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Abstract

Using lattice field theory techniques, we perform an exploratory study of the quantisation of the
simplest extended object, the λφ4

1+1 kink soliton, and the associated zero-mode contribution
to the kink soliton mass in regions in and beyond the semiclassical regime. The calculations
are done in the non-trivial scaling region so that our lattice results can be meaningfully
compared with the classical and semiclassical continuum results. We show how to extract
the kink from this full quantum field theory treatment and show, as a function of parameter
space, where the zero-mode contributions become significant.

1. Introduction

Solitons are non-dispersive localised packets of energy moving uniformly, and
resembling extended particles. The elementary particles in nature are also localised
packets of energy, being described by some type of quantum field theory. Because
of these features, the soliton might appear as the ideal mathematical structure
for the description of a particle. When it was realised that many nonlinear field
theories used to describe elementary particles, also had soliton solutions and that
these solutions might correspond to particle type excitations, the development of
methods for soliton quantisation became important. The quantisation of solitons
is usually done by performing an expansion in powers of h̄ (loop expansion)
such that the classical soliton solution appears as the term of leading order
in the expansion and terms of higher order represent the quantum effects. In
the mid 1970s there appeared a number of works (Dashen et al. 1974a, 1974b,
1974c; Friedberg and Lee 1977) which developed the semiclassical expansion in
quantum field theory. In this period, there were schemes being constructed to
quantise these solitons. The correspondence between classical soliton solutions
and extended-particle states of the quantised theory was established (Dashen et
al. 1974a, 1974b; Campbell and Liao 1976) and various methods were used to
deal with the so-called ‘zero-mode problem’ (Gervais et al. 1975, 1976a, 1976b;
Faddeev and Korepin 1976; Rajaraman and Weinberg 1975). This problem is
a manifestation of the translational invariance of the theory, broken by the
introduction of the soliton. Field oscillations around this classical solution contain
zero frequency modes, describing displacements of the soliton.
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Here we study the mass of the simplest topological soliton, that is the λφ4
1+1

kink, using lattice Monte Carlo techniques. The dynamics of this model are
governed by a Euclidean Lagrangian density:

L = 1
2 (∂µφ)2 − µ2

2
φ2 +

λ

4
φ4 , (1)

where µ is a bare parameter and λ is the bare coupling constant. For a free
scalar field theory λ→ 0 and −µ2 → m2, where m would then be the bare mass
of the φ. In the classical theory µ2 > 0 corresponds to the onset of spontaneous
symmetry breaking. There are two types of static solutions, both being static
solutions, to the equation of motion; the trivial solutions

φ0 = ± µ√
λ
≡ f , (2)

and the topological solutions

φk,ak = ± µ√
λ

tanh
(
µ√
2
x

)
, (3)

where ‘k’ and ‘ak’ label the topological solutions for the kink and antikink and
correspond to the positive and negative sign, respectively. The semiclassical
regime corresponds to large f .

The kink provides an example of a particle with an internal structure, distributed
over a finite volume rather than concentrated at one point. It possesses a nonzero,
conserved quantity called the topological charge Q which is defined as

Q = [φ(x)|∞ − φ(x)|−∞]

and which leads to stability of the kink solution. The classical kink mass Mcl is
defined to be the energy of the static soliton and is given by

Mcl =
2
√

2
3

µ3

λ
. (4)

The vacuum and kink solutions can be quantised by path integral quantisation
or by construction of a tower of approximate harmonic oscillator states around
the classical solution φ, where either φ = φ0, φk or φak. In a finite box with
the length L the soliton mass with a one loop quantum correction becomes
(Rajaraman 1982):

Msol = Ekink − Evac = Mcl +
∑
n

1
2ω

2
n −

∑
n

1
2ξ

2
n +O(λ̂) , (5)
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where ωn and ξn are the eigenvalues of the following equation[
− ∂2

∂x2 +
(
3λφ2 −−2µ2

)
φ

]
ηi(x) = Θ2

i ηi , (6)

with φ = φ0 and φ = φk or φak for ωn and ξn respectively. An important point
to note is that as L→ 0, due to translational invariance, one of the ω vanishes,
i.e. ω0 → 0.

