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Abstract

We discuss two possible lines of experimental investigation based on parabolic quantum
wells. In the first proposal, we note that the Generalised Kohn Theorem/Harmonic Potential
Theorem forbids electron–electron damping of the Kohn mode in an electron layer gas under
strictly parabolic confinement. This applies even for very strong driving. It is therefore
interesting to attempt reduction of other sources of broadening in GaAlAs parabolic wells,
so as to achieve a prominent narrow resonance in the far infrared. We concentrate here on
phononic bandgap structures, which may be of interest for reduction of phonon effects in
other systems as well. The second class of proposed experiment involves twinned parabolic
wells in an attempt to observe van der Waals forces directly in GaAlAs systems. In a first
approximation, the parabolic or Hooke’s-law nature of the confinement allows one to use the
well as a kind of spring balance to measure the weak van der Waals force. The influence of
an applied magnetic field on these forces appears to be significant, and this system might
provide the first measurement of such an effect.

1. Introduction

This paper is mainly concerned with oscillations of the electron gas in semiconductor
nanostructures such as GaAlAs quantum wells. These oscillations can be regarded
broadly as the plasmon modes of confined electron gases, though in many cases
there are alternative interpretations in terms of modified single-particle transitions
(see e.g. Das Sarma 1984; Schaich and Dobson 1994). In wide GaAlAs quantum
wells these plasmon frequencies typically lie in the far infrared (FIR, TeraHerz)
region.

We will first discuss a possible way to sharpen up the Kohn-mode or ‘sloshing’
resonance of the electron gas in a parabolic quantum well (Dobson 1992, 1993;
Pinsukanjana et al. 1992). This approach relies on suppression of phonon damping.
If successful this could provide a reliable sharp FIR absorption line in a portable
solid-state device, with potential uses as a reference line. Before this can be
achieved, however, substantial reduction in other sources of broadening, such as
imperfect epitaxy, will probably need to be achieved.

We will also discuss the case of a double parabolic quantum well, containing
two parallel but non-contacting (thick or thin) sheets of electron gas. The coupled
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plasmons of these two sheets mediate an attractive van der Waals force between
the sheets. We explore the possibility of direct observation of this attraction by
capacitive or tunneling measurements.

2. Generalised Kohn/Harmonic Potential Theorems: Unusual Properties of
Parabolically Confined Electron Gases

In general plasmon motion of an electron gas, among various sources of line
broadening, there are some of purely electronic origin. The first of these is Landau
damping, in which the energy and momentum of a plasmon are transferred to an
electron–hole pair. This process does not directly involve the electron–electron
interaction and is therefore sometimes termed collisionless damping. The second
electronic damping mechanism is multipair excitation which does require the
electron–electron interaction (i.e. it involves electron–electron collisions): it can
be broadly related to the viscosity of the electron gas (Vignale et al. 1997). This
second mechanism is usually effective even where Landau damping is not, so
that most quantum-well plasmon motions would have non-zero damping, even if
influences such as defects and phonons were absent.

(a) (b) (c)

Vext(z)

y
x

z

Fig. 1. Parabolic confinement of electrons in three, two or one dimensions, giving (a) a
quantum dot, (b) a quantum wire or (c) a quantum well. The shaded areas represent the
location of the ground-state electronic density, and the arrows represent rigid Kohn-mode
motion allowed by the exact electron–electron dynamics. The graph in (c) represents the
confining parabolic potential as a function of position z, for the case of a parabolic quantum
well.

