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Abstract

The Hartree–Fock equations for a general open shell atom are described. The matrix equations
that result when the single particle orbitals are written in terms of a linear combination of
analytic basis functions are derived. Attention is paid to the complexities that occur when
open shells are present. The specifics of a working FORTRAN program which is available for
public use are described. The program has the flexibility to handle either Slater-type orbitals
or Gaussian-type orbitals.

1. Introduction

The restricted Hartree–Fock (HF) method is one of the standard methods for
determining wave functions for atomic states (Froese-Fischer 1977). The word
‘restricted’ is used to denote the fact that the radial form of the orbitals are
independent of the magnetic and spin projection quantum labels. HF wave functions
can be used to compute atomic properties, or alternatively may serve as the starting
point for a more sophisticated treatment such as the configuration interaction (CI)
method (Hibbert 1975a). There are essentially two traditional methods by which
HF calculations are carried out. In one, the radial wave functions are represented
by a tabulation of numbers on a radial grid and finite difference techniques are
used to integrate the potentials and solve the Schrödinger equation. In the other,
the radial wave function is represented by linear superposition of functions with
convenient analytic properties, e.g. Slater-type orbitals (STO) or Gaussian-type
orbitals (GTO) (Roothaan 1951, 1960). Although programs based on the
‘numerical’ approach have been published (Froese-Fischer 1978, 1997), this is not
true for the analytic approach. The only freely accessible HF program using basis
functions is a program by Huzinaga et al. (1983) which uses GTOs. However, this
program has limited usefulness since STOs are generally preferred for purely atomic
calculations. Accordingly a program is presented that has been used to compute
HF wave functions for a variety of atoms (mainly for use in scattering calculations)
in the expectation that other workers in atomic physics might find it useful.

2. The Hartree–Fock Equations

While there are descriptions of the analytic HF method in the literature, it is
desirable to recapitulate this information because a number of technicalities arise
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for the open shell situation. Some understanding of the underlying theory will
be valuable when attempting to get the HF equations to converge for open shell
configurations. The theoretical development of the HF equations closely follows
that given in the monograph by Hurley (1976).

In the restricted HF method the energy expression of an antisymmetrised
single configuration wave function is minimised with respect to variations in the
single particle orbitals. While the HF wave function for closed shell systems can
be represented by a single Slater determinant, this is not generally true for open
shell configurations. The wave function is usually restricted to be an eigenfunction
of the orbital and spin angular momenta (although this is not always done).

The problem is to minimise the expectation value of the Hamiltonian

H =
∑
i

(
− 1

2∇
2
i −

Z

ri

)
+
∑
i<j

1
rij

, (1)

written more compactly as

H =
∑
i

t(i) +
∑
i<j

v(i, j)i , (2)

with respect to variations in the orbital functions subject to the constraint that
the orbitals be orthonormal, i.e.

〈φi | φj〉 = δij . (3)

For the purposes of the theoretical development, the possible configurations
will be restricted to those containing at most two open shells of the same ` value.
The program can handle a configuration like (2p)6(3p)4(5p), but cannot handle
a configuration like (2p)5(3p)5(4p).

The energy expectation can now be written

E =
∑
k

2fk +
∑
k

∑
l

(2Jkl −Kkl)

+ ν1

(∑
m

2fm + ν1

∑
m

∑
n

(2aJmn − bKmn) +
∑
k

∑
m

(2Jkm −Kkm)
)

+ ν2

(∑
p

2fp + ν2

∑
p

∑
q

(2cJpq − dKpq) +
∑
k

∑
p

(2Jkp −Kkp)
)

+ ν1ν2

∑
p

∑
q

(2eJpq − fKpq) . (4)

The sets of subscripts (k, l), (m, n) and (p, q) refer to the closed shell, and
the first and second open shells respectively. When the subscripts (i, j) are used,
these will be taken to refer to the set of both open and closed shell orbitals.
The constants ν1 and ν2 are the fractional occupancies of the 1st and 2nd open
shells. The constants a, b, c, d, e and f depend on the orbital and spin angular
quantum numbers, and the specific element of the multipole expansion of the
two-body interaction.
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The expectation values fi, Jij and Kij are defined by

fi = 〈φi(1) | t(1) | φi(1)〉 , (5)

Jij = 〈φi(1)φj(2) | v(1, 2) | φi(1)φj(2)〉

= 〈φi(1) | Jj(1) | φi(1)〉 = 〈φj(2) | Ji(2) | φj(2)〉 , (6)

Kij = 〈φi(1)φj(2) | v(1, 2) | φj(1)φi(2)〉

= 〈φi(1) | Kj(1) | φi(1)〉 = 〈φj(2) | Ki(2) | φj(2)〉 , (7)

where

Jj(1) | φ(1)〉 = 〈φj(2) | v(1, 2) | φj(2)〉 | φ(1)〉 , (8)

Kj(1) | φi(1)〉 = 〈φj(2) | v(1, 2) | φ(2)〉 | φj(1)〉 . (9)

The arbitrary variation of the orbital functions leads to the energy variation

δE =
∑
k

(〈δφk | F0 | φk〉+ 〈δφ∗k | F ∗0 | φ∗k〉)

+ 2ν1

∑
m

(〈δφm | F1 | φm〉+ 〈δφ∗m | F ∗1 | φ∗m〉)

+ 2ν2

∑
p

(〈δφp | F2 | φp〉+ 〈δφ∗p | F ∗2 | φ∗p〉) , (10)

where

F0 = f +
∑
k

(2Jk −Kk) + ν1

∑
m

(2Jm −Km) + ν2

∑
p

(2Jp −Kp) ,

F1 = f +
∑
k

(2Jk −Kk) + ν1

∑
m

(2aJm − bKm) + ν2

∑
p

(2eJp − fKp) ,

F2 = f +
∑
k

(2Jk −Kk) + ν1

∑
m

(2eJm − fKm) + ν2

∑
p

(2cJp − dKp) . (11)

When the orthogonality constraints are incorporated, the energy variation becomes

δ

(
E − 2

∑
i

∑
j

〈φi | φj〉εij
)

= 0 , (12)

which can be expanded as

δ

(
E − 2

∑
i

∑
j

[〈δφi | φj〉εij + 〈δφ∗i | φ∗j 〉εji]
)

= 0 . (13)
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Combining the equations gives a set of HF equations involving non-diagonal
Lagrange multipliers,

