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Abstract

Lattice discretisation errors in the Landau gauge condition are examined. An improved gauge
fixing algorithm in which O(a2) errors are removed is presented. O(a2) improvement of the
gauge fixing condition improves comparison with the continuum Landau gauge in two ways:
(1) through the elimination of O(a2) errors and (2) through a secondary effect of reducing
the size of higher-order errors. These results emphasise the importance of implementing an
improved gauge fixing condition.

1. Introduction

Gauge fixing in lattice gauge theory simulations is crucial for many calculations.
It is required for the study of gauge dependent quantities such as the gluon
propagator in Leinweber et al . (1998, 1999), and is used to facilitate other
techniques such as gauge-dependent fermion source smearing. However, the
standard Landau gauge condition, as used by Davies et al . (1988), is the same
as the continuum condition,

∑
µ ∂µAµ = 0, only to leading order in the lattice

spacing a.
There has been some study of alternate lattice definitions of the Landau gauge

condition by Giusti (1997) and Giusti et al. (1998). The focus of this paper
is to use mean-field-improved perturbation theory (Lepage and Mackenzie 1993)
to compare different lattice definitions of the Landau gauge, and quantify the
sizes of the discretisation errors. In particular, we derive a new O(a2) improved
Landau-gauge-fixing functional which is central to estimating the discretisation
errors made with the standard functionals.

In Section 2 we derive mean-field-improved expansions (in the lattice spacing
and coupling constant) for three different definitions of the Landau gauge condition
for the lattice. The use of an improved Landau gauge functional allows an
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estimate of the absolute error in standard lattice Landau gauge. The size of
the error provides a strong argument for the use of an improved gauge fixing
condition.

2. Lattice Landau Gauge

Gauge fixing on the lattice is achieved by maximising a functional whose
extremum implies the gauge fixing condition. The usual Landau gauge fixing
functional is (Davies et al . 1988)

FG1 [{U}] =
∑
µ,x

1
2Tr

{
UGµ (x) + UGµ (x)†

}
, (1)

where

UGµ (x) = G(x)Uµ(x)G(x+ µ̂)† , (2)

G(x) = exp

{
−i
∑
a

ωa(x)T a
}
. (3)

Taking the functional derivative of equation (1), we obtain

δFG1
δωa(x)

= 1
2 i
∑
µ

Tr
{[
UGµ (x− µ̂)− UGµ (x)−

(
UGµ (x− µ̂)− UGµ (x)

)†]
T a
}
. (4)

The gauge links are defined as

Uµ(x) ≡ P exp
{
ig

∫ a

0

dtAµ(x+ µ̂t)
}
. (5)

Connection with the continuum is made by Taylor-expanding Aµ(x+ µ̂t) about
x, integrating term-by-term, and then expanding the exponential, typically to
leading order in g, noting that errors are of O(g2a2). Expanding equation (4),
we obtain

δFG1
δωa(x)

= ga2
∑
µ

Tr
{[
∂µAµ(x) + 1

12a
2∂3
µAµ(x)

+
a4

360
∂5
µAµ(x) +O(a6)

]
T a
}

+O(g3a4) . (6)
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To lowest order in a, an extremum of equation (1) satisfies
∑
µ ∂µAµ(x) = 0,

which is the continuum Landau gauge condition. What it means in practice on
the lattice is that ∑

µ

∂µAµ(x) =
∑
µ

{
−a

2

12
∂3
µAµ(x)−H1

}
, (7)

where H1 represents O(a4) and higher-order terms, as shown in equation (6).
Näıvely one might hope that higher-order derivatives in the brackets of (6) are
small, but it will be shown that the terms on the right-hand side of equation
(7) are large compared with the numerical accuracy possible in gauge fixing
algorithms.

An alternative gauge-fixing functional can be constructed using two-link terms,
for example

FG2 =
∑
x,µ

1
2Tr

{
UGµ (x)UGµ (x+ µ̂) + h.c.

}
. (8)

Taking the functional derivative yields

δFG2
δωa(x)

= 1
2 i
∑
µ

Tr
{[
UGµ (x− 2µ̂)UGµ (x− µ̂)− UGµ (x)UGµ (x+ µ̂)− h.c.

]
T a
}

(9)

and expanding to O(a4) we obtain

δFG2
δωa(x)

= 4ga2
∑
µ

Tr
{[
∂µAµ(x) +

a2

3
∂3
µAµ(x)

+ 16
360a

4∂5
µAµ(x) +O(a6)

]
T a
}

+O(g3a4) , (10)

which again implies the continuum Landau-gauge-fixing condition to lowest order
in a.

