponential inflation
is not. Along the same lines, Gariel and Cissoko (1996) calculated, using the
relativistic extended irreversible thermodynamics, wavefront velocities for a simple
dissipative fluid with scalar effects including bulk viscous stresses and matter
creation. Applying this method to a spatially flat FRW cosmological model, one
obtains infinite wave speeds, so exponential inflation cannot be driven by bulk
viscosity. Maartens and Mendez (1997) have proposed a nonlinear generalisation
of the causal linear thermodynamics of bulk viscosity, incorporating the positivity
of the entropy production rate and of the effective specific entropy. As applied
to viscous fluid inflation (which is necessarily a far-from-equilibrium process),
the nonlinear theory leads to thermodynamically consistent inflationary solutions
for both exponential and power-law cases. Exact solutions for the nonlinear
theory, with bulk viscosity coefficient proportional to the Hubble factor for models
with barotropic temperature and ideal gas temperature, have been obtained by
Chimento et al . (1997) and the asymptotic stability of the de Sitter or Friedmann
solutions has been investigated.

Recently, Chimento and Jakubi (1997a) have found the exact general
solution to the Einstein gravitational field equations in a homogeneous universe
filled with a full causal viscous fluid source obeying the relation ξ ∼ ρ

1
2 .

The solutions correspond to two different choices of the state equations for
pressure, bulk viscosity coefficient, temperature and bulk relaxation time.
The equation describing the dynamics of the universe in this case takes
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the form of a particular Painlevé–Ince equation that can be linearised by means
of an appropriate transformation. The exact solution of the gravitational field
equations is expressed in an exact parametric form as a two-parameter family.
Depending on the values of the parameters, Chimento and Jakubi (1997a)
classified their two-parameter families of solutions according to their number of
singularities and obtained several scenarios for the dynamics of the universe.
Thus in the case p = (γ − 1)ρ, ξ ∼ ρ 1

2 , T ∼ ρr and τ = ξ/ρ ∼ ρ− 1
2 , the evolution

of the universe could begin at a singularity and asymptotically approaches a
Minkowskian spacetime. Alternative possibilities are asymptotic Friedmann or
de Sitter behaviour, or an asymptotic Minkowski phase in the far past and
asymptotically Friedmann, de Sitter or divergent behaviour at finite time in the
future. All these two-parameter solutions violate the dominant energy condition or
the strong energy condition for some time intervals. Chimento (1997) considered in
detail the properties of the corresponding Painlevé–Ince equation, whose invariant
form was reduced to a linear inhomogeneous ordinary second-order differential
equation with constant coefficients by means of a non-local transformation.

The evolution equation of the bulk viscous universe can be also transformed
into an Abel-type equation. Its general solution is represented in an exact
closed parametric form and corresponds to a transition between two Minkowskian
spacetimes connected by an inflationary period (Mak and Harko 1998a). New
classes of exact solutions of the field equations can also be generated from
some particular solutions of the Abel equation, leading to two classes of general
solutions of the Einstein field equations corresponding to particular values of
the parameters b = 1

4 and b = 2
9 entering the physical model. The solutions

obtained are also represented mathematically in an exact parametric form and are
interpreted physically as describing cosmological particle production (Mak and
Harko 1998b). Recently we have presented new classes of exact causal viscous
cosmologies in the case of ξ ∼ ρs, where s = 1

2 ± 2[ 1
2 (1− r)3/2] (see Harko and

Mak 1999).
Our intention in the present paper is to investigate in a systematic way

the possibility that causal thermodynamics can be used as a phenomenological
description of particle production in the cosmological fluid filling the very early
universe. The causal bulk viscous inflationary solutions generally lead to a rapid
increase of the energy density, temperature and entropy of the cosmological
fluid due to the presence of intense dissipative processes, and this behaviour is
in fact exactly what is expected from a theory describing particle production.
The equivalence between the causal thermodynamics and particle production
theories will be considered, leading to general expressions for the particle creation
rates. As a toy-model in which the particle production rates can be explicitly
obtained and their time behaviour explicitly analysed, we present the model of
a cosmological fluid with bulk viscosity coefficient proportional to the square
root of the density, ξ ∼ ρ