F0 | φk〉 =
∑
j

εkj | φj〉 =
∑
l

εkl | φl〉+
∑
n

εkn | φn〉+
∑
q

εkq | φq〉 ,

ν1F1 | φm〉 =
∑
j

εmj | φj〉 =
∑
l

εml | φl〉+
∑
n

εmn | φn〉+
∑
q

εmq | φq〉 ,

ν2F2 | φp〉 =
∑
j

εmj | φj〉 =
∑
l

εpl | φl〉+
∑
n

εpn | φn〉+
∑
q

εpq | φq〉 . (14)

There is also a set of conjugate equations involving the conjugate operators
F ∗0 , F ∗1 , and F ∗2 . These equations can be used to show that the matrix of
Lagrange multipliers form a Hermitian matrix, εij = ε∗ji. Since the total energy
is invariant to a unitary transformation of the closed shell orbitals amongst
themselves, it is always possible to choose the closed shell orbitals so that the
closed shell part of the Lagrange multiplier matrix is a diagonal matrix. It is
also possible to transform the open-shell orbitals so that additional off-diagonal
Lagrange multipliers can be set to zero. Using the notation, εi = εii, the HF
equations can be rewritten in a simpler form,

F0 | φk〉 = εk | φk〉+
∑
n

εkn | φn〉+
∑
q

εkq | φq〉 ,

ν1F1 | φm〉 =
∑
l

εml | φl〉+ εm | φm〉+
∑
q

εmq | φq〉 ,

ν2F2 | φp〉 =
∑
l

εpl | φl〉+
∑
n

εpn | φn〉+ εp | φp〉 . (15)

Multiplying on the left by 〈φm | and integrating gives

εkm = 〈φm | F0 | φk〉 . (16)

Other identities involving the Lagrange multipliers are easy to obtain,

εmk = 〈φk | ν1F1 | φm〉 ,

εkp = 〈φp | F0 | φk〉, εpk = 〈φk | ν2F2 | φp〉 ,

εmp = 〈φp | ν1F1 | φm〉, εpm = 〈φm | ν2F2 | φp〉 . (17)

The converged solutions of the HF equations obey the identity, εij = εji.
Defining the coupling operators

F01 = x01F0 + ν1(1− x01)F1 ,

F02 = x02F0 + ν2(1− x02)F2 ,

F12 = ν1x12F1 + ν2(1− x12)F2 , (18)
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it is easy to see that these satisfy

εkm = 〈φm | F01 | φk〉, εkp = 〈φp | F02 | φk〉, εmp = 〈φp | F12 | φm〉 . (19)

The projection operators

Q0 =
∑
k

|φk〉〈φk|, Q1 =
∑
m

|φm〉〈φm| , Q2 =
∑
p

|φp〉〈φp| , (20)

can be used to project out solutions of the closed and open shell manifolds:

Q0 | φk〉 = | φk〉; Q0 | φm〉 = 0; Q0 | φp〉 = 0 ,

Q1 | φk〉 = 0; Q1 | φm〉 =| φm〉; Q1 | φp〉 = 0 ,

Q2 | φk〉 = 0; Q2 | φm〉 = 0; Q2 | φp〉 =| φp〉 . (21)

With these definitions the HF equations, can be rewritten

F0|φk〉 = εk|φk〉+
∑
n

|φn〉〈φn|F01|φk〉+
∑
q

|φq〉〈φq|F02|φk〉 . (22)

The
∑
n |φn〉〈φn| and

∑
q |φq〉〈φq| terms are projection operators, so this

equation can be rewritten as

F0|φk〉 = εk|φk〉+Q1F01|φk〉+Q2F02|φk〉 . (23)

The projection and coupling operators are Hermitian operators, but their product
is not. However, because

F01(Q1|φk〉) = 0 and F02(Q2|φk〉) = 0 , (24)

these terms can be added to (23) giving

F0|φk〉 = εk|φk〉+ (F01Q1 +Q1F01)|φk〉+ (F02Q2 +Q2F02)|φk〉 , (25)

which can be rewritten as

[F0 − (F01Q1 +Q1F01)− (F02Q2 +Q2F02)]|φk〉 = εk|φk〉 . (26)

Similar manipulations may be performed on the equations for the two open
shell manifolds and the final form of the HF equations is

H0|φk〉 = εk|φk〉 ,

H1|φm〉 = εm|φm〉; ηm =
εm

ν1

,

H2|φp〉 = εp|φp〉; ηp =
εp

ν2

. (27)
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The effective Hamiltonians are

H0 = F0 − (Q1F01 + F01Q1)− (Q2F02 + F02Q2) ,

H1 = F1 −
1
ν1

[(Q0F01 + F01Q0)− (Q2F12 + F12Q2)] ,

H2 = F2 −
1
ν2

[(Q0F02 + F02Q0)− (Q1F12 + F12Q1)] . (28)

Having obtained the solutions to these equations by the self-consistent field
technique, the total energy of the HF single configuration wave function can be
written as

E =
∑
k

(4`k + 2)(fk + εk) + ν1(4`m + 2)(fm + εm) + ν2(4`p + 2)(fp + εp) . (29)

This expression for the total energy is only true when the HF wave function
has converged. The HF wave function also satisfies the virial theorem. The
expectation value of the kinetic energy is

T =
∑
k

(4`k + 2)〈φk| − 1
2∇

2|φk〉+ ν1(4`m + 2)〈φm| − 1
2∇

2|φm〉

+ ν2(4`p + 2)〈φp| − 1
2∇

2|φp〉 . (30)

The ratio of the potential energy to the kinetic energy should be equal to minus
two, i.e.

V

E
=
E − T
T

= −2 . (31)

Manipulations involving projection operators are not normally done when
the finite difference techniques are applied to the HF equation. Under such
circumstances it is customary to keep the off-diagonal Lagrange multipliers and
solve Schrödinger-type equations with inhomogeneous terms.

3. The Basis Set Expansion

The HF equations are now in a form that is readily amenable to solution
by expansion in terms of basis functions. A full derivation of the reduction
of the HF equations need not be given since this has been covered adequately
(Roothaan 1950, 1961; Hurley 1976). Only the essential definitions and results
will be presented herein. In this section, matrix representations of operators will
be designated as bold capitals, D, column vectors will be denoted by lower case
bold, e.g. c, and row vectors designated by c†.