There is a remarkable exception to this observation, namely the case of electrons
confined by an external potential V ext(~r) = 1

2~r.K.~r which is a quadratic function
of position ~r. Particular cases are zero-dimensional quantum dots, 1D quantum
wires, and most importantly parabolic quantum wells V ext(~r) = 1

2Kz
2 ≡ 1

2mω
2
0z

2

which contain a thin (2D) or thicker (quasi-3D) electron gas layer. These three
cases are illustrated in Fig. 1. It has been traditional to analyse such parabolic
wells in terms of the number density n0 ≡ ρ0/e of a fictitious uniform positive
background which is regarded as the source of the parabolic potential. Then by
Poisson’s equation

K = n0e
2/ε ,
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where ε is the macroscopic dielectric constant of the semiconductor. For the
GaAlAs system, ε ≈ 13ε0. A wide parabolic well, when filled with sufficient
electrons, contains a wide slab of near-uniform electron gas (egas) with a 3D
number density approximately equal to n0. For this reason it is also commonplace
to characterise the well curvature K by the dimensionless inter-electron spacing
r∗s of the corresponding egas:

n0 =
(

4πr∗3s
3

)−1

a∗−3
B . (1)

Here

a∗B =
h̄24πε
m∗e2 (2)

is the effective Bohr radius for conduction electrons in the semiconductor, and
m∗ is the conduction electron effective mass. The degree of filling of a parabolic
well is commonly described by two alternative quantities: the areal or surface
electron density Ns, or an effective width of the electron gas

L = Ns/n0 . (3)

In the discussion below, for numerical work we will characterise parabolic wells
by the quantities r∗s and the dimensionless effective width L∗ = L/a∗B .

Consider now a parabolic quantum well containing a Coulomb-interacting gas in
the absence of any coupling to defects or phonons, under excitation by a spatially
uniform electric field ~E(t) = E0ẑ cos(ωt) directed along the semiconductor growth
z direction. The Generalised Kohn Theorem of Brey et al. (1989) ensures that
the linear response of the inhomogeneous electron gas displays an infinitely sharp
resonance at ω = ω0, and there is no resonance at any other frequency. Thus the
electron–electron interaction is unable to introduce any damping to the Kohn
mode of a parabolic well system, at the level of linear response. Furthermore,
even for strong driving beyond the linear regime, i.e. for large values of E0, the
Harmonic Potential Theorem (Dobson 1994) ensures that the electron–electron
interaction does not cause any damping or shift of the resonance. It also follows
that there is no harmonic generation. (In reality, the parabolic potential cannot
be grown to extend to z = ±∞, and more complex linear and nonlinear effects
appear when the edges of the moving electron gas approach the edge of the
region of parabolic potential.)

These conclusions for the perfectly quadratic case were originally proved via
operator commutation rules for the linear response of a parabolic well system
(Brey et al. 1989), and by explicit construction of the moving many-electron
wavefunction, for nonlinear response of systems confined parabolically in 1D, 2D
or 3D (Dobson 1994). A rather simple way to understand all of this physics,
however, is to view the parabolic confining potential V ext(~r) = 1

2~r.K.~r from
an accelerated reference frame whose origin ~X(t) is executing the same simple
harmonic motion as experienced by a single electron driven by the uniform external
field (Dobson 1995). Then md2 ~X/dt2 = −K. ~X(t) − e ~E0(t). In the accelerated
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reference frame, the external potential and the fictitious potential −md2 ~X/dt2

combine to create a new parabolic potential 1
2~r
′.K.~r′+const., which is stationary

in the moving (primed) frame. Thus for any stationary many-body state in the
rest frame there is an identical one in the accelerated frame. Such a state is of
course a moving state when observed from the rest frame.

From the present point of view, the remarkable thing is that this motion is
completely undamped by electron–electron interactions, no matter how large the
amplitude. In order to capitalise on this feature to obtain a narrow line, the
other sources of broadening must be controlled. Some relevant considerations are
discussed in the next section.

3. Controlling Sources of Broadening of the Kohn Mode

A number of physical phenomena will cause broadening of the Kohn mode. Some
of these phenomena, and possible means of suppression where applicable, are
discussed under the headings below.

Fig. 2. Longitudinal acoustic phonon dispersion for GaAs, also showing the Kohn frequency
for Ga1−xAlxAs parabolic wells with r∗s = 2. Phonon dispersion data were taken from
Srivastava (1990): note that the LA dispersion curves in the [111], [110] and [100] directions
all cover essentially the same frequency range.

