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Abstract

A scheme is proposed to observe the collapses and revivals of a mesoscopic superposition of
coherent states in the motion of a trapped ion. In the scheme the ion motion in the x-axis
is first prepared in a Schrödinger cat state, and then coupled to the motion in the z-axis.
With the vibrational excitation exchange between the two modes, the mesoscopic quantum
coherence collapses and revives periodically, providing an example for complementarity.

1. Introduction

According to the superposition principle, superpositions of two or more different
quantum states form new ones, exhibiting striking effects due to interference
between the components in the superposition. The quantum superposition,
however, does not appear at the classical level, otherwise the Schrödinger (1935)
cat paradox arises. Recently, it has been shown that the environment is responsible
for the nonexistence of macroscopic quantum superpositions (Zurek 1981, 1982,
1991). The coupling between the observed system and outside world reservoir
results in the decoherence, turning the quantum superposition into a classical
mixture. The coherence decay time scale is given by the energy dissipation time
divided by a dimensionless number characterising the separation between the two
parts. Thus, when the two superposed states are macroscopically separated, the
coherence would decay too rapidly to be observed.

Recently, there has been much interest in the realisation of quantum superpositions
at the mesoscopic level. Mesoscopic superpositions of two coherent states with
different phases, referred to as phase Schrödinger cat-like states, have been
observed in both the cavity QED (Brune et al. 1996) and the ion trap (Monroe
et al. 1996). The experiment reported by Brune et al. has also explored
the decoherence process of the Schrödinger cat states of a cavity field through
subsequence two-atom correlation measurements (Davidovich et al. 1996).

Generally, the decoherence process is irreversible due to the large size of the
reservoir. However, in a recent paper (Raimond et al. 1997), an experimental
scheme has been proposed to show that the decoherence process may become
a reversible process in a well controlled environment. In the scheme the cavity
containing a superposition of two coherent fields with different phases is coupled to
another cavity, which acts as a single-mode reservoir. Since the energy exchange
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between the two cavities is reversible, the coherence of the cat state exhibits
collapses and revivals. This process can be interpreted in terms of complementarity.
At the first stage of the coupling process, the phase information of the coherent
fields leaks into the single-mode reservoir, resulting in the disappearance of the
interference. When the reservoir is vacuum again, the ‘which-path’ information
is lost, corresponding to the reappearance of the interference. In contrast to the
case where the ‘which-path’ information is erased by manipulating the system
in some way, as shown in quantum eraser experiments (Scully and Drühl 1982;
Scully et al. 1991; Gerry 1996; Zheng and Guo 1997), the losses and revivals of
the coherence during the two-cavity coupling are dynamical processes, occurring
periodically. As pointed out by these authors, the main problem regarding the
experiment is how one can realise the reversible coupling between two identical
cavities.

In this paper we propose a scheme to observe the reversible decoherence of
a mesoscopic superposition of motional states of a trapped ion. In the scheme
the ion motion in one direction initially prepared in a cat state is coupled to
the motion in another direction. Due to the transfer of vibrational excitations
between the two vibrational modes, the mesoscopic superposition of motional
states exhibits collapses and revivals. The motional Schrödinger cat states can
be generated and probed through the laser-assisted Raman coupling between the
internal and external degrees of freedom of the ion. Such a coupling can be
achieved by resonant laser–ion interaction (Gerry 1997; Zheng and Guo 1998).

This paper is organised as follows. In Section 2 we propose a scheme to
generate and observe a motional Schrödinger cat state in an ion trap. In Section
3 we suggest a scheme to realise the coupling between two motional modes,
which results in the collapses and revivals of the coherence of the cat state. A
summary is given in Section 4.