The orbital wave functions are expanded in terms of basis functions,

| φi〉 =
∑
α

ciα | χα〉 . (32)
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The single particle orbital | φi〉 can be denoted in a compact vector notation as
the column vector ci. The orthogonality constraint becomes

〈φi | φj〉 =
∑
α

∑
β

ciα〈χα | χβ〉cjβ = δij . (33)

Defining the overlap matrix S by

Sαβ = 〈χα | χβ〉 , (34)

the orthogonality constraint can now be written

c†iScj = δij . (35)

The expectations of the energy with respect to the orbitals can be written in
matrix notation

fi = c†iTci ,

Jij = c†iJjci = c†jJicj ,

Kij = c†iKjci = c†jKicj , (36)

where the Hermitian matrices have the following matrix elements

Tαβ = 〈χα|t|χβ〉 ,

Ji,αβ =
∑
γ

∑
δ

ciγciδ 〈χγχα|v|χδχβ〉 ,

Ki,αβ =
∑
γ

∑
δ

cjγcjδ 〈χγχα|v|χδχβ〉 . (37)

Defining the Di matrices as

D0 =
∑
k

ckc
†
k, D1 = cmc†m, D2 = cpc†p , (38)

it is easy to show that the products D0S, D1S and D2S are the matrix
representations of the projection operators Q0, Q1 and Q2.

With these definitions, the HF equations become

H0ck = εkSck ,

H1cm = ηmScm; ηm =
εm

ν1

,

H2cp = ηpScp; ηp =
εp

ν2

, (39)
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where

H0 = F0 − [(SD1F01 + F01D1S) + (SD2F02 + F02D2S)] ,

H1 = F1 −
1
ν1

[(SD0F01 + F01D0S) + (SD2F12 + F12D2S)] ,

H2 = F2 −
1
ν2

[(SD0F02 + F02D0S) + (SD1F12 + F12D1S)] . (40)

The HF equations are now written as a set of generalised matrix eigenvalue
equations. These equations can be solved directly or a Cholesky factorisation
of the overlap matrix can be made and the equations transformed into a set
of standard eigenvalue equations. In the present program, a transformation to
an orthogonal basis is used to turn the equation into a standard eigenvalue
problem. The orthogonal basis is generated by diagonalising the overlap matrix.
The overlap matrix can be written as

ΛTSΛ = U , (41)

where U is a diagonal matrix, and Λ is a unitary matrix containing the eigenvectors
of S. Each eigenvector is then divided by the square root of the eigenvalue, so
that

(U− 1
2 ΛT )S(ΛU−

1
2 ) = WTSW = I (42)

and

WTW = U−1 . (43)

The generic matrix equation can now be written

HU−1Uc = εSU−1Uc

⇒HWTWUc = εSWTWUc

⇒WHWT (WUc) = εWSWT (WUc)

⇒Gd = εd , (44)

where

G = WHWT and d = WUc . (45)

The transformed problem has exactly the same eigenvalues as the original
generalised eigenvalue problem. The eigenvectors for the original problem are
obtained using

c = WTd . (46)
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There is a degree of arbitrariness about the effective Hamiltonians since no
prescription has been given for the choice of the coupling parameters x01, x02

and x12. When the open shell method was originally proposed (Roothaan 1960)
for configurations containing one open shell, the parameter x01 was set to be

x01 = − ν1

(1− ν1)
i . (47)

This choice makes a great deal of sense since all terms common to both F0 and
F1 cancel, causing F01 to make only minor modifications to F0 and F1. When
two open shells are present it is possible to generalise the Roothaan prescription

x01 = − ν1

(1− ν1)
; x02 = − ν2

(1− ν2)
; x12 = − ν2

(ν1 − ν2)
. (48)

There is an obvious problem with this prescription when two open shells of
the same symmetry, each containing the same number of electrons are present.
However, other choices for these parameters exist (Adams 1978) (setting the
coupling parameter, x12 = 1

2 is a sensible choice when ν1 = ν2). Some of the
choices of the parameters exhibit good convergence properties, other particularly
inappropriate choices do not permit convergence to be attained at all (Moscardo
and Alvarez-Collado 1979; Moscardo and Fernandez-Alonso 1978). An exhaustive
discussion of the complications that can arise from the different schemes to choose
the coupling parameters has been recently given (Krebs 1998). The discussion
presented within has been restricted to presenting the information that is needed
to run the program.

There is one particular choice for the coupling operators which is particularly
useful for solving the HF equations within the fixed core (FC) approximation
(Mitroy 1982). Consider a situation consisting of one open shell outside some
closed shells. The HF equations are written

F0|φk〉 = εk | φk〉+
∑
n

εkn | φn〉 ,

ν1F1|φm〉 =
∑
l

εml | φl〉+ εm | φm〉 . (49)

Rather than use linear combinations of F0 and F1 to eliminate the Lagrange
multipliers, equations (18) are used giving

F0|φk〉 = εk | φk〉+
∑
n

〈φn|F0|φk〉|φn〉 ,

ν1F1|φm〉 =
∑
l

〈φl|ν1F1|φm〉 | φl〉+ εm|φm〉 . (50)

This can be written as

F0|φk〉 = εk | φk〉+Q1F0 | φk〉 ,

ν1F10|φm〉 = ν1Q0F1 | φm〉+ εm | φm〉 . (51)
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The equation can be modified by subtracting terms such as F0Q1, Q1F0Q1, ν1F1Q0

and ν1Q0F1Q0 from both sides giving

(F0 −Q1F0 − F0Q1 −Q1F0Q0)|φk〉 = εk|φk〉 ,

ν1(F1 −Q0F1 − F1Q0 −Q0F1Q0)|φm〉 = εm|φm〉 . (52)

The HF equations can now be written

H0|φk〉 = εk|φk〉 ,

H1|φm〉 = εm|φm〉; ηm =
εm

ν1

, (53)

where

H0 = (1−Q1)F0(1−Q1), H1 = (1−Q0)F1(1−Q0) . (54)

Let the state vectors, |φik〉 and |φim〉 be the ith estimates of the HF orbitals
obtained during the SCF iteration process. These estimates are not necessarily
converged. Consider the action of the two operators upon these orbitals:

Q1(H0|φik〉) = Q1(1−Q1)(F0(1−Q1)|φik〉) = 0,

Q0(H1|φim〉) = Q0(1−Q0)(F1(1−Q0)|φim〉) = 0 . (55)

A strong orthogonality constraint exists between the two manifolds of orbitals.
This constraint causes the open shell orbitals of one iterate of the HF equations
to be orthogonal to the closed shell orbitals even when the HF equations are far
from convergence. This strong orthogonality condition is to be avoided in normal
HF calculations since it can prevent convergence to the exact HF wave function.
Consider for instance an attempt to solve the HF equations for the ground state
configuration of Li, 1s22s 2Se in a basis containing only two Slater-type orbitals.
Provided the initial estimates of the 1s and 2s orbitals are orthogonal, there is
no change in the specifics of the individual orbitals whatsoever. The 2s orbital
resulting from one iteration of the HF equations will be orthogonal to the 1s
orbital from the previous iteration. Since the space spanned by the basis set
only contains two elements, this results in a new 2s orbital which is identical to
the previous estimate.