1
2 , or, equivalently, proportional to the Hubble factor

H, ξ ∼ H. In this case, with the use of a mathematical formalism different
from that of Chimento and Jakubi (1997a) and Chimento (1997), and by
means of an appropriate transformation, we reduce the equation describing the
evolution of the dissipative-processes-dominated universe to an exactly integrable
differential equation. The general solution (mathematically equivalent to that
of Chimento) is expressed in an exact and easy-to-handle parametric form, and
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is physically interpreted as describing particle production in the early universe.
The behaviours of the energy density, temperature, bulk viscosity coefficient,
deceleration parameter, particle creation rate and the entropy are analysed.

The present paper is organised as follows. In Section 2 we formulate the
full Israel–Stewart–Hiscock causal thermodynamics as a phenomenological theory
describing particle production. The equations describing the dynamics of a
causal bulk viscous fluid-filled FRW universe are obtained in Section 3. The
general solution of the field equations, in the case of a bulk viscosity coefficient
proportional to the Hubble function, is obtained in Section 4. Finally, in Section
5 we summarise and conclude our results.

2. Causal Thermodynamics as a Particle Production Theory

In this section we show that causal thermodynamics can be reformulated as
a particle creation theory without introducing the supplementary hypothesis of
an exterior source term in the particle balance equation. The particle creation
rate naturally follows from the choice of a state equation of the newly produced
matter, and is determined by the internal mathematical and physical structure
of the theory.

The energy–momentum tensor of a relativistic fluid with bulk viscosity as the
only dissipative phenomena is (c = 8πG = 1)

T ki = (ρ+ p+ Π)uiuk − (p+ Π)δki . (1)

Here ρ is the energy density, ui, i = 0, 1, 2, 3, the four-velocity (uiui = 1), p the
equilibrium pressure and Π the bulk viscous pressure. The particle flow vector
N i is given by

N i = nui , (2)

where n ≥ 0 is the particle number density.
Limiting ourselves to second-order deviations from equilibrium, the entropy

flow vector S i takes, in the framework of causal thermodynamics, the form (Israel
1976; Israel and Stewart 1976)

Si = sN i +
Ri(N i, T ki )

T
= sN i − τΠ2

2ξT
ui , (3)

where s is the entropy per particle, τ the relaxation time, T the temperature
and ξ the coefficient of bulk viscosity.

In the case of a flat FRW spacetime with the line element

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2) , (4)

the gravitational field equations take the form

3H2 = ρ , (5)

2Ḣ + 3H2 = − p−Π , (6)
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where H = 1
3u

i
;i = ȧ/a is the Hubble factor. We also introduce the deceleration

parameter

q =
d
dt

(
1
H

)
− 1 =

ρ+ 3p+ 3Π
2ρ

. (7)

From equations (5) and (6) or the conservation law T ki;k = 0 (where a semicolon
represents the covariant with respect to the line element), we obtain

ρ̇+ 3H(ρ+ p) = −3HΠ . (8)

We shall consider in the following that there is a change in the number of
particles, due to matter creation processes with bulk viscous pressure playing
the role of a ‘creation pressure’. We shall first suppose as a toy model that the
newly created particles obey equations of state of the form

ρ = ρ0

(
n

n0

)γ
= knγ , p = (γ − 1)ρ , (9)

where we have denoted k = ρ0/n
γ
0 and 1 ≤ γ ≤ 2. Using (9), equation (8) takes

the form of a particle balance equation,

ṅ+ 3Hn = Γn , (10)

where

Γ = − Π
γH

=
H

γ
[3γ − 2(q + 1)] (11)

is the particle production rate proportional to the bulk viscous pressure. The
condition Γ ≥ 0 leads to the following restriction imposed on the deceleration
parameter q :

q ≤ 3γ
2
− 1 . (12)

This condition is always satisfied by inflationary cosmological models for which
q < 0 and consequently ρ+ 3(p+ Π) < 0.