2. Generation and Observation of a Motional Schrödinger Cat State

Suppose a two-level ion is trapped in a three-dimensional anisotropic harmonic
potential. The ion is first driven by two laser beams, tuned to the ion transition
frequency, propagating along the x and y directions respectively. In the resolved
sideband limit, where the trapping frequencies are much larger than other
characteristic frequencies, the interaction Hamiltonian (in the interaction picture)
for such a system is (Vogel and de Matos Filho 1995; de Matos Filho and Vogel
1996)

Hi = 1
2 [e−η

2
x/2Ωxe−iφxfx(a+, a) + e−η

2
y/2Ωye−iφyfy(b+, b)] |e〉 〈g|+ H.c. , (1)

where Ωj and φj (j = x, y) are the Rabi frequencies and phases for the laser
beams in the x and y directions, ηj = k0/

√
2Mνj are the Lamb–Dicke parameters,

with k0 being the wave-vector, M the mass of the ion, νj the trap frequencies
in the respective directions, and |e〉 and |g〉 are the internal excited and ground
states for the two-level ion. The functions fx(a+, a) and fy(b+, b) are given by

fx(a+, a) =
∞∑
k=0

(iηx)2k

(k!)2 a+kak, fy(b+, b) =
∞∑
k=0

(iηy)2k

(k!)2 b+kbk . (2)
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We assume that ηj are small enough so that we can retain terms only to the
second order in ηj . Then we have

Hi = 1
2 [e−η

2
x/2Ωxe−iφx(1− η2

xa
+a)

+ e−η
2
y/2Ωye−iφy (1− η2

yb
+b)] |e〉 〈g|+ H.c. (3)

Choosing the intensities and phases of the laser beams so that Ωxe−η
2
x/2 =

Ωye−η
2
y/2 = Ω0 and φx = π, φy = 0, we obtain

Hi = 1
2Ω0(η2

xa
+a− η2

yb
+b)(|e〉 〈g|+ |e〉 〈g|) . (4)

We assume the ion motion in the y direction is initially in the vacuum state.
Then the effective Hamiltonian is

He
i = ga+a(|e〉 〈g|+ |g〉 〈e|) , (5)

where g = 1
2Ω0η

2
x. This Hamiltonian describes the Raman coupling model (Knight

1986), and can be rewritten as

He
i = ga+a(|+〉 〈+| − |−〉 〈−|) , (6)

where

|+〉 =
√1

2 (|g〉+ |e〉), |−〉 =
√1

2 (|g〉 − |e〉) . (7)

We assume that the ion is initially in the ground state |g〉 , which can be expressed
in terms of |+〉 and |−〉 as

|g〉 =
√1

2 (|+〉+ |−〉) . (8)

Suppose that the vibrational motion is initially in the coherent state |α〉. Then
after an interaction time τ we obtain

|ψ1(τ)〉 =
√ 1

2 [
∣∣αe−igτ〉 |+〉+

∣∣αeigτ〉 |−〉] . (9)

In this way the motional coherent state is phase-shifted by −gτ or gτ depending
on whether the ion is in the state |+〉 or |−〉 . We choose the interaction time τ
appropriately so that gτ = π/2. Thus we have

|ψ1(τ)〉 =
√1

2 [|−iα〉 |+〉+ |iα〉 |−〉]

= 1
2 [(|iα〉+ |−iα〉) |g〉 − (|iα〉 − |−iα〉) |e〉] .

(10)

We now perform a measurement of the internal state of the ion. The detection
of the state |g〉 or |e〉 leaves the vibrational motion in the state

|ψ〉m =
1
N1

(|iα〉+ eiϕ1 |−iα〉) , (11)
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where N1 =
√

2[1 + cosϕ1e−2|α|2 ], and ϕ1 = 0 or π, corresponding to the detection
of |g〉 or |e〉 . For |α|2 À 1, the coherent state |iα〉 is asymptotically orthogonal
to |−iα〉 , and thus N1 =

√ 1
2 .