As L is set to infinity then the sums are replaced by integrals and one ends
up with a logarithmically divergent integral and renormalisation is required to
render the kink mass finite. Then one arrives at the mass of the continuum kink
with one loop corrections (Dashen et al. 1974b):

Msol =
2
√

(2)
3λ

µ3 + µ

(
1
6

√
3
2 −

3
π
√

2

)
+O(λ) . (7)

The zero eigenvalue ω = 0 is referred to as the zero mode and has well-known
physical consequences. These modes always exist when one quantises a theory with
a translationally invariant Lagrangian about a solution that is not translationally
invariant. The physical consequence of the existence of the zero-mode is the
centre-of-mass motion of the kink. In equation (7) the zero-mode contribution
to the kink mass is omitted. That contribution to the energy means that the
mass of the quantum kink particle is effectively assumed to be the same as the
kink energy. The semiclassical treatment of these zero modes is discussed in a
number of works (Dashen et al. 1974a; Goldstone and Jackiw 1975; Polyakov
1974; Christ and Lee 1975), however, we need not describe these in detail here. It
is important to mention that the semiclassical quantisation of the discrete lattice
version of the Lagrangian density given by equation (1) is also complicated by
the zero-mode problem.

2. Kink on the Lattice

The λφ4 action on a 2-d lattice can be written as

S = −
∑
n,µ

φnφn+µ +
∑
n

(
2− µ̂2

2

)
φ2
n +

λ̂

4
φ4
n , (8)

where we have defined the dimensionless quantities µ̂ ≡ µa and λ̂ ≡ λa2 with a
being the lattice spacing. In addition n ≡ (n1, n2) is a 2-d vector labeling the
lattice sites and µ is a unit vector in the temporal or spatial direction (not to
be confused with our parameter µ̂2 ≡ −m̂2). We have also denoted the field on
the neighbouring site of n in the direction of µ by φn+µ.

This model exhibits two phases. In some regions of the phase space 〈φ〉 = 0
and these are the symmetric (unbroken symmetry) regions, whereas in other
regions spontaneous symmetry breaking occurs and 〈φ〉 6= 0. Classically, for
positive values of m̂2 ≡ −µ̂2 one always has 〈φ〉 = 0 and for negative m̂2 (i.e.
positive µ̂2), where spontaneous symmetry breaking occurs, 〈φ〉 6= 0. In this
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regime the second order critical line which separates the two phases is the line
corresponding to m̂2 = 0. Beyond the classical limit the phase space structure
changes. There are still two phases and there is still a second order phase critical
line separating these phases; however, the position of the critical line changes
and due to quantum fluctuations washing out ‘shallow’ spontaneous symmetry
breaking it occurs at a finite negative m̂2 in general.

In order to determine the critical line, we choose several values of m̂2 < 0
located in the broken symmetry sector where 〈φ〉 6= 0. For each value of m̂2, λ̂
can be increased until 〈φ〉 = 0 and, thus, the critical parameters (m̂2

c , λ̂c) can be
found. Of course there is no second order phase transition on a finite lattice;
however, by a second order phase transition here we mean that the correlation
length is much larger than the lattice dimensions. The critical line is shown in
Fig. 1. We have also shown the one loop prediction for the critical line using
the light-front formulation (Bender et al. 1993).

Fig. 1. Plot of the transition line between the broken sector and
unbroken sector using Monte Carlo methods (diamonds) and the
light-front perturbative predictions (dashed line). We have used the
symbol r̂ ≡ m̂2.

Two methods were proposed by Ciria and Tarancon (1994) for calculating the
kink mass on the lattice (it should be noted that in this reference there was
an error in the presentation of the semiclassical results, which were shown to
be smaller than they actually are). Here we use one of these methods which
uses a local parameter and is much less susceptible to finite size effects. In this
method one imposes an anti-periodic spatial boundary condition, giving rise to
a topological excitation with non-zero topological charge. Since the kink has the
lowest energy in the topological sector this topological excitation corresponds to
the kink. It is shown that for a a fixed m̂, one has (Ciria and Tarancon 1994):

Msol(β̂) =
∫ β̂

βc

dβ′Ω(β̂′) ≡ 1
T

∫ β̂

β̂c

dβ′
1
β′

[〈Sa〉 − 〈Sp〉] , (9)



Lattice Study of Kink Soliton 933

where Msol is the soliton mass, β̂ = 1/λ̂, β̂c is the inverse of the dimensionless
critical bare coupling λ̂c, T is the length of the lattice in the temporal direction,
and 〈Sp〉 and 〈Sa〉 are the mean action of the system with a periodic and
anti-periodic spatial boundary condition, respectively.