Combining the equation of state (9) with the Gibbs relation

Tds = d
(
ρ

n

)
+ pd

(
1
n

)
, (13)

we obtain

s = s0 = constant . (14)
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Physically, equation (14) means that particles are created with constant entropy.
By using the expressions given above, we obtain for the entropy production
density the expression

Si;i = −Π
T

[
s0nT

γH
+
τ Π̇
ξ

+
τΠ
2ξ

(
3H +

τ̇

τ
− ξ̇

ξ
− Ṫ

T

)]
. (15)

(There is entropy production because of the enlargement of the phase space.)
The simplest way to guarantee Si;i ≥ 0 and to maintain the form (3) of

the entropy, thus ensuring causal and stable behaviour of the matter-creation-
dominated thermodynamical system, implies for the particle creation rate Γ the
evolution equation

τ Γ̇ +
[
1 +

(
Ḣ

H
+ 1

2

(
3H +

τ̇

τ
− ξ̇

ξ
− Ṫ

T

))
τ

]
Γ =

s0

γ2

(
3
k

) 1
γ

ξTH2( 1
γ
−1) (16)

leading to

Si;i =
γ2H2

ξT
Γ2 =

H4[3γ − 2(q + 1)]2

ξT
≥ 0 . (17)

If the condition

3H +
τ̇

τ
− ξ̇

ξ
− Ṫ

T
= 0 (18)

is satisfied, the equations governing the evolution of the particle creation rate
and of the entropy production density become

τ Γ̇ +
[
1 + τ

Ḣ

H

]
Γ =

s0

γ2

(
3
k

) 1
γ

τa3H2( 1
γ
−1) (19)

Si;i =
γ2H2

τa3 Γ2 ≥ 0 . (20)

Let us assume now that the newly created particles obey equations of state
in the general form

ρ = ρ(n, T ), p = p(n, T ) , (21)

according to which the particle number density n and the temperature T are
the basic thermodynamic variables. By using the general relation

∂ρ

∂n
=
ρ+ p

n
− T

n

∂p

QpT
, (22)
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equation (8) can again be rewritten in the form of a particle balance equation,

ṅ+ 3Hn = Γn , (23)

where the particle creation rate Γ is given by

Γ =
1

ρ+ p

[
T

(
ṅ

n

∂ρ

∂T
− Ṫ

T

∂ρ

∂T

)
− 3HΠ

]
= − (nT ṡ+ 3HΠ)

ρ+ p
. (24)

The condition of non-negativity Γ ≥ 0, imposes the following constraint on the
deceleration parameter q :

q ≤ T

6H3

(
ṅ

n

∂p

∂T
− Ṫ

T

∂ρ

∂T

)
+

p

2H2 + 1
2 =

1
2H2

(
p− nT ṡ

3H

)
+ 1

2 . (25)

The Gibbs equation (13) leads to

nṡ =
Ṫ

T

∂ρ

∂T
− ṅ

n

∂p

∂T
=
Q

T
. (26)

The entropy production density becomes

Si;i = −Π
T

[
µnΓ
Π

+ 3H +
τ Π̇
ξ

+
ΠT
2

(
τ

ξT
ui
)

;i

]
, (27)

where we have introduced the chemical potential µ = Ts− (ρ+ p)/n.
The simplest way to guarantee Si;i ≥ 0 and causal and stable behaviour implies

for the particle creation rate Γ the following strongly nonlinear evolution equation:

τ Γ̇ +
[
1 +

τ

2

(
2σ̇
σ
− 2Ḣ

H
+ F

)]
Γ =

τQ

σ

(
Ḣ

H
− Q̇

Q
− F

2
− 1
τ

)
+

9H2ξ

σ
− 9H2ξµnΓ
σ(Q+ σΓ)

. (28)

Equation (28) also gives

Si;i =
[nT ṡ+ (ρ+ p)Γ]2

9H2ξT
≥ 0 . (29)

In equation (28) we have denoted

σ = ρ+ p and F = 3H +
τ̇

τ
− ξ̇

ξ
− Ṫ

T
.

Thus we have arrived at the result that the universe with particle production can
be described by using the basic equations of the causal thermodynamics. These
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lead to explicit expressions for the particle creation rate and to the possibility
of a phenomenological description of the matter creation processes (which are
essentially quantum processes) at the classical level in the framework of this
theory. The entire dynamics and evolution of the universe can be expressed, and
are determined by the particle creation rate that in the present theory simply
follows from the state equation of the newly created matter.