(3a) Phonon Damping

In the Kohn-mode motion under discussion here, in the absence of defects
and phonons, a (diffuse-edged) sheet of electronic charge executes rigid simple
harmonic motion in the z-direction perpendicular to the sheet, at the bare
harmonic oscillator frequency ω0. This will couple to planar longitudinal acoustic
(LA) phonons, leading to damping. This process occurs already in first order in
the electron–phonon interaction, provided that ω0 lies in the LA phonon band
so that energy can be conserved. In fact typical values of ω0 for Ga1−xAlxAs
parabolic wells do indeed lie in the LA phonon band (see Fig. 2). One way to
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prevent this source of damping, to first order at least, is to grow a layer structure
(acoustic filter) on each side of the parabolic well as shown schematically in
Fig. 3. This can create a phononic bandgap around frequency ω0: see Fig. 4.
For frequencies in the gap or filtering range, phonons will be reflected off the
filters back into the region of the parabolic well, so that they are unable to cause
broadening by carrying energy away. The layer thickness A of the required filter
can be determined from the inverse of the wavenumber indicated as q0 in Fig. 2,
and would therefore be in the vicinity of a few semiconductor lattice spacings.
A suitable composition for the filter, in order to create a sufficiently large gap
in the phonon energy spectrum (see Fig. 4) is yet to be investigated.

Fig. 3. Proposed acoustic filter setup (phononic bandgap structure)
for suppression of first-order electron–phonon damping of the Kohn
mode in a parabolic quantum well.

Fig. 4. Detail of the phonon spectrum in the presence of acoustic filters with a spatial period
of O(2π/q0), showing the opening of a phonon gap at wavenumber q0.
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For other geometries where an electronically undamped Kohn motion also
applies, such as the quantum dots and wires illustrated in Figs 1a and 1b, it may
also be possible to grow phononic bandgap structures in order to avoid phonon
damping. This will be more difficult than the essentially 1D quantum-well case
discussed above, because one will need an absolute phonon gap, not just a gap
for phonon motion in one space direction. Thus a fully 2D or 3D phononic
bandgap superlattice structure will be required. Design and implementation
of such structures in the analogous photonic case is already quite advanced
(Yablonovitch 1993), but the phononic analogue is not so well developed.

Even with a phonon bandgap in place, electron–phonon interactions beyond
first order are still effective and will cause damping of the Kohn mode at some
level.

(3b) Imperfect Parabolic Growth

The generalised Kohn theorem relies on a perfectly parabolic effective external
potential. The effects of departures from parabolicity of the grown potential have
been investigated previously (Brey et al. 1990). Experimental workers to date
(see e.g. Pinsukanjana et al. 1992) have sought to minimise these departures,
achieving somewhere around 10%. Further improvement may be possible here.

(3c) Inhomogeneous m∗(z) and ε(z)

In the parabolic quantum well case, the effective parabolic potential for electron
confinement is grown in Ga1−xAlxAs by varying the aluminium fraction x during
layer-by-layer growth in the z-direction. The grown function x(z) = Az2 determines
the local bandgap εg(z), within the envelope-function approximation (Bastard
1981). This in turn causes the conduction band-edge Vcond(z) to vary with z,
thus supplying an effective external potential of form Vext(z) = Vcond(z) = 1