The O(a2) errors can be removed from the gauge fixing condition by taking
a linear combination of the one-link and two-link functionals:

δ

{
4
3F

G
1 −

1
12u0

FG2
}

δωa(x)
= ga2

∑
µ

Tr
{[
∂µAµ(x)− 4

360a
4∂5
µAµ(x)

+O(a6)
]
T a
}

+O(g3a4) , (11)

where we have introduced the mean-field (tadpole) improvement parameter u0 to
ensure that our perturbative calculation is not spoiled by large renormalisations,
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as explained by Lepage and Mackenzie (1993). For the tadpole-improvement
parameter we employ the plaquette measure

u0 =
(

1
3ReTr〈Upl〉

) 1
4 (12)

and note that the higher order g3a4 terms of equations (6), (10) and (11) are to
be viewed in terms of the mean-field-improved perturbation theory of Lepage and
Mackenzie (1993). For future reference we shall define the improved functional,
FGimp ≡ 4

3FG1 − (1/12u0)FG2 .
Once a gauge-fixing functional has been defined, an algorithm must be chosen

to perform the gauge fixing. We adopt a ‘steepest descents’ approach, like that
used by Davies et al . (1988). Collecting terms of O(a4) and higher into the Hi,
we define

∆1(x) ≡
1
u0

∑
µ

[Uµ(x− µ)− Uµ(x)− h.c.]traceless

= − 2iga2
∑
µ

{
∂µAµ(x) +

a2

12
∂3
µAµ(x) +H1

}
, (13)

∆2(x) ≡
1

4u2
0

∑
µ

[Uµ(x− 2µ)Uµ(x− µ)− Uµ(x)Uµ(x+ µ)− h.c.]traceless

= − 2iga2
∑
µ

{
∂µAµ(x) +

a2

3
∂3
µAµ(x) +H2

}
, (14)

∆imp(x) ≡ 4
3∆1(x)− 1

3∆2(x)

= − 2iga2
∑
µ

{∂µAµ(x) +Himp} , (15)

where the subscript ‘traceless’ denotes subtraction of the average of the colour-trace
from each of the diagonal colour elements. The resulting gauge transformation is

Gi(x) = exp

{
α

2
∆i(x)

}

= 1 +
α

2
∆i(x) +O(α2), (16)

where α is a tuneable step-size parameter, and the index i is either 1, 2, or imp.
At each iteration Gi(x) is unitarised through an orthonormalisation procedure.
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The gauge fixing algorithm proceeds by calculating the relevant ∆i in terms of the
mean-field-improved links, and then applying the associated gauge transformation,
equation (16), to the gauge field. The algorithm is implemented in parallel,
updating all links simultaneously, and is iterated until the lattice Landau gauge
condition is satisfied, to within some numerical accuracy.

3. Discretisation Errors in the Gauge Fixing Condition

The approach to Landau gauge is usually measured by a quantity such as

θi =
1

V Nc

∑
x

Tr
{
∆i(x)∆i(x)†

}
, (17)

which should tend to zero as the configuration becomes gauge fixed. Here Nc is
the number of colours, i.e. 3.

A configuration fixed using ∆1(x) will satisfy equation (7). Substituting (7)
into equation (14) yields

∆2(x) = − 2iga2
∑
µ

{
−a

2

12
∂3
µAµ(x) +

a2

3
∂3
µAµ(x)−H1 +H2

}

= − 2iga2
∑
µ

{
a2

4
∂3
µAµ(x)−H1 +H2

}
(18)

and similarly,

∆imp(x) = −2iga2
∑
µ

{
−a

2

12
∂3
µAµ(x)−H1 +Himp

}
. (19)

Since the improved measure has no O(a2) error of its own, equation (19) provides
an estimate of the absolute size of these discretisation errors.

4. Calculations on the Lattice

(4a) The Gauge Action

The O(a2) tadpole-improved action is defined as

SG =
5β
3

∑
pl

ReTr(1− Upl(x))−
β

12u2
0

∑
rect

ReTr(1− Urect(x)) , (20)

where the operators Upl(x) and Urect(x) are defined as

Upl(x) = Uµ(x)Uν(x+ µ̂)U†µ(x+ ν̂)U†ν (x) , (21)
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Urect(x) = Uµ(x)Uν(x+ µ̂)Uν(x+ ν̂ + µ̂)U†µ(x+ 2ν̂)U†ν (x+ ν̂)U†ν (x)

+Uµ(x)Uµ(x+ µ̂)Uν(x+ 2µ̂)U†µ(x+ µ̂+ ν̂)U†µ(x+ ν̂)U†ν (x) . (22)

The link product Urect(x) denotes the rectangular 1 × 2 and 2 × 1 plaquettes.
Equation (20) reproduces the continuum action as a→ 0, provided that β takes
the standard value of 6/g2. The O(g2a2) corrections to this action are estimated
to be of the order of two to three percent by Alford et al . (1995). Note that
our β = 6/g2 differs from that used in Alford et al . (1995), Lee and Leinweber
(1999) and Fiebig and Woloshyn (1996). Multiplication of our β in equation (20)
by a factor of 5

3 reproduces their definition.