Finally, we shall consider the relationship between the present theory describing
matter and entropy creation in the early universe and the theory proposed by
Prigogine et al . (1988). This particle creation theory is based on the reinterpretation
of the matter energy–stress tensor in the framework of the thermodynamics of
open systems, leading to the modification of the adiabatic energy conservation
law and thereby including irreversible matter creation. Calvao et al . (1992)
have re-examined this phenomenological approach within a manifestly covariant
formulation. The matter creation corresponds to an irreversible energy flow
from the gravitational field to the created particle constituents, and involves the
inclusion in the matter energy–momentum tensor of a supplementary creation
pressure pc given by

pc = −ρ+ p

3nH
(ṅ+ 3Hn) . (30)

Particle production is associated with entropy production, which is given by
Calvao et al . (1992) in the form

Si;i = −3Hpc

T

(
1 +

µΓn
3Hpc

)
≥ 0 . (31)

By assuming a particle creation rate of the form

Γ =
αH2

n
, α = constant , (32)

a three-stage cosmology has been obtained by Prigogine et al . (1988). The
universe starts from an initial fluctuation (instability) of the vacuum and a
creation period drives the cosmological system to a de Sitter space. The de Sitter
space exists during the decay time of its constituents (second stage) and a phase
transition turns the de Sitter space into the usual Robertson–Walker universe
(third stage).

By using equations (10) and (11) in equation (30), it immediately follows that

pc = Π . (33)

The causal bulk viscous pressure Π from the present formalism acts as a creation
pressure. In the formulation of Calvao et al . (1992) the particle production rate
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is related to the creation pressure, in the case of a relativistic fluid obeying an
equation of state given by equation (9), by means of a phenomenological ansatz
of the form Γ ∼− ΠH1− 2

γ . In the particle creation formalism described in this
paper the particle production rate is given by equation (11), Γ ∼−ΠH−1, and is
independent of the equation of state of the newly produced matter. In the case
of dust (γ = 1) the two particle creation rates are similar. The major difference
between the theory presented in this paper and that of Prigogine et al . (1988) and
Calvao et al . (1992) is the expression for entropy production. In our theory this
takes a more general form, being quadratic in the creation pressure, Si;i ∼ p2

c/ξT ,
and involves a new dynamical variable, the bulk viscosity coefficient.

3. Dynamics of Causal Bulk Viscous Universes

In the framework of the full causal thermodynamics, the causal evolution
equation for the bulk viscous pressure Π is given by (Maartens 1995)

τ Π̇ + Π = −3ξH − τΠ
2

(
3H +

τ̇

τ
− ξ̇

ξ
− Ṫ

T

)
. (34)

In order to close the system of equations (5), (6), (8) and (34), we have to
give the equation of state for p and specify T , τ and ξ. Some authors have
discussed the equations of state for a homogeneous isotropic viscous fluid. Lake
(1982) considered a rather simplified equation of state given by the condition
of the trace of the energy–momentum tensor being null. The analysis of the
relativistic kinetic equation for some simple cases (Murphy 1973; Belinskii and
Khalatnikov 1975; Belinskii et al . 1979) shows that in the asymptotic regions
of small and large values of energy density, the viscosity coefficients can be
approximated by power functions of the energy density. Definite requirements
on the exponents of these functions are imposed. For small values of the energy
density it is reasonable to consider large exponents, equal in the extreme case
to unity. For large ρ, the power of the bulk viscosity coefficient should be
considered as less than or equal to 1

2 . Thus we shall assume the following simple
phenomenological laws (Belinskii and Khalatnikov 1975; Belinskii et al . 1979;
Maartens 1995):

p = (γ − 1)ρ , (35)

ξ = αρs , (36)

T = βρr , (37)

τ =
ξ

ρ
= αρs−1 , (38)
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where 1 ≤ γ ≤ 2, α ≥ 0, β > 0, r ≥ 0 and 0 ≤ s ≤ 1
2 are constants. Equations

(35)–(37) are standard in cosmological models, whereas (38) is a simple procedure
to ensure that the speed of viscous pulses does not exceed the speed of light
(Belinskii et al . 1979).