2Kz
2,

which acts on the conduction electrons. Unfortunately this same spatial variation
of the Al concentration also causes a spatially varying electron effective mass
m∗(z) and dielectric function ε(z). Even where the Al concentration has been
grown exactly according to the desired parabolic space dependence, these effects
can spoil the perfect adherence to the generalised Kohn theorem and the Harmonic
Potential Theorem. It is possible that a deliberate departure from perfectly
parabolic Al doping [i.e. x(z) = Az2+correction] might achieve some cancellation
of these effects. Certain effects of spatially varying m∗ in an otherwise perfect
parabolic well have been investigated previously by microscopic theory (Karrai
et al. 1990; Stopa and Das Sarma 1993; Xu 1994, 1995). Both static effects,
and also direct dynamic effects of inhomogeneous m∗ on the Kohn mode have
been studied (Le 1999), within a suitably generalised form of hydrodynamics
(Dobson and Le 1999). Effects of inhomogeneous ε(z) were also included in Le
(1999). [Note that a modified hydrodynamics was required because the usually
accepted degenerate egas hydrodynamics does not exactly yield the Kohn mode
for perfect parabolic systems, even when m∗ and ε are taken as constant: see
Dobson (1994) and Dempsey and Halperin (1992).] While the hydrodynamic
treatment could perhaps be used to design a nonparabolic Al growth function
x(z), so as to restore the exact Kohn frequency despite the spatial variation
of m and ε, this is not the issue here. In seeking a sharp resonance line,
what we need is to reduce or remove any specifically electronic damping effects
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due to m∗(z) or ε(z). The hydrodynamic approach cannot help here, since,
in this formalism, damping is introduced on an ad hoc basis. Furthermore, a
microscopic theory adequate to address this issue needs to go beyond the usual
time-dependent Hartree and adiabatic LDA theories, because these only contain
Landau (collision-less) damping, and fail to yield electron–electron damping. A
recent dynamic LDA theory (Vignale and Kohn 1996, 1998; Dobson et al. 1997,
Vignale et al. 1997) is capable of addressing this damping issue for parabolic
wells with spatially varying m∗ and ε, and this would indeed be an interesting
calculation.

(3d) Imperfections, including Imperfect Epitaxy

Imperfections such as impurities, point defects of various types, interface roughness,
layer thickness variations and other imperfections in epitaxial growth are already
at a relatively low level in epitaxially grown parabolic well systems with spatially
remote doping. Much experimental effort has already been invested to minimise
these effects, so it will probably require substantial further effort to gain
improvements here. Measures such as epitaxial growth under zero gravity might
perhaps yield further significant improvement. The effects of these imperfections
are possibly the main cause of the observed broadening, which amounts to about
10% of the line frequency in the parabolic-well experiments of Pinsukanjana et al.
(1992). Clearly, to gain benefit from the phonon suppression mechanism proposed
here, one must reduce the above effects below the level of phonon damping.

(3e) Failure of the Envelope-function Approximation

The true potential acting on electrons in a ‘parabolic’ quantum well is not
parabolic, but is grainy on a scale of the underlying semiconductor crystal lattice
period (or even on a coarser scale when modulation doping is adopted). The
envelope function approximation (Bastard 1981), in which the external potential
of the wells under consideration is taken to be simply parabolic, applies only
to the outer envelope of the rapidly varying Bloch wavefunction. At some level
this will limit the precision of the generalised Kohn and Harmonic Potential
Theorems, which rely on perfect parabolicity. This should be investigated, but
seems unlikely to be as important as the effects of imperfections and phonons
described under other headings.

(3f) Summary of Linewidth Considerations

The discussion under the headings above has attempted to identify some likely
causes of broadening of the Kohn mode of a parabolic quantum well. More detailed
quantitative analysis is required to ascertain whether a significant narrowing
can be achieved by the means suggested (phonon gap structures), or whether
the remaining intractable items such as imperfect epitaxy and other defects are
the dominant causes of the substantial linewidth observed in previous parabolic
quantum well experiments. Nevertheless, it seems worth while to attempt further
theoretical and experimental work, both from a technological point of view, and
because of the fundamental interest inherent in phononic bandgap/acoustic filter
physics.

We now leave the topic of phonon damping and turn to another aspect of
parabolic-well physics.
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4. Van der Waals Interaction between a Pair of Quantum-well Egases

It is now possible to grow a pair of parallel quantum wells in close proximity,
separated by a distance D of order a few tens of nm or more. One can establish
separate electrical contacts to the electron gases trapped in the wells (Gramila et
al. 1991). To date this has been carried out mainly to investigate the Coulomb
drag effect, in which a current in one confined electron-gas sheet induces a current
or voltage in the other sheet.