However, this strong orthogonality property can be sensibly used within the
frozen core or fixed core (FC) approximation. Indeed, it is the preferred option
for doing these calculations. Most versions of the open shell HF equations only
satisfy a weak orthogonality condition, i.e. the open and closed shell orbitals are
only guaranteed to be orthogonal once convergence of the full set of HF equations
has been achieved. In fixed core calculations, the inability of the core orbitals to
relax under the influence of the valence orbitals results in the valence orbitals
having a small but finite overlap with the core orbitals. This non-orthogonality
can be removed by a Schmidt orthogonalisation but using a coupling scheme that
enforces strong orthogonality is the preferred approach.
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4. Matrix Elements for the STO and GTO Basis

The program has the inbuilt flexibility to handle either Slater-type orbitals
(STO) or Gaussian-type orbitals (GTO). The ability to handle a GTO basis was
a relatively recent addition. The single particle orbitals are written

φi(r) =
∑
α

ciαχα(r) . (56)

(4a) The STO Basis

The Slater-type orbitals are usually defined by

χα(r) = χα(r)Y`m(r) , (57)

where

χα(r) = Nαr
nα−1 exp(−λαr) , (58)

where the normalisation constant is

Nα =

√
(2λα)2nα+1

(2nα)!
. (59)

The matrix elements of the overlap matrix are

Sαβ = NαNβ
(nα + nβ)!

(λα + λβ)nα+nβ+1 . (60)

The one-body matrix elements of the non-relativistic Hamiltonian, T = −Z/r− 1
2∇2,

are

Tαβ = NαNβ
−λ2

α(nα + nβ)!
2(λα + λβ)nα+nβ+1 +NαNβ

(λαnβ − Z)(nα + nβ − 1)!
(λα + λβ)nα+nβ

+NαNβ
(`(`+ 1)− (nβ − 1)2)(nα + nβ − 2)!

2(λα + λβ)nα+nβ−1 . (61)

The two-body matrix elements are more complicated since angular momentum
considerations are involved. The matrix element for two electrons coupled to a
total angular momentum of L is

〈φi(r1)φj(r2);L|1/r12|φk(r1)φl(r2);L〉 =
∑
k

rk(`i, `j , `k, `l)Rk(i, j, k, l) . (62)

The multipole expansion derives from the multipole expansion of the electron–
electron interaction 1/r12,

1
r12

=
∑
k

rk
<

rk+1
>

4π
2k + 1

Yk(r̂1).Yk(r̂2) , (63)
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where

Yk(r̂1).Yk(r̂2) =
∑
m

Y ∗km(r̂1)Ykm(r̂2) , (64)

r< = min(r1, r2) and r> = max(r1, r2) . (65)

The angular matrix element is

rk = (−1)`i+`j+L
√

(2`i + 1)(2`j + 1)(2`k + 1)(2`l + 1)

×
(
`i k `k
0 0 0

)(
`j k `l
0 0 0

){
`i `j L
`l `k k

}
(66)

and the radial matrix element is

Hk(i, j, k, l) =
∑
α

∑
β

∑
γ

∑
δ

ciαcjβ〈χαχβ |rk</r
k+1
>
|χγχδ〉ckγclδ , (67)

where

〈χαχβ |rk</r
k+1
>
|χγχδ〉 = NαNβNγNδ

[
(nα + nγ − k − 1)!
(λα + λγ)nα+nγ−kH

k
αβγδ

+
(nβ + nδ − k − 1)!
(λβ + λδ)nβ+nδ−k H

k
βαδγ

]
. (68)

The factor Hk
αβγδ is

Hk
αβγδ =

na+nγ−k−1∑
ν=0

(nβ + nδ + k + ν)!(λα + λγ)ν

(λα + λβ + λγ + λδ)nβ+nδ+k+ν+1ν!
. (69)

One problem with the basis sets expansions in general is that the cusp condition
as the origin is not automatically satisfied. The logarithmic derivative of the
single particle orbitals should satisfy the following condition

lim
r→ 0

dφ(r)/dr
φ(r)

= − Z

`+ 1
. (70)

A high quality STO basis set will yield single particle orbitals for which the
boundary conditions is almost satisfied. The condition can be exactly satisfied
provided there is only one STO with nα = `+ 1 and the exponent is λα = Z

`+ 1
.

All the other STOs should have nα ≥ `+ 3.
Most compilations of analytic HF wave functions do not use basis sets which

automatically yield the correct cusp condition at the origin. It has been stated
that the restrictions upon the basis sets can result in a larger STO basis set
being needed to get a HF energy that is close to convergence. The experience of
the author is that this is not necessarily the case and that is should be possible
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to generate high quality basis sets that satisfy the exact boundary condition at
the origin without too much extra computational effort.

The program also has the ability to use an additional types of basis function.
At present, the program can also handle a Laguerre basis using functions that
have proved popular in scattering calculations. To be precise, we define

χα(r) = Nαr
` exp(−λαr)L(2`+2)

nα−`−1(2λαr) , (71)

where the normalisation constant is

Nα =

√
(2λα)2`+3(nα − `− 1)!

(`+ nα + 1)!
, (72)

and L
(2`+2)
nα−`−1(2λαr) is an associated Laguerre polynomial that can be defined in

terms of a confluent hypergeometric (Abramowitz and Stegun 1964) as

L
(2`+2)
nα−`−1(2λαr) =

(nα + `+ 1)!
(nα − `− 1)!(2`+ 2)!

M(−(nα − `− 1), 2`+ 2, 2λαr) . (73)

The matrix elements of this Laguerre basis are evaluated by expanding the basis
functions as a sum of individual terms containing powers of r and exponential
factors. Once the Laguerre functions have been expressed as a sum of the
individual terms, the matrix elements collapse to sums over individual matrix
elements which can be evaluated using the expressions developed for STOs.
Because of this it is relatively easy to modify the program to use a slightly
different Laguerre function.

(4b) The GTO Basis

Besides Laguerre functions, the program can also handle Gaussian-type orbitals.
These are defined as

χα(r) = Nαr
nα−1 exp(−λαr2) . (74)

The GTO basis functions must satisfy the condition

nα = `α + 2i+ 1; i = 0, 1, 2, .... (75)

so that electron–electron matrix elements collapse to a simple analytic form. The
normalisation constant is

Nα =

√√√√ 1
(2nα − 1)!!