In the present model, equation (22) imposes the constraint

r =
γ − 1
γ

, (39)

so that 0 ≤ r ≤ 1
2 for 1 ≤ γ ≤ 2, a range of values that is usually considered

in the physical literature (Chimento and Jakubi 1997a).
The growth of the total comoving entropy over a proper time interval (t0, t1)

is given by (Maartens 1995)

Σ1 − Σ0 = − 3
kB

∫ t1

t0

Πa3H

T
dt , (40)

where kB is Boltzmann’s constant.
The Israel–Stewart theory is derived under the assumption that the thermo-

dynamical state of the fluid is close to equilibrium, which means that the
non-equilibrium bulk viscous pressure should be small when compared to the
local equilibrium pressure, that is (Maartens 1995)

|Π| ¿ p = (γ − 1)ρ . (41)

If this condition is violated then one is effectively assuming that the linear theory
holds also in the nonlinear regime far from equilibrium. For a fluid description of
the matter and in the presence of real viscosity, equation (41) must be satisfied
(Maartens 1995).

With these assumptions the field equations and the causal evolution equation
for the bulk viscosity lead to the following evolution equation for the Hubble
function (Maartens 1995):

Ḧ + 3HḢ + 31−sα−1H2−2sḢ − (1 + r)H−1Ḣ2

+ 9
4 (γ − 2)H3 + 1

232−sα−1γH4−2s = 0. (42)

In the following we shall consider equation (42) in the particular case of a
bulk viscous fluid with bulk viscosity coefficient proportional to the square root
of the density. That is, we choose s = 1

2 , which corresponds to the extreme limit
of high matter densities (Belinskii et al . 1979); we shall also use equation (39).
With these assumptions equation (42) takes the form

Ḧ + 3
(

1 +
1√
3α

)
HḢ − (1 + r)H−1Ḣ2 +

9(2/
√

3α− 1 + 2r)
4(1− r) H3 = 0 . (43)
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4. General Solution to the Field Equations for ξ∼H

By means of the transformations (Chimento and Jakubi 1993)

H2 = y, η = 3
(

1 +
1√
3α

)∫
Hdt , (44)

equation (43), describing the evolution of a causal bulk viscous fluid-filled universe
with bulk viscosity coefficient proportional to the Hubble function, takes the form

d2y

dη2 +
dy
dη
− 1 + r

2y

(
dy
dη

)2

+
2by

1− r = 0 , (45)

where we have denoted

b =
(

2r − 1 +
2√
3α

)/
4
(

1 +
1√
3α

)2

.

We shall consider in the following that r ∈ [0, 1
2 ] and α are independent (positive)

parameters.
With the use of the mathematical substitution dy/dη = yw(y), equation (45)

is transformed into the following first-order differential equation for the unknown
function w(y):

y
dw
dy

=
(
r − 1

2

)
w − 1 +

(
2b
r − 1

)
1
w
. (46)

Equation (46) has the general solution

y = y0[|(1− r)w + 1 + ∆|]− 1+∆−1
1−r [|(1− r)w + 1−∆|]− 1−∆−1

1−r , (47)

where

∆ = |
√

1− 4b| and 1− 4b > 0, for all r, γ and α , (48)

and y0 is a constant of integration. The condition b < 1
4 is identically satisfied

for the considered range of the physical parameters r , γ and α.
By introducing a parameter θ > 0 by means of the transformation

θ =
[ |(1− r)w + 1−∆|

2∆

] 1+∆−1
2(1−r)

, (49)
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where

β0 =
4(1− r)(2∆)