In order to monitor the transition |g〉 → |e〉 we use the V-type electronic
level scheme, where the two upper levels |e〉 and |r〉 couple to the common
ground level |g〉 . The transition |g〉 → |e〉 is electric-dipole forbidden, whereas
the auxiliary transition |g〉 → |r〉 is allowed. After the above-mentioned Raman
coupling another laser beam on resonance with the transition |g〉 → |r〉 is used
to probe fluorescence. The presence of fluorescence corresponds to the detection
of the state |g〉 and absence to |e〉 . In order to avoid the modification of the
motional state during the observation of fluorescence, a very small value of the
Lamb–Dicke parameter ηg,r for the transition |g〉 → |r〉 is required (de Matos
Filho and Vogel 1996). If we detect the ion in the excited state, we then excite
the ion only with the laser in the y direction tuned to the ion transition frequency.
In this case the Hamiltonian for this system is

Hy = Ωye−iφy |e〉 〈g|+ H.c. (12)

We choose the interaction time t carefully so that Ωyt = π/2. Then the state |e〉
flips back to |g〉 . On the other hand, if we detect the ion in the ground state
this step is unnecessary.

We now drive the ion, again with the two laser beams propagating along thex
and y directions. At this stage we assume there is no coupling between the
motional modes. Then the initial state in this cycle is

|ψ2(0)〉 = 1
2 (|iα〉+ eiϕ1 |−iα〉)(|+〉+ |−〉) . (13)

We also choose the ion–laser interaction time in such a way that the vibrational
motion will be phase-shifted by -π/2 or π/2, conditional on the ion being in the
state |+〉 or |−〉 . This leads to

|ψ2(τ)〉 = 1
2 (|α〉 |+〉+ |−α〉 |−〉+ eiϕ1 |−α〉 |+〉+ eiϕ1 |α〉 |−〉)

= 1
2

√ 1
2 [|g〉 (1 + eiϕ1)(|α〉+ |−α〉)

+ |e〉 (1− eiϕ1)(|α〉 − |−α〉)] .

(14)

Now we again measure the internal state of the ion. Then the probability of
finding the ion in the ground state |g〉 or excited state |e〉 is

P (2)
g = 1

2 (1 + cosϕ1) , P (2)
e = 1

2 (1− cosϕ1) . (15)

The correlation coefficient ξ is defined as ξ = Pg,g − Pg,e, where Pg,g and Pg,e
are the conditional probabilities to detect the ion in states |g〉 and |e〉 in the
second cycle, respectively, provided it is detected in |g〉 in the first cycle. From
the expression (15), it can be easily seen that ξ = 1. Thus, there is a complete
correlation between the outcomes of the two measurements. The correlation
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results from the presence of two paths via which the system can reach a certain
state after the second Raman coupling. For example, the state |g〉 |α〉 can be
obtained in two ways:

|g〉 |−iα〉 → |−〉 |α〉 → |g〉 |α〉 , (16)

|g〉 |iα〉 → |+〉 |α〉 → |g〉 |α〉 . (17)

These two paths are indistinguishable, which leads to the interference.

3. Collapses and Revivals of the Coherence of the Cat State

We now assume there is a coupling between the motional modes in the x and
z directions during the intervals between the above-mentioned Raman couplings.
Such a coupling can be achieved by the off-resonant excitations of the trapped
ion (Wallentowitz and Vogel 1997; Agarwal and Banerji 1997; Steinbach et al.
1997). We drive the ion transition |g〉 → |e〉 with two off-resonant lasers of
frequencies ωL and ωL + ∆ (∆¿ ωL), propagating along the x and z directions
respectively. During the interaction, the ion stays in its electronic ground state.
Suppose the relative detunings from the transition frequency ω0 are small, i.e.
(|ωL − ω0| /ω0)¿ 1 and |ωL + ∆− ω0| /ω0 ¿ 1. We choose the difference of the
laser frequencies in such a way that ∆ = νx − νz. In the resolved sideband and
Lamb–Dicke limits the interaction Hamiltonian is of the form (Wallentowitz and
Vogel 1997)