Fig. 2. Comparative plot of averages of fields on a time slice with
f = 0 ·5 and m̂2 = −1 for an unconstrained lattice (dashed line) and
a constrained lattice (dotted line). The constraint fixes the centre
of the kink to the centre of the lattice for all time slices. The solid
line is the classical solution.

As we mentioned earlier, in the semiclassical quantisation one encounters the
zero-mode problem with its physical consequences being the energy contribution
associated with the centre-of-mass motion of the kink. An interesting question
is whether this problem persists beyond the semiclassical regime. To answer
whether the zero-mode problem persists beyond the semiclassical regime, one can
examine one of the consequences of the existence of a zero mode, that is, the kink
displacements. On a lattice with anti-periodic boundary condition in the special
direction, we set m̂2 ≡ −µ2 = −1 and λ̂ = 4 giving f = 0 ·5. These parameters
were chosen because they which corresponds to a region beyond the semiclassical
regime. Then, for an arbitrary time slice, we took the value of the field at each
site (φn) for a number of configurations and an average over these configurations
was calculated in order to improve the signal-to-noise ratio. We have shown the
results in Fig. 2. The movement of the kink due to the translational mode clearly
persists beyond the semiclassical regime, as is evidenced by the blurring of the
kink shape (cf. the classical shape). This occurs because when averaging over
different (unconstrained) kink configurations, we are averaging over fluctuations
of the kink centre which tends to flatten and blur out the otherwise relatively
sharp kink shape. We repeated the same procedure for different time slices and
different number of sampled configurations and these results showed the same
behaviour.

In order to verify our interpretation of these results we imposed the constraint
φ(M) = 0 with M = (x0, N/2) for all times x0 and then repeated our calculations,
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i.e. we imposed a constraint which fixed the kink centre to the centre of the
lattice. For the same time slices as in the previous case and for a similar number
of constrained configurations, the average value of the field for each site was again
calculated. These results are also included in Fig. 2. The constrained lattice
configuration indeed more closely resembles the classical kink solution with its
centre located at the centre of the lattice.

Both in numerical MC studies and the analytical calculations it is important
to find the renormalisation group trajectories (RGT). Along these curves and
close to an infrared (IR) fixed point the physics described by the lattice
regularised quantum field is constant and only the value of the cut-off (lattice
spacing) is changing. This region is called the scaling region. The λφ4 theory
in 2-d is an interacting theory. That is, in addition to having a Gaussian
fixed point at m̂2 = λ̂ = 0, where the renormalised coupling λ̂r vanishes, it
has other infrared fixed points at which λ̂r is non-zero. The best candidates
for these fixed points are along the critical line where a second order phase
transition occurs. In this model the only non-trivial critical region is along
the transition line shown in Fig. 1. In the vicinity of the fixed point the
vertex functions strongly scale (Zinn-Justin 1993) and one expects that close to
the critical line, there should be segments of phase space where the ratios of
dimensionless vertex functions remain essentially constant, indicating the scaling
region.

In our calculations it is important to find the scaling region corresponding to
a non-trivial IR fixed point. That is, one should try to find trajectories away
from the Gaussian fixed point. On trivial fixed point trajectories, even though
spontaneous symmetry breaking can still occur and hence a kink solution can
exist, the vacuum is governed by a free field. We used R(m̂r, λ̂r) ≡ m̂2

r/λ̂r as a
dimensionless parameter for probing the scaling region. This parameter R can be
calculated accurately using the effective potential method (Ardekani and Williams
1998). The scaling region corresponds to regions where R is approximately
constant. Our entire calculations are performed within the scaling region so that
they can be legitimately compared with the continuum-semiclassical predictions
for the soliton mass, given by equation (7).