1
1−r

3(1−∆)β1
√
y0

, n =
2(1− r)
1−∆−1 ,

m =
1 + ∆−1

2(1− r) =
1

1− r −
1
n
, l =

2
3∆β1 ,

H0 =
√
y0(2∆)−

1
1−r , ρ0 = 3H2

0 , ξ0 =
√

3αH0,

T0 = 3rβH2r
0 , τ0 =

α

H0

√
3
, q0 =

1
β0H0

,

S0 =
31−r

βkB

a3
0H

2(1−r)
0 , β1 = 2

(
1 +

1√
3α

)
,

and with y0, t0, Σ0 and a0 constants of integration, we can express the general
solution of the gravitational field equation for a FRW universe filled with a causal
bulk viscous cosmological fluid, whose bulk viscosity coefficient is proportional
to the Hubble function, in the following exact parametric form:

t− t0 = β0

∫ θ

θ0

(χn + 1)m−1dχ , (50)

H =
H0

θ(θn + 1)m
, (51)

a = a0(θ−n + 1)l , (52)

ρ =
ρ0

θ2(θn + 1)2m , (53)

p =
(γ − 1)ρ0

θ2(θn + 1)2m , (54)

ξ =
ξ0

θ(θn + 1)m
, (55)

T =
T0

θ2r(θn + 1)2rm , (56)

τ = τ0θ(θn + 1)m , (57)

q = q0[(1 +mn)θn + 1]− 1 , (58)
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Σ(θ)− Σ0(θ0) = S0

∫ θ

θ0

χ2r−3−3nl(χn + 1)2m(r−1)−1+3l

× [3γH0β0 − 2− 2(1 + nm)χn]dχ . (59)

For |χn| < 1, a condition that holds in the case of a negative n, for large values
of χ, the integral (46) can be obtained in an exact form given by

t− t′0 = β0

∞∑
k=0

Cm−1
k

1 + nk
θ1+nk , (60)

where

Cm−1
k =

(m− 1)(m− 2)...(m− k)
k!

, t
′

0 = t0 − β0

∞∑
k=0

Cm−1
k

1 + nk
θ1+nk

0 .

Hence for large values of the parameter θ, the general solution of the field
equations can be expressed in an exact analytical form.

0

0.1

0.2

0.3

0.4

0.5

r

-30

-20

-10

0

0.25

0.5
0.75

1α

Fig. 1. Variation of the parameter n as a function of r and α.

5. Discussion and Final Remarks

The general solution of the gravitational field equations describing a universe
filled with a bulk viscous cosmological fluid, given by equations (50)–(60), is
mathematically equivalent to the solution previously obtained by Chimento and
Jakubi (1997a). For a detailed analysis of its behaviour see Chimento and Jakubi
(1997a). Our main purpose is to show that for some values of the physical
parameters, the solution of the field equations obtained above can be interpreted
as a physical model of matter creation in the very early universe. Consequently
we shall restrict our analysis only to the case n < 0. The variation of the
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parameter n as a function of r and α is represented in Fig. 1. In Fig. 2 we
have represented the variation of n as a function of α for different values of r .
Generally n < 0 for r ∈ [0, 1

2 ] and α ∈ [0, 1 ·5] .

0 0.25 0.5 0.75 1 1.25 1.5
—100

—80

—60

—40

—20

0
n

α

Fig. 2. Variation of the parameter n as a function of α for
different values of r . Solid curve: r = 1

2 , long-dashed curve:
r = 1

3 , short-dashed curve: r = 1
4 .

For these values of the physical parameters, the universe described by equations
(50)–(60) starts its evolution at the moment t = t0 from a non-singular state
characterised by a finite non-zero value of the scale factor, a(t0) = a0 6= 0. This
initial Minkowskian geometry corresponds null values of the Hubble factor and
of the energy density, H(t0) = 0 and ρ(t0). For small times (and values of θ for
which θ−n¿1) the geometry of the universe is approximately Minkowskian but
during this era there is a slow increase in the energy density, the temperature and
the bulk viscosity coefficient, due to a small increase in the Hubble function. The
intensity of the bulk-viscous-type dissipative processes is increasing, and after
a finite time spent in the quasi-Minkowskian era, accelerated expansion occurs,
leading to a rapid increase of the energy density, temperature and bulk viscosity
coefficient. The maximum value of the energy density is obtained for values of
the parameter θ so that dρ/dθ = 0. From equation (53) we easily obtain

θmax =
(
− 1

1 +mn

) 1
n

. (61)