√
2(4λα)2nα+1

π
, (76)

and the overlap matrix is

Sαβ = NαNβ(nα + nβ − 1)!!
√

π

2(2λα + 2λβ)nα+nβ+1 . (77)
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The one-body matrix elements of the Hamiltonian are

Tαβ = NαNβ

{
2λαλβX

(λα+λβ)

(nα+nβ+2) − (λαnβ + λβnα)X(λα+λβ)

(nα+nβ)

+
(`(`+ 1) + nβnα)

2
X

(λα+λβ)

(nα+nβ−2) −
Z

(
nα + nβ − 2

2

)
!

2
√

(λα + λβ)(nα+nβ)

}
, (78)

where for even n

Xλ
n =

∫ ∞
0

rnexp(−λr2) dr = (n− 1)!!
√

π

2(2λ)n+1 . (79)

Using the definition

p =
nα + nβ + nγ + nδ − 2

2
, (80)

the two-body matrix elements are

〈χαχβ |rk</r
k+1
>
|χγχδ〉 = NαNβNγNδ

√
π

2p+2
√

(λα + λβ + λγ + λδ)(2p+1)

×
[ (nα+nγ−k)/2∑

i=0

(2p− 2i− 1)!!
(
nα + nγ − k

2

)
! 2i (λα + λβ + λγ + λδ)i

(nα + nγ − i)!(λα + λγ)(1+i)

+
(nβ+nδ−k)/2∑

i=0

(2p− 2i− 1)!!
(
nβ + nδ − k

2

)
! 2i (λα + λβ + λγ + λδ)i

(nβ + nδ − i)!(λβ + λδ)(1+i)

]
.

(81)

5. Program Details

The program that is being made available has existed in various incarnations
since 1978 and some of this (awful) pre FTN77 code is still present in the
most recent version. A considerable amount of work has been put into the
program in the intervening years, for instance in the original version, all matrix
diagonalisations were performed using the Jacobi algorithm. It was only recently,
that this section was replaced by the Householder algorithm as taken from the
EISPACK suite of subroutines (Smith et al. 1976). So while there are sections of
the code that are relatively up to date and easy to read, there are also parts of
the code that are poorly written and relatively opaque. However, the program
has received a fair amount of exercise over the years, and has been ported to
a variety of computers including Cyber, VAX, PRIME, SUN, IBM RS6000 and
DEC ALPHA. So it is expected that the program should be easy to port to most
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computers and furthermore it should be able to reliably handle all configurations
involving at most two open shells outside a closed shell.

In spite of the revisions that the program has been put through recently,
there are still numerous examples of inefficiencies present in the program. The
amount of memory required could be reduced, and the program could certainly
be speeded up. However, in most circumstances the demands that the program
places on most computational systems are not large and the desire to make the
program available for general use has outweighed the benefits (and drawbacks)
associated with a revised version specifically for general usage.

(5a) Input

All of the program input is read from unit IRD (= 5) and is in free format.

1. Card 1. (KTL(14),I = 1,14)

The array KTL(I) contains a number of parameters which control the flow of
the program and determines the extent of the screen output.

KTL(1) > 0 The program jumps to subroutine OUT after reading in
and orthogonalising the orbitals. Mainly used to Schmidt
orthogonalise a set of orbitals or to check the input stream.

KTL(2) > 0 A strong orthogonality conditions is maintained between the
open and closed shell orbitals during the iterative process.

KTL(3) > 0 Details of the STO basis are printed out.
> 10 The one-body matrix elements of the STO basis are printed.
> 100 A diagnostic message is printed whenever the program enters

the more important subroutines.
KTL(4) > 0 Some statistics about the size of the two electron STO tables

are printed.
KTL(5) > 0 Details of the SCF iterations are printed. In particular the

single particle energies and the orbital coefficients are printed.
> 10 All the single particle energies, from all the open and closed

shell manifolds are printed.
> 20 This prints out the single electron Hamiltonians. A lot of

output is produced.
KTL(6) > 0 An alternate value of x coefficient used to couple the open

and closed shell orbitals can be set manually. The coupling
coefficient is set to x = DBLE(KTL(6))/DBLE(100).

KTL(7) Not used.
KTL(8) > 0 Damping is used to stabilise the convergence of the SCF

process. The new orbital is updated according to cnewi =
ycnewi + (1− y)coldi , where y = KTL(8)/100.

KTL(9) > 2 Aitken’s acceleration method is used to increase the rate of
convergence of the SCF process. The extrapolation is used for
iterations i = 1 +KTL(9) ∗ J where J = 1, 2, 3.... This facility
is rarely used.

KTL(10) > 0 The configuration is one for which the angular momentum
information is not computed automatically. When this option
is set, the angular coefficients are those of the ‘average energy’
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configuration. KTL(10) should be set to 100+NMIN , where
NMIN is the minimum N value value for which AK and
BK Slater integrals need to be input.

KTL(11) > 0 Angular coefficients for direct Slater integrals are needed. The
number of coefficients input is KTL(11).

KTL(12) > 0 Angular coefficients for exchange Slater integrals are needed.
The number of coefficients input is KTL(12).

KTL(13) > 0 Determines the amount of diagnostic output printed during
the non-linear optimisation of the exponents.

KTL(13) > 10 The energy and floating exponents are output after the
completion of each HF calculation.

KTL(14) > 0 The program will diagonalise the Hamiltonian for the hydrogenic
−Z/r field.

2. Card 2. RMASS,RNE,ZZZZ

RMASS. This is the mass of the atom (not used).
RNE. This is the number of electrons (not used).
ZZZZ. This is the nuclear charge (read in as a positive number).

3. Card 3. NDIM, NWF

NDIM . This denotes the total number of basis functions.
NWF . This is the number of single particle orbitals.

4. Card 4. NIT,LT,IST,LMAX,IDAVID,IVA04A

NIT . This the maximum number of permissible SCF iterations.
LT . This is (twice) the total orbital angular momentum.
IST . This is (twice) the total spin angular momentum.
LMAX. The maximum `-value of any single particle orbital.
IDAV ID. This determines whether non-linear optimisation of the exponential

parameters of the basis is performed with the Davidon–Powell routine, MODDAV .
If IDAV ID = 0, then MODDAV is not called. If IDAV ID = 1, then

MODDAV is called. If IDAV ID = 2, IDAV ID is set to zero after MODDAV
has been called once.
IV A04A. If IV A04A = 1, non-linear optimisation of the STOs is performed

using a quasi-Newton method.