Here we look instead at the van der Waals (vdW) attraction between the two
electron gases. The mutual vdW energy EvdW(D) of two egases separated by
spacing D can be understood in a number of ways. It can be thought of as the
Coulomb correlation energy of spontaneous charge density fluctuations on the
two wells. In a purely hydrodynamic approach to electron dynamics, in which
the physics of individual electron–hole pairs is neglected, all of the fluctuations
can be understood in terms of the coupled plasmon modes of the two gases.
The vdW energy can be regarded as that part of the total plasmon zero-point
energy which depends on D. Whatever model we use for the vdW energy EvdW,
we can obtain from it an effective vdW attractive force FvdW = −∂EvdW/∂D.
Here we propose to use a parabolic well, with its Hooke’s law confining force, as
a kind of ‘spring balance’ to measure this weak force.

The basic idea is to grow two or three quantum wells, at least one of which
(well #2) is parabolic, and to measure the vdW force on the parabolic well by one
of two fairly direct methods which we now describe—see Figs 5 and 6. In both
these figures, we aim to measure the change in the vdW force on egas #2 due to
the creation and destruction of the egas in well #1. This creation and destruction
is achieved by changing the bias voltage V1 between egas #1 and metal gate #1.
As argued below, because well #2 is parabolic, this change in vdW force will cause
a displacement of egas #2 in the z (growth, confinement) direction. In Fig. 5,
this displacement is detected via its effects on the capacitance between egas #2
and metal gate #2. In Fig. 6, the displacement is detected instead by the change
in tunneling current to a neighbouring steep-sided (non-parabolic) well #3.

The reason for choosing well #2 to be parabolic is as follows. For a parabolic
well, and for no other type of well, a spatially uniform, externally imposed, static
force, applied perpendicular to the plane of the confined electron gas, causes a
rigid sideways displacement of the electron gas which is strictly proportional to
the applied force. For the case of a static force, this follows because the linear
potential −Fz due to the uniform applied force adds to the grown parabolic
potential 1

2Kz
2 to form a new parabola V (z) = 1

2K(z −∆z)2+const., spatially
shifted in the growth direction by an amount ∆z = F/K which is proportional to
the force. Thus, if this displacement ∆z can be measured, it provides a reliable
measurement of any homogeneous external force applied to a parabolic-well egas.
Furthermore, the Harmonic Potential Theorem (Dobson 1994) shows that when
a force F0 sin(ωmodt) is applied, in the steadily oscillating state, the egas suffers
a rigid displacement

∆z = F0 sin(ωmodt)/(K −mω2
mod) .

The van der Waals attraction between two slabs of egas separated by distance
D can be characterised by a force F vdW = −∂EvdW/∂D. The arguments in the



Parabolic Quantum Wells 127

Fig. 5. Double quantum-well structure for observation of the van der
Waals force in Ga1−xAlxAs. Quantum well #1 need not be parabolic, but
well #2 must be parabolic. The electron gas in well #1 is created and
destroyed by adjusting the bias voltage V1 between egas #1 and gate #1.
The switching of the vdW force due to the presence or absence of egas #1
causes movement of egas #2. This movement is detected by monitoring
the capacitance between egas #2 and gate #2.

Fig. 6. As for Fig. 5, except that gate #2 is replaced by the steep-sided
quantum well #3. The vdW-induced movement of egas #2 is now detected
by the change in tunneling current between egas #2 and egas #3, rather
than by capacitance measurements.

previous paragraph about an external force F do not apply rigorously to the
vdW force F vdW on egas #2 due to the presence of egas #1, because this is
not a true external force but rather a form of internal exchange-correlation force.
Nevertheless, it is clear that the egas #2 will lower its vdW energy by moving
towards egas #1. We will assume for the present that the above analysis is
still true to lowest nontrivial order in the interaction between the two egases, if
one replaces the external force F by the van der Waals ‘force’ F vdW. Thus the
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motion of egas #2 in its well can still be taken as a linear measure of the vdW
interaction. A more complete theoretical treatment of this effect is, however,
certainly of considerable interest (Kohn 1999).