In order that both θ and the energy density ρ be real and positive-valued, it
is necessary that 1 +mn < 0 and mn/(1 +mn) > 0. These conditions are both
satisfied if and only if b > 0. In this case the maximum value of the energy
density is given by

ρmax = ρ0(|mn|)−2m(|1 +mn|) 2
1−r . (62)

The condition b > 0 is fulfilled for all r ∈ [0, 1
2 ] for α ∈ [0, 1 ·3]. For r = 1

4 ,
α ∈ [0, 2 ·4]. For this range of values of r and α, and with n < 0, the maximum
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in the energy density, temperature and bulk viscosity coefficient is obtained at a
time tmax given by

tmax = t0 + β0

∫ θmax

θ0

(χn + 1)m−1dχ . (63)

After this time the energy density, temperature and bulk viscosity coefficient
are monotonically decreasing functions. During the evolution of the bulk-viscous-
fluid-filled universe, a large amount of comoving entropy is produced. The initial
evolution of the universe is inflationary, with q < 0 for t ≥ t0. In the limit of
large values of the parameter θ and for n < 0, we obtain from equation (58)

q∞ = q0 − 1 . (64)

If q0 > 1 the causal bulk viscous cosmological fluid-filled universe ends in a
non-inflationary era with the deceleration parameter q > 0. The non-inflationary
long-time behaviour is obtained for a large range of values r and α. For example,
for r = 1

4 , values of α < 0 ·5 lead for large times to q = const. > 0. Thus in
the present model, and with a particular choice of the parameters, there is a
natural solution of the ‘graceful exit’ problem of inflationary cosmologies. For
other values of the parameters r and α, the universe experiences an inflationary
behaviour for all t ≥ t0. The behaviour of the scale factor, energy density,
deceleration parameter and entropy is represented for different values of r in
Figs 3–6 respectively.

0 1 2 3 4 5 6

t
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1.5

2

2.5

3

a(
t)

Fig. 3. Variation of the scale factor a as a function of the
cosmological time t for α = 0 ·4 and for different values of r .
Solid curve: r = 1

4 ; long-dashed curve: r = 1
2 ; short-dashed

curve: r = 1
3 .

The dynamics of the high-density causal bulk viscous universe with bulk
viscosity coefficient proportional to the Hubble function are inflationary for small
times, leading at least for finite intervals of time to the violation of the strong
energy condition

ρ+ 3peff = ρ+ 3p+ 3Π < 0 , (65)
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Fig. 4. Variation of the energy density ρ as a function of the
cosmological time t for α = 0 ·4 and for different values of r .
Solid curve: r = 1

4 ; long-dashed curve: r = 1
2 ; short-dashed

curve: r = 1
3 .
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Fig. 5. Variation of the deceleration parameter q as a function
of the cosmological time t for α = 0 ·4 and for different values of
r . Solid curve: r = 1

4 ; long-dashed curve: r = 1
2 ; short-dashed

curve: r = 1
3 .
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Fig. 6. Variation of the comoving entropy Σ as a function of
the cosmological time t for α = 0 ·4 and for different values of
r . Solid curve: r = 1

4 ; long-dashed curve: r = 1
2 ; short-dashed

curve: r = 1
3 .
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and of the near-to-equilibrium condition for the bulk viscous cosmological pressure
|Π| ¿ p. Thus this solution of the gravitational field equations is meaningless in the
framework of the linear causal thermodynamic of dissipative processes (Maartens
1995; Maartens and Mendez 1997). But, according to the formalism developed in
Section 2, we interpret the solution as describing, on a phenomenological classical
level, particle production in a cosmological framework.