(4b) Numerical Simulations

Gauge configurations are generated using the pseudoheat-bath algorithm of
Cabbibo and Marinari (1982) with three diagonal SU(2) subgroups. The mean
link, u0, is averaged every 10 sweeps and updated during thermalisation.

For the exploration of gauge fixing errors we consider 64 lattices at a variety of
β for both standard Wilson and improved actions. For the standard Wilson action
we consider β = 5 ·7, 6 ·0 and 6 ·2, corresponding to lattice spacings of 0 ·18,
0 ·10 and 0 ·07 fm respectively. For the improved action we consider β = 3 ·92,
4 ·38 and 5 ·00, corresponding to lattice spacings of approximately 0 ·3, 0 ·2 and
0 ·1 fm respectively.

The configurations were gauge fixed, using conjugate gradient Fourier acceleration
(suggested by Cucchieri and Mendes 1998), until θ1 < 10−12. Then θimp and θ2

were measured to see the size of the residual higher order terms. The evolution
of the gauge fixing measures is shown for one of the lattices in Fig. 1. This
procedure was then repeated, fixing with each of the other two functionals, and
the results are shown in Table 1. The same procedure was performed with three
O(a2)-improved lattices, and the results are shown in Table 2.

Comparing equation (7) with (19), we can see that if we fix a configuration
to Landau gauge by using the basic, one-link functional, the improved measure
will consist entirely of the discretisation errors. Looking at Table 1, we see that
at β = 6 ·0, θimp = 0 ·058, i.e.

1
V Nc

∑
x

Tr

∑
µ

∂µAµ(x)

(∑
ν

∂νAν(x)

)† = 0 ·058 , (23)

a substantial deviation from the continuum Landau gauge when compared with
θ1 < 10−12.

As a check of our simulations, we note that the definition for ∆imp, equation
(15), provides a constraint on the measures when gauge fixed. For example, we
have

θimp

θ2

=
(− 1

12 )2

(− 1
12 + 1

3 )2 = 1
9 ' 0 ·111 . (24)
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Fig. 1. Gauge fixing measures for a 64 lattice with Wilson action at
β = 6 ·0. This lattice was gauge fixed with ∆1, so θ1 drops steadily whilst
θ2 and θimp plateau at much higher values.

Table 1. Values of the gauge-fixing measures obtained using the Wilson gluon action on 64

lattices at three values of the lattice spacing, fixed to Landau gauge with the one-link, two-link
and improved functionals respectively

β u0 Functional θimp θ2 (θimp/θ2)

5 ·7 0 ·865 1 0 ·0679 0 ·611 0 ·111
6 ·0 0 ·877 1 0 ·0578 0 ·520 0 ·111
6 ·2 0 ·886 1 0 ·0522 0 ·469 0 ·111

β u0 Functional θimp θ1 (θ1/θimp)

5 ·7 0 ·865 2 59 ·0 33 ·2 0 ·563
6 ·0 0 ·877 2 65 ·1 36 ·6 0 ·563
6 ·2 0 ·886 2 61 ·7 34 ·7 0 ·563

β u0 Functional θ1 θ2 (θ1/θ2)

5 ·7 0 ·865 imp 0 ·0427 0 ·684 0 ·0625
6 ·0 0 ·877 imp 0 ·0367 0 ·588 0 ·0625
6 ·2 0 ·886 imp 0 ·0332 0 ·531 0 ·0625

Similarly, by fixing with ∆2(x) we expect

θ1

θimp

=
(−1

3 + 1
12 )2

(− 1
3 )2 = 9

16 ' 0 ·563 , (25)

and fixing with ∆imp(x) leads to

θ1

θ2

= 1
16 = 0 ·0625 . (26)
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Table 2. Values of the gauge-fixing measures obtained using the improved gluon action on 64

lattices at three values of the lattice spacing, fixed to Landau gauge with the one-link, two-link
and improved functionals respectively

β u0 Functional θimp θ2 (θimp/θ2)

3 ·92 0 ·837 1 0 ·102 0 ·921 0 ·111
4 ·38 0 ·880 1 0 ·0585 0 ·526 0 ·111
5 ·00 0 ·904 1 0 ·0410 0 ·369 0 ·111