5. Card 5. MAXIT1,ECOMM2,FTOLER,FACTOR,DIFF and
Card 6. MAXTI2,ECOMM2,FTOLER,ESCALE

These cards deal with the non-linear optimisation of the basis functions. The
data in card 5 refer to Davidon–Powell routine MODDAV , and the data in card
6 refer to the quasi-Newton algorithm V A04A. These routines were taken from
the program CIV3 and so more detail about the non-linear optimisation can be
obtained elsewhere (Hibbert 1975b).
MAXIT1 and MAXIT2 refer to the maximum number of iterations
ECOMM2 is the accuracy to which the exponents are to be optimised. A

reasonable value for ECOMM2 is an existing exponent multiplied by 10−3 (it
is assumed that rough estimates of the exponent are known).
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FTOLER is the accuracy to which the energy is to be determined. This
tolerance also determines the convergence criteria of the overall SCF process.
DIFF is an estimate of the expected improvement in the energy.
FACTOR. When estimating the gradient vector in MODDAV , the following

step size is chosen

δλ = FACTOR× λ if λ 6= 0, δλ = FACTOR if λ = 0 . (82)

A value of 10−4 should be reasonable.
ESCALE is the initial step length for parameter variation in V A04A. The

bigger the number, the larger the initial step length. The step-length is

δλ = 0 ·1× ESCALE × ECOMM2 . (83)

A reasonable estimate of the initial step length would be about 0 ·1 to 0 ·01
and once ECOMM2 has been set, ESCALE should be adjusted to get an
appropriate initial step length.

6. Card 7. IVPOL,ALPHAD,RCPOL

When dealing with situations involving a couple of electrons outside a closed
core it is often advantageous to allow for the polarisation of the core by using a
semi-empirical polarisation potential. The matrix elements of this potential are
computed by numerical integration.

Vpol(r) = − αd
2r4 [1− exp(−r6/r6

0)] . (84)

IV POL. When IV POL > 0, the open-shell the polarisation potential is
included in the one-electron part of the Hamiltonian. This option can only used
sensibly in the context of a frozen-core calculation.
ALPHAD is the value of the static dipole polarisability, αd in a3

0.
RCPOL is the cutoff parameter, r0 in the polarisation potential.
The present program has been used to compute the frozen-(polarised)-core HF

wave functions used in a number of calculations of electron scattering from Be+,
Na, Al2+, K and Ca+.

7. Card 8. NV(I),LV(I),GV(I),IVY(I),ITP(I)

This card type defines the analytic basis and I = 1, NDIM cards are input.
NV (I). The power of nα in rnα−1 for the STOs and GTOs. Also specifies

the values of nα in L
(2`+2)
nα−`−1(2λαr).

LV (I). This is the `-value of the STO. The STOs should be read in a sequence
of increasing LV . Those with LV = 0, should precede those with LV = 1, those
with LV = 1 should precede those with LV = 2, and so on.
GV (I). This is the exponential parameter, λα of the STO or GTO.
IV Y (I). If IV Y (I) > 0, then the exponent of the STO is can be adjusted in

a non-linear optimisation of the basis.
ITP (I). There is a facility built into the program to use more than one

type of basis function. Set ITP (I) = 0 for STOs, ITP (I) = 1 for LTOs, and
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ITP (I) = 10 for GTOs. It is possible to include STOs and LTOs in the same
calculation.

This LTO function has received extensive use in scattering calculations. Since
only relatively few runs have been performed with Laguerre-type orbitals, the
accuracy of this option cannot be guaranteed.

8. Card 9. N(I),NE(I),L(I),NOC(I),NFR(I) and
Card 10. (C(J,I),J=1,NML(I))

Cards 9 and 10 are read in together for each orbitals from I = 1, NWF . For
each single particle state an initial estimate of the orbital coefficients is required.
N(I) is simply an integer label for the orbital. This label is only used for the

storage of the AK and BK Slater integral coefficients.
NE(I) designates which eigensolution (in terms of increasing energy) of the

effective single particle Hamiltonian should be used to describe for the orbital.
L(I) is the ` value of the single particle orbital.
NOC(I) designates the number of electrons occupying the single particle state.
NFR(I). This denotes the whether the orbital is ‘frozen’ during the SCF

iterative process. If NFR(I) > 0, then this orbital is not updated during the
SCF process.
C(J, I). These are the linear expansion coefficients of the STO basis set. After

the orbital coefficients are read in, the set of orbitals are then normalised and
orthogonalised. The number of coefficients must be equal the number of basis
functions for that ` value. For any orbital this is equal to NML(I) (which is
computed internally).

9. Card 11. (I1,I2,KV,AAK) and Card 12. (I1,I2,KV,AAK)

Cards 11 and 12 are concerned with the detailed specification of the HF energy.
The HF energy can be written in the general form

E =
∑
i

qi〈φi|T |φi〉+
∑
i,j

∑
k

qiqjfk(i, j)F k(i, j) +
∑
i,j

∑
k

qiqjgk(i, j)Gk(i, j) ,

(85)

where the qi are the orbital occupancies, and the fk and F k factors are the
angular and direct Slater integrals, and the gk and Gk factors are the exchange
integrals. The HF equations determine the set of orbitals that minimise this
energy function. For situations involving fully closed shells, or one or two electrons
outside a closed shell, the fk and gk angular factors are computed automatically.
In other situations the coefficients need to be input.

Card 11 is read a total of I = 1,KTL(11) times. This reads in the angular
coefficients for the direct-type Slater integrals. The coefficient is stored in the
array AK(N(I1), N(I2),KV/2).

Card 12 is read a total of I = 1,KTL(12) times. This reads in the angular
coefficients for the exchange-type Slater integrals. The coefficient is stored in the
array BK(N(I1), N(I2),KV/2).

The coefficients that are read in and stored in the arrays AK(I, J,K) and
BK(I, J,K) are not the fk and gk coefficients, rather they are the differences
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from the coefficients for the ‘average energy of the configuration’. This feature
of the program was modeled on a similar feature in the MCHF77 program
(Froese-Fischer 1978).

The generation of LS dependent energy expressions for arbitrary configurations
is quite complicated. That is why the original MCHF77 approach of leaving this
to the user has been adopted! A number of atomic physics textbooks discuss the
angular momentum algebra associated with the generation of energy expressions
in a lot of detail and also include tabulated energy expressions for a number of
configurations (Condon and Odabsai 1980).

In addition there have been programs published that generate energy expressions
for general atomic configurations (Hibbert 1970, 1971, 1982; Lima 1991).