The evolution of the universe described by equations (50)–(60) starts, for
n < 0, from a vacuum state with zero energy. Quite a few descriptions of
the origin of the universe lead to the conjecture that the total energy of the
universe should be zero. Tyron (1973) and Fomin (1975) assumed that if the
net value of all conserved quantities of the universe, and in particular the total
energy (gravitational plus material), is zero, then the universe might have arisen
as a quantum fluctuation of the vacuum. Since the success of the inflationary
cosmology, the idea of such fluctuations has been developed further and there
have been attempts to show that the total energy of the universe is zero even
from a purely classical point of view (Cooperstock 1994; Banerjee and Sen 1997).
Quantum cosmological considerations favour a zero value of the quantum vacuum,
and it has been suggested that the vacuum energy is indeed zero but we are
currently in the midst of a phase transition where the universe is hung up in
the false vacuum (Kraus and Turner 1995). Brout et al . (1978), Prigogine and
Geheniau (1986) and Gunzig et al . (1987) have proposed cosmological models
in which an inflationary de Sitter spacetime appears as a result of the quantum
fluctuation in the conformal degree of freedom of an initial Minkowski spacetime
vacuum. These authors have shown that dissipative processes lead to the
possibility of cosmological models that start from empty conditions and gradually
build up matter and entropy. In these models also the gravitational entropy
takes a simple meaning, being associated with the entropy that is necessary to
produce matter.

Due to the matter creation process being modelled classically and on a
phenomenological level by means of bulk-viscous-type processes, particles are
continuously added to spacetime. Assuming that the newly created particles obey
an equation of state of the form ρ ∼ nγ , the explicit form and time evolution
of the particle creation rate follows from equations (11), (51) and (58), and is
given by

Γ =
H0

γ

3γ − 2q0[(1 +mn)θn + 1]
θ(θn + 1)m

. (66)

The temporal behaviour of the particle creation rate is very similar to that of
the energy density. For small times it is a monotonically increasing function of
time, and for values of parameters leading to a real-valued, positive θ satisfying
the equation dΓ/dθ = 0, it has a maximum at θ = θmax. From equation (66) we
obtain

θmax =

((
n− 2 + 3γ

2q0

)
±
√(

n− 2 + 3γ
2q0

)2 − 2(3γ−2q0)[n(1−m)−1]
q0(1+mn)

2[1− n(1−m)]

) 1
n

, (67)
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and the maximum value of the particle creation rate can be obtained from
equation (66). For θ > θmax the particle creation rate decreases monotonically
and tends to zero at large times. Particle creation is associated with a heating
period in the early history of the universe, leading to a large increase in the
temperature. The variation of the particle production rate for different values of
r is represented in Fig. 7.
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Fig. 7. Variation of the particle creation rate Γ as a function
of the cosmological time t for α = 0 ·4 and for different values of
r . Solid curve: r = 1

4 ; long-dashed curve: r = 1
2 ; short-dashed

curve: r = 1
3 .

In the present paper we have analysed the process of creation of matter
particles in the expanding universe, using an imperfect cosmological fluid model
as well. We have proposed explicit expressions for the particle balance law and
particle creation rate. The dynamics and evolution of the early universe are
entirely determined by particle production processes, and the influence of particle
production on geometry is essential. In the universe with particle production,
the evolution of the universe starts from a quasi-Minkowskian era, in contrast to
the familiar FRW description without particle production (Weinberg 1972). As a
consequence of a large particle creation rate, inflationary behaviour is obtained.
The evolution of the universe is determined for a given equation of state by the
numerical values of a single parameter α, the proportionality coefficient relating
the energy density to the bulk viscosity coefficient. Matter creation processes
are naturally stopped after a finite interval of time and the universe ends in a
non-inflationary era. A large amount of comoving entropy is produced during the
evolution of the universe. The thermodynamic arrow of time, the direction in
which the entropy increases, coincides with the cosmological arrow of time, the
direction in which the universe is expanding (Goldwirth and Piran 1991). Thus
matter-creation-driven inflation provides a way to align the cosmological arrow
of time with the thermodynamic one.

Despite the fact that the present universe is matter-dominated, there are
physical reasons to believe that the early universe was radiation-filled. If the
quantum vacuum had decayed into massive particles via a particle creation
mechanism, then in principle too many nucleon–anti-nucleon pairs would have
been created continuously. Unless these pairs were separated from each other
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through an unknown mechanism, they would annihilate one other and produce
observable gamma ray and neutrino fluxes (Mubarak and Ozer 1998), but these
fluxes have not been experimentally detected. Therefore we can consider that the
matter component of the present model consists of radiation, and in the above
equations the most physically plausible value of γ is γ = 4

3 , leading via equation
(39) to r = 1

4 .
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