For a fixed value of m̂2 = −1 we found a range of values of λ̂ in the
broken symmetry sector, that is 0 ·2 < λ̂ < 0 ·8, for which the values of
R(m̂r, λ̂r) were approximately constant, determining a segment of the scaling
region corresponding to m̂2 = −1. Then, for some values of λ̂ within this
region we calculated ∆S = 〈Sa〉 − 〈Sp〉. We have plotted ∆S/T versus β̂
along with its classical value in Fig. 3. Note that having obtained ∆S/T ,
equation (9) can then be used to calculate the soliton mass. We calculated
the soliton mass with and without imposing a constraint on the centre of the
kink. The comparison of these results with each other and with the classical and
semiclassical values is shown in Fig. 4. As is evident, for these parameters choices
the zero-mode contribution cannot be resolved within statistical uncertainties.
The statistical uncertainties, as one expects, increase as one approaches the
critical line which complicates the detection of the zero-mode contribution to
the soliton mass. It is interesting to note that the Monte Carlo results for the
soliton mass are less than the classical mass but larger than one loop semiclassical
predictions.
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Fig. 3. Plot of ∆S/T versus β = 1/λ̂ with m̂2 = −1 ·0. The straight
horizontal line is the classical value for ∆S/T .

Fig. 4. Plot of soliton mass versus λ̂ = 1/β with m̂2 = −1. The
Monte Carlo results are compared with the classical (solid line) and
semiclassical results (dashed line).

Next, for m̂2 = −2 ·2, we repeated the same procedure and calculated the
soliton mass for a number of bare couplings within the scaling region. The
calculations were again done with and without a constraint on the centre of the
kink and the results and their comparison with the classical and semiclassical
predictions are shown in Fig. 5. Our results are consistent with Ciria and Tarancon
(1994). There are two important observations. First, unlike the previous case
the MC calculated soliton masses are lower than the semiclassical values which
must be due to the higher order corrections. The other important observation
is that, close to the critical line, it appears to be clear that there is a positive
contribution to the soliton mass due to the zero-mode.
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Fig. 5. Plot of soliton mass versus λ̂ = 1/β with m̂2 = −2 ·2. The
Monte Carlo results are compared with the classical (solid line) and
semiclassical results (dashed line).

Fig. 6. Plot of soliton mass versus λ̂ = 1/β with m̂2 = −4. The
Monte Carlo results are compared with the classical (solid line) and
semiclassical results (dashed line).

Finally, for m̂2 = −4 we again calculated the soliton mass, with and without
a constraint on the configurations. The results are shown in Fig. 6 and again
the zero-mode contribution to the soliton mass appears to be positive.

All our calculations were done on a 48 × 48 lattice. As one approaches the
critical line the correlation length increases and the finite size effects become
more significant. However, since the Monte Carlo calculation of masses are based
on a local parameter Ω(β) the finite size effects are smaller than one might,
in general, expect (Groeneveld et al. 1981). In our calculations we kept the
correlation length below a half of the lattice length.
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We note that in addition to the straightforward elimination of the zero-mode
degree of freedom, the imposition of a constraint on the centre of the kink resulted
also in more stable configurations and a reduction of the statistical uncertainties
on 〈Sa〉 and consequently on Msol. These instabilities are more significant close
to the critical line where the field fluctuations are larger. In general we found
that the statistical uncertainties on 〈Sa〉 were much larger than on 〈Sp〉.

3. Summary and Conclusions

We have made an exploratory study of the quantisation of extended objects
using the tools provided by Monte Carlo lattice techniques. In particular, we have
studied the simplest case, the kink soliton in 1+1 dimensions. Where our lattice
results could be compared with previous studies (Ciria and Tarancon 1994), they
were found to be in agreement. Careful attention was paid to the issue of the
zero-mode or centre-of-mass motion problem by comparing results for kinks with
fixed centres and for kinks whose centres were left free to fluctuate. We found that
for the cases studied here, the energy associated with the centre-of-mass motion
appears to be positive. We also ensured that our lattice results were obtained in
the non-trivial scaling region and with sufficiently large lattice volumes. Hence
meaningful comparisons with the continuum classical and semiclassical results
could be made. Having established the feasibility of this approach, future detailed
studies should explore a larger range of parameter space with increased statistics
and should attempt to fully characterise the differences between the full and
semiclassical quantisation of the kink. Once that is done, it would be extremely
interesting to turn our attention to the more physically interesting question of
the quantisation of solitons in higher dimensions, such as those which arise in
theories of elementary particle physics.
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