(5b) Array Dimensions

Most of the program dimensions are set using parameter statements. These
parameters are:
IMAN . The number of manifolds for which single particle orbitals can be

constrained to be orthogonal. At present, this is set to 3.
IY G. The number of separate groups of two-electron radial Slater integrals.
ITX. The maximum number of iterations.
LDM . The maximum number of basis functions for a particular `-value.
LU . The maximum ` value of any individual single particle orbital.
NORB. The maximum number of single particle orbitals
NSTO. The total number of basis functions.
NYK. The maximum number of raw Slater integrals for a given (`i, `j , `k, `l)

combination.
There are also a number of arrays that store precomputed factorial tables.
FS(I) contains (I − 1)!. Storage is allowed for 80 elements. The array is

initialised in COMBIN .
DFT (I, J) contains (I − 1)!/(J − 1)!. Storage is allocated for 80×80 elements.

The array is initialised in COMBIN .
FL(I) contains log(I!). Storage is allocated to 100 elements. The array is

initialised in GAMMA. These values are used by the 3j and 6j routines W3J
and W6J .
FACT2(I) contains (I − 1)!! (I!! = 1 ·3 ·5..I for I odd and I!! = 2 ·4 ·6..I for I

even). Storage is allowed for 100 elements. The array is initialised in COMBIN .

(5c) Open Files

A number of files are used in the course of any calculation. These files are
written to units IRD, IWR, IKP , IDISK1 and IDISK2 which are defined in
routine RHF .
RHFIN.DAT . This file is identified with unit IRD = 5 and contains the

input stream for the program.
The screen output is written to the unit IWR = 6.
SLATER1.DAT . This file, written to IDISK1 = 11, contains the table of

two electron direct and exchange radial integrals. This used to be a ‘SCRATCH’
file until the program was ported to an IBM RS6000 and the vagaries of the
AIX operating system were encountered. At present the file is deleted manually
or by using operating system commands after the completion of the program.
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SLATER2.DAT . This file, written to IDISK2 = 21, contains the table of
two electron direct and exchange radial integrals. This file is only used when a
non-linear optimisation of the STO or GTO exponents is being performed.
RHFOUT.DAT . This file is designed to act as a clone of the RHFIN.DAT

file and utilises unit, IKP = 12. This file can therefore serve as an input file to the
program. The orbital coefficients written to it are those retained in the computer
memory after the SCF cycle has completed or halted. In those cases where
the SCF process converged slowly, and had to be halted because the maximum
number of iterations was exceeded, the wave function file RHFOUT.DAT can
be copied to RHFIN.DAT and used to restart the program.

(5d) Structure of the Program

The view has been taken that an exhaustive description of the program is
not warranted. Most of the program is adequately commented, so only a brief
description of the more important parts of the program is detailed here.

1. RHF

This is the initial entry point for the program. The routines initialising the
factorial tables, GAMMA and COMBIN and the routine SETZER which
fills some arrays with zeros are called. The subroutine SLATER which reads
in the input stream is also called. The files, RHFIN.DAT , SLATER1.DAT ,
SLATER2.DAT and RHFOUT.DAT are opened as required.

Some of the important decisions that determine the type of calculation are
taken here.

When KTL(14) > 0, the program calls ZHYD to compute hydrogenic
eigenstates and stops.

When (IDAV ID + IV A04A) > 0, then ZEOPT is called and a non-linear
optimisation of selected exponents is performed. Otherwise, the program just
keeps iterating the SCF cycle for the input basis set until convergence is obtained.
Convergence is achieved when the L2 norm of the difference between the orbital
vectors satisfies

DELI = max
i=1,2,3,..

|cj+1
i − cji | < DPS (86)

for two successive iterations. DPS is set in the subroutine SCF .

2. SLATER

This routine reads in all the input data. The routine CLOP , which organises
the individual orbitals into the open and closed shell manifolds is called here. If
KTL(1) > 0, then the routines, NWBAS, OUT , SPE and V POL are called to
evaluate certain matrix elements and the program halts.

3. NWBAS

The purpose of this routine is to compute quantities associated with the
analytic basis and the single particle orbitals. The basis set is normalised so
that the diagonal elements of the overlap matrix S are 1, and the non-diagonal
elements of S are computed. The overlap matrix is diagonalised in SDAG and
the transformation matrix W to the orthogonal basis stored. The single particle
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orbitals, ci are normalised and then orthogonalised in ORTHOG. The matrix
elements of the one body Hamiltonian, and optionally the polarisation potential
are computed in SPE and V POL respectively.

4. ORTHOG

This routine performs a Schmidt orthogonalisation of the single particle orbitals.
The orthogonalisation is performed in the order in which the orbitals are input.

5. BASME

The subroutine BASME organises the generation of the matrix elements of
the electron–electron interaction. The two-body matrix elements are written to
disk by a call to the routine OUTPUT . The matrix elements are put to disk
in this manner, because at one time the program was located on a computer
with very limited disk space, and the only place the matrix elements could be
stored was another computer on the network. There were limitations on the size
of individual records that could be written across the network.

6. Direct

This routine computes the elements of the matrices F0, F1 and F2 for the
direct part of the electron–electron interaction. The routine COUPLE which
computes the exchange contributions to the single particle Hamiltonian is called
from here.

7. COUPLE

This routine computes the elements of the matrices F0, F1 and F2 for the
exchange part of the electron–electron interaction.

8. EIGEN

This routine controls the formation and diagonalisation of the effective
Hamiltonians once the matrix representation of all necessary operators have been
constructed. The coupling operators are formed, the projection operators are
included, the Hamiltonian is transformed to the orthogonal basis. The matrix is
diagonalised in HAMDAG, the correct eigenvectors are selected in SORT and
then transformed back to the original basis. The eigenvectors are normalised in
NORM , iteration damping is done in DAMP , the energy estimate is computed
in EHF , the convergence test is also computed in EHF , and the updating and
replacement of the eigenvectors is performed in SET .

The complicated structure of this subroutine is a result of history. The options
to handle the various open shell situations were developed in an incremental
manner, and not as part of a single formalism to handle the different open shell
cases.

9. OUT

The purpose of OUT is to print the eigenvalues and eigenvectors of the
converged solution. For each single particle orbital, the orbital vector ci, the
Koopman energy εi, and the cusp condition at the origin are printed (the cusp
conditions are meaningless for GTOs). As well, it is possible to compute the
expectation values, rk for k = −1, 1, 2 and 3 and ∇ . The total energy and the
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ratio V
E

= E − T
T

are also printed. The file RHFOUT.DAT , which contains the

latest estimates of the orbitals coefficients and can be used as an input stream
to the program is also written to disk.