H ′i = λ[ei(φ
′
x−φ′z)ac+ + H.c.] , (18)

where c+ and c are the creation and annihilation operators for the motion in the
z direction, and φ′x and φ′z are the phases for the two laser beams. Here λ is
given by

λ = 1
4η
′
xη
′
ze
−(η

′2
x +η

′2
z )/2 Ω′xΩ′z

ω0 − ωL
, (19)

where η′j and Ω′j (j = x, z) are the respective Lamb–Dicke parameters and Rabi
frequencies. We choose the phase difference appropriately so that φ′x−φ′z = π/2.
Then we have

H ′i = iλ[ac+ − a+c] (20)

The Hamiltonian H ′i leads to the exchange of motional excitations between
the x and z directions. If the motion in the x direction is initially prepared
in the cat state

√ 1
2 (|iα〉+ eiϕ1 |−iα〉) and the motion in the z direction in the

vacuum state |0〉 , the two motional modes evolve into the entangled coherent
state (Sanders 1992a, 1992b)

|ψ(t)〉 =
√1

2 (|iα(t)〉 |iβ(t)〉+ eiϕ1 |−iα(t)〉 |−iβ(t)〉) , (21)
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where

α(t) = α0 cos(λt) , β(t) = α0 sin(λt) (22)

are the amplitudes of the coherent components in the x and z directions during
the coupling. Entangled coherent states are also referred to as superpositions of
two-mode coherent states (Chai 1992). Due to the correlation between the two
modes, such states may exhibit various nonclassical features, such as two-mode
squeezing and violation of the Cauchy–Schwartz inequality. After the second
laser-assisted Raman coupling between the motion in the x direction and the
internal state, the whole state-vector is

|ψ′2(τ)〉 = 1
2

√ 1
2{|g〉 [|α(t)〉 |iβ(t)〉+ |−α(t)〉 |iβ(t)〉

+eiϕ1 |−α(t)〉 |−iβ(t)〉+ eiϕ1 |α(t)〉 |−iβ(t)〉]
|e〉 [|α(t)〉 |iβ(t)〉 − |−α(t)〉 |iβ(t)〉
+eiϕ1 |−α(t)〉 |−iβ(t)〉 − eiϕ1 |α(t)〉 |−iβ(t)〉]} .

(23)

Thus the correlation coefficient is

ξ = Re{〈iβ(t)| −iβ(t)〉} = e−2n sin2(λt) . (24)

In the case that λt¿ 1, ξ can be approximated by

ξ ' e−2nλ2t2 . (25)

The coefficient ξ decays rapidly during the time 0 < t <
√

1/2nλ2. The
disappearance of the interference is due to the leakage of the phase information
of the motion in the x direction into the motion in the z direction. When the
two coherent components in the z direction become asymptotically orthogonal the
‘which-path’ information is completely stored in these two components, resulting
in the loss of coherence. At the time t = π/2λ, the motional excitations are
completely transferred to the z direction, and thus the second Raman coupling
has no effect on the state evolution of the system. At the time t = π/λ, the
excitations in the x direction are completely taken back to the x direction. In this
case the which-path information is lost and thus the interference reappears. In
this way the coherence of the mesoscopic superposition in the x direction collapses
and revives with the period of the vibrational excitation exchange between the
x and z directions.

4. Summary

In conclusion, here we have made a proposal to show that the mesoscopic
coherence of superpositions of two motional states of a trapped ion can exhibit
collapses and revivals periodically by coupling the motion in one axis to that
in another axis. Since the ion is relatively well isolated one can observe the
collapses and revivals of superpositions of two coherent components with high
stability in the ion motion. Another advantage of using a trapped ion is that
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the interaction time of the ion with laser fields can be more easily controlled
than that of an atom with a cavity field.
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