β u0 Functional θimp θ1 (θ1/θimp)

3 ·92 0 ·837 2 57 ·5 32 ·3 0 ·563
4 ·38 0 ·880 2 53 ·4 30 ·0 0 ·563
5 ·00 0 ·904 2 52 ·2 29 ·4 0 ·563

β u0 Functional θ1 θ2 (θ1/θ2)

3 ·92 0 ·837 imp 0 ·0638 1 ·02 0 ·0625
4 ·38 0 ·880 imp 0 ·0366 0 ·586 0 ·0625
5 ·00 0 ·904 imp 0 ·0261 0 ·417 0 ·0625

These ratios are reproduced by the data of Tables 1 and 2.
A three-link functional can also be constructed, e.g.

FG3 [{U}] =
∑
µ,x

1
2Tr

{
UGµ (x− µ)UGµ (x)UGµ (x+ µ) + h.c.

}
, (27)

the functional derivative of which

δFG3
δωa(x)

= 1
2 i
∑
µ

Tr{[UGµ (x− 3µ)UGµ (x− 2µ)UGµ (x− µ)

− UGµ (x)UGµ (x+ µ)UGµ (x+ 2µ)− h.c.]T a} (28)

leads to

∆3(x) = −2iga2
∑
µ

{∂µAµ(x) + 3
4a

2∂3
µAµ(x)

+ 9
40a

4∂5
µAµ(x) +O(a6)}+O(g3a4) . (29)

If leading order errors dominate, then we should be able to make ratios like
those above, but involving θ3. However, we find that the values taken from our
simulations are very different from ratios based solely on leading, O(a2) errors.
This indicates that the sum of higher-order errors is also significant.

Whilst one could proceed to combine ∆1, ∆2 and ∆imp to eliminate both
O(a2) and O(a4), it is likely that O(g2a2) errors are of similar size to the O(a4)
errors. We will defer such an investigation to future work.

A configuration fixed using ∆imp(x) will satisfy∑
µ

∂µAµ(x) =
∑
µ

{−Himp} . (30)
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Substituting this into equation (13) yields

∆1(x) = −2iga2
∑
µ

{
a2

12
∂3
µAµ(x) +H1 −Himp

}
. (31)

A comparison of this equation with (19) reveals that the coefficients of the terms
in curly brackets, expressing the discretisation errors in these two cases, differ
only by an overall sign, which is lost in the calculation of the corresponding
θi. If the three different methods presented all fixed in exactly the same way,
then the θimp of a configuration fixed with ∆1, would be equal to θ1 when
the configuration is fixed with ∆imp. It is clear from the tables that they are
not, signaling the higher-order derivative terms ∂nµAµ(x) take different values
depending on the gauge fixing functional used.

Examining the values in Tables 1 and 2 reveals that in every case θ1 is smaller
when we have fixed with the improved functional than θimp under the one-link
functional. This suggests that the additional long range information used by
the improved functional is producing a gauge fixed configuration with smaller,
higher-order derivatives; a secondary effect of improvement.

Equally, one can compare the value of θ2 when fixed using the one-link
functional, and θ1 when fixed using the two-link functional. In this case, their
differences are rather large and are once again attributed to differences in the size
of higher-order derivatives of the gauge field. The two-link functional is coarser,
knows little about short range fluctuations, and fails to constrain higher-order
derivatives. Similar conclusions are drawn from a comparision of θ2 fixed with
the improved functional and θimp fixed with the two-link functional.

It is also interesting to note that in terms of the absolute errors, the Wilson
action at β = 6 ·0 is comparable to the improved lattice at β = 4 ·38, where the
lattice spacing is three times larger.

5. Conclusions

We have fixed gluon field configurations to Landau gauge by three different
functionals: one-link and two-link functionals, both with O(a2) errors, and an
improved functional, with O(a4) errors. Using these functionals we have devised a
method for estimating the discretisation errors involved. Our results indicate that
order O(a2) improvement of the gauge fixing condition will improve comparison
with the continuum Landau gauge in two ways: (1) through the elimination
of O(a2) errors and (2) through a secondary effect of reducing the size of
higher-order errors. These conclusions are robust with respect to lattice spacing
and we have also verified the stability of our conclusions by considering additional
configurations to that presented here. We plan to investigate improved gauge
fixing on larger volume lattices to see if these effects of improvement persist.
Lattice Landau gauge, in its standard implementation, is substantially different
from its continuum counterpart, despite fixing the Lattice gauge condition to one
part in 1012.
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