(5e) Running the Program

The program as it stands cannot be used all the time as a black box. Generating
converged solutions by the SCF procedure can be quite an involved procedure,
especially for situations involving open shells or excited states. For closed shell
atoms and a lot of ground state configurations, the default options built into
the program generally result in converged solutions being obtained without any
problems. For instance, when it has been necessary to use wave functions from
the Clementi and Roetti (1974) tabulation for a scattering calculation, it is
generally quicker to type in the STO basis, and run the HF program to generate
the linear expansion coefficients rather than typing these coefficients in manually.

Unlike some finite difference HF programs, the present program does not have
a ‘self-starting’ option. The initial estimate of the HF orbitals are input by the
user. Since the HF orbitals are a linear combination of a relatively few basis
functions, it has never been too onerous a chore to input the initial starting ci
vectors. In addition, one can use existing tabulations of analytic HF functions
to furnish the initial starting vector.

One useful feature of the program is the production of the file RHFOUT.DAT .
This file writes out the wave function details when the program terminates.
The file RHFOUT.DAT has exactly the same form as the input data stream
RHFIN.DAT and so the latest results from a not quite converged calculation
can be used to restart another calculation.

It is envisaged that the program will mostly be used to generate excited
states since extensive tabulations of ground state HF functions already exist.
The calculations involving open shell configurations are the most difficult to
converge. The following tricks should permit convergence to be obtained in most
circumstances.

• The first thing that should be done is to turn damping on. This is often
the difference between convergence and non-convergence. Some times,
damping factors as high as 0 ·90 have been used.
• The output file RHFOUT.DAT contains the last estimate of the wave

function in a format that is compatible with RHFIN.DAT . It is possible
to copy RHFOUT.DAT onto RHFIN.DAT and restart the calculation
when the SCF process is converging very slowly.
• Most often it is the failure for the valence orbitals to converge that

causes problems. It can be advantageous to run the calculation with the
valence orbitals omitted to get reasonable initial estimates of the core
orbitals. Once, reasonable descriptions for the core orbitals have been
obtained, the valence electrons can be included and convergence should
be easier to achieve.
• It is often a good idea to scan through the eigenvalues resulting from the

matrix diagonalisation. For instance, suppose the state of interest is the
3p 2P 0 state of sodium. When using the default choice of the coupling
operators due to Roothaan, the second lowest eigenvalue would represent
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the 3p orbital. However, when the strong orthogonality condition is set,
it is the lowest eigenvalue that represents the 3p orbital. In general,
the use of the Roothaan choice for the coupling operators results in
an eigenvalue spectrum in which the orbitals are ordered in a natural
manner. However, other choices of the coupling operators result in the
eigenvalues being shuffled around and it is sometimes useful to dump
the eigenvalue spectrum from each individual effective Hamiltonian to
output. This can be done by setting KTL(5) > 10.
• This program has been primarily used in investigations that have

concerned the behaviour of the valence electrons. Accordingly, it cannot
be guaranteed to behave well for situations involving inner shell vacancies.
• The program may crash if a closed shell orbital is frozen, while other

closed shell orbitals of the same ` symmetry are not frozen.
• Configurations with one or two electrons missing from a closed p or d

shell seem to converge the slowest. Damping factors almost always have
to be used in these situations.

It might be tempting to use this program to generate orbitals computed
with the one-body terms of the Breit–Pauli Hamiltonian to take into account
relativistic modifications of the orbitals. It is strongly recommended that this not
be done. The diagonalisation of the Breit–Pauli Hamiltonian for a hydrogenic
ion with Z = 60 gives ridiculous energies.

(5f) Basis Set Selection

The analytic approach to the HF method has one additional layer of complexity
that is not present in the numerical approach. This is the detailed specification of
the basis set. The level to which complexities can intrude into what should be a
rather simple business is best exemplified by the present environment in quantum
chemistry which has seen acronyms proliferate to a great extent. Fortunately,
the situation in atomic physics is rather simpler and there are a number of
tabulations of analytic HF wave functions that provide reasonable starting points
for the calculations of excited state wave functions. The following discussion
assumes that the program will be used to generate orbitals for excited state
configurations.

The first point to be made is that the existing basis functions that are used
to describe the core orbitals should be adequate for a description of the inner
parts of the valence orbitals. To a large extent, the behaviour of the radial wave
functions for core and excited state orbitals close to the origin are quite similar
apart from an overall normalising factor (Connerade 1998).

An important point to stress is the extent to which small differences in the
energy can lead to major differences in the wave functions. This is especially
true for highly excited levels. A reasonable initial estimate for the exponential
parameter is λ =

√
2ε, where ε is the ionisation energy (or Koopman energy) of

the state.
When doing a non-linear optimisation for the basis set parameters for excited

states, it is often best to do the optimisation within the framework of a frozen
core model. Besides having less equations to solve, frozen core calculations often
take fewer SCF iterations to converge, and this can lead to major time savings.
There is another advantage to a frozen core calculation. If the effect of the
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optimisation will only be an energy decrease of 0 ·0001 Hartree, this small change
in the energy will be swamped by the total HF energy which is −1000 Hartree
around Z = 20. Making the relative change in the energy as large as possible
has obvious benefits when performing an optimisation. When an optimisation
run is performed, the options giving the enhanced printout [i.e. KTL(13) > 0]
should be turned on.

Many compilations of basis functions and wave functions already exist in the
literature. The compilation of Clementi and Roetti (1974) gives STO basis wave
functions for every ground state of every ion for Z ≤ 54 while MacLean and
MacLean (1982) provide tabulations for heavier atoms (which really should be
treated with a relativistic formulation). More accurate STO basis sets for neutral
atom ground states have recently been published by Bunge et al. (1993) and
Koga et al. (1993a, 1993b, 1994). The situation with GTO basis sets is not
as satisfactory despite the enormous efforts expended in creating basis sets for
molecular calculations. Most of the GTO basis sets use contracted basis functions
constructed from linear combinations of GTOs. However, Partridge (1987, 1989a,
1989b), Huzinaga and Miguel (1990) and Huzinaga et al . (1993) have published
basis sets of uncontracted GTOs that are suitable for this program.

6. Availability of the Program

The program can be obtained over the internet at

http://lacebark.ntu.edu.au/j mitroy/research/atomic.htm.

Alternatively email can be sent to j mitroy@banks.ntu.edu.au (regular mail also
accepted). This document is also available as a RevTEX file. The results of a
number of sample calculations (and associated input streams) exist at this site.
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