The basic idea is to create and destroy egas #1 by changing the voltage V1

between well #1 and a parallel metal gate #1, thus moving electrons between
gate #1 and well #1. This in turn switches on and off the vdW force on egas
#2 due to egas #1. This change in force on gas #2 is to be measured via the
displacement of egas #2 within its confining parabolic well. Note that removal
of some electrons from the thick high-density gas in gate #1 does not greatly
change the vdW force on well #2 due to gate #1. This is because the vdW
force from the thick egas in the gate is due basically to couplings involving the
surface plasmons, not 2D plasmons, of the gate, and these plasmons are not
strongly affected by partial charging of the gate. Furthermore, in transferring a
sheet of charge from gate #1 to well #1, we have not changed the electrostatic
force on gas #2, because the electrostatic force between two parallel sheets of
charge is independent of their separation. Only fringing fields, i.e. a departure
from truly planar geometry, will modify this conclusion. Such fringing-field forces
can presumably be adequately quantified and subtracted out of the data, if they
turn out to be significant in the vdW experiment.

The displacement of the edge of egas #2 in the growth or z-direction, when
the vdW force due to egas #1 is switched on, can be measured in principle by
monitoring the capacitance between egas #2 and metallic gate #2. This technique
is the basis of the capacitance profiling technique used previously for experimental
investigation of the progressive filling of quantum wells by transferring electrons
from a gate via an applied potential (Pinsukanjana et al. 1992). This proposal
is illustrated in Fig. 5.

Another, probably more sensitive, method of detecting the displacement of
egas #2 is a tunneling method. In this approach (see Fig. 6) one grows a
steep-sided non-parabolic well (well #3) close to the parabolic well #2, in such
a way that wells #2 and #3 are both occupied because of remote doping. Wells
#2 and #3 are arranged so that there is some tunneling between wells #2 and
#3 (but none between wells #1 and #2). The vdW-mediated displacement of
egas #2, occurring when egas #1 is created and destroyed, can be detected
by changes in the tunneling current between wells #2 and #3. Note that
egas #3 also feels vdW forces, but because of the steep-sided potential of well
#3, these vdW forces do not cause significant movement of egas #3 in the
z-direction.

As an initial step in quantitative analysis of these effects we study the vdW
force assuming that both wells #1 and #2 are occupied only in the lowest subband
state, so that the confined egases can be treated as two-dimensional. [Even in
this case there are motions (Kohn modes in the case of the parabolic well #2) in
which the egas oscillates in the z (confinement) direction. However, hydrodynamic
analysis suggests that their contribution to the vdW force is negligible compared
with that from the coupled 2D plasmon modes.] In the absence of metallic gates,
the vdW interaction between non-overlapping 2D gases has been analysed in
detail within the random phase approximation (Sernelius and Bjork 1998). The
result for the mutual energy and force between two identical 2DEGs each with
areal electron density Ns separated by a distance D À λ2D

Fermi is
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EvdW/A = − 0 ·005012h̄
√
Nse2/(2εm∗)D−5/2 ,

F vdW/A = − ∂(EvdW/A)/∂D = −0 ·0 12532h̄
√
Nse2/(2εm∗)D−7/2 .

where m∗ is the band mass of a conduction electron in the semiconductor. This
result can alternatively be obtained by a hydrodynamic treatment of the coupled
2D plasmons of the slabs, and also agrees with numerical results from microscopic
theory of narrow egas slabs without the two-dimensional assumption (Dobson
and Wang 1999).

The force per electron is then

F pe = (F vdW/A)N−1
s = −0 ·0 12532h̄

√
N−1
s e2/(2εm∗)D−7/2 .

Under the assumptions outlined in the last section, this leads to a displacement
of the electron gas by a distance

∆z = − 0 ·0 12532h̄

√
N−1
s e2/(2εm∗)D−7/2K−1

= − 0 ·0 12532h̄

√
N−1
s e2/(2εm∗)D−7/2 ε

n0e
2 .

This can be written in dimensionless units as

∆z∗ = −2. 1431× 10−2r∗9/2s L∗−1/2D∗−7/2 ,

where starred lengths are measured in units of the effective Bohr radius a∗B
defined in equation (2). Clearly this displacement effect is maximised by choosing
shallow parabolic wells (high r∗s , weak ‘spring constant’) with only light filling
(small L∗, narrow egases), as close as possible to one another without permitting
significant tunneling (small D∗). For example L∗ = 1, r∗s = 5, D∗ = 5 gives

∆z∗ = −2. 1431× 10−25 9
2 1−1/25−7/2 = −0. 107 .

That is, creation or destruction of one egas will cause a movement of the other
egas by about 0 ·1a∗B . Since a∗B ≈ 10 nm in the GaAlAs system, we can expect
a movement of about 1 nm. It is doubtful if this could be measured accurately
by capacitive means as in Fig. 5, but it should be well within the ambit of a
tunneling detection scheme as in Fig. 6.

As another variant, one can in principle observe the vdW interaction between
a parabolic-well egas and a thick metal gate. For a parabolic well in the 2D
limit analysed above, a simple hydrodynamic analysis to be presented elsewhere
(Dobson 2000) shows that this force is about four times stronger than that between
two similar 2D egases separated by the same distance D. The displacement
of a parabolic-well egas due to switching off such a force should therefore be
detectable either by tunneling current or capacitive measurements as described
above. One cannot, of course, create and destroy the metal gate as proposed
for egas #1 in the schemes outlined above. Instead, one can reduce the vdW
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force by applying a static magnetic field B aligned perpendicular to the egas
plane. This restricts the electronic motions in the plane of the egas, and since
these motions dominate the vdW interaction, there is a substantial effect of the
B field on the vdW interaction. Estimates based on hydrodynamics (Dobson
2000) suggest that a field of 5 T will reduce the gate-induced vdW force on a
GaAlAs parabolic-well egas with rs = 5 to less than half of its B = 0 value. This
effect is of interest in itself, and would be much harder to observe between two
regular metals: the lower Fermi velocity of AlGaAs conduction electrons makes
the effect more easily observable at moderate B fields.

A further variant of the above detection schemes for the small displacement of the
parabolic-well egas could involve laser interferometric measurements. This would
necessitate finding a laser frequency at which there is at least partial reflection
of the beam off the egas, and transparency of the underlying semiconductor.

5. Summary

Two new classes of experiment have been considered, both involving a parabolic
quantum well in the AlGaAs system.

In the first type of experiment, one attempts to obtain a sharper Kohn-mode
resonance by suppressing the electron–phonon interaction using a phononic bandgap
(acoustic filter) setup, and possibly also by growing a slightly non-parabolic well
in order to compensate the effects of spatially inhomogeneous electron effective
mass m∗(z) and dielectric constant ε(z). More quantitative work is still required,
to see whether other broadening influences (such as imperfect epitaxy, defects
etc.) can be reduced sufficiently for the proposed measures to have a significant
effect. Nevertheless, the issues involved are clearly of some interest.

In the second type of experiment, one uses the properties of parabolic
confinement to create a type of force microscope. In this scheme the weak van
der Waals force is measured via the movement of the parabolic-well electron gas
in the confinement direction when the vdW force is turned on and off. This
switching of the vdW force is achieved either by creating and destroying a second
quantum-well egas, or by switching a magnetic field of order a few Tesla. The
movement of the egas is detected either by capacitance measurements or by
observing the tunneling current to a nearby non-parabolic quantum-well egas.
The estimates provided here suggest that these effects should be observable. If
feasible, this experiment should be of fundamental interest, as direct observation
of magnetic field effects on van der Waals forces has not so far been attempted,
to the authors’ knowledge.
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