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Abstract

 

A numerical study of static, spherically symmetric monopole solutions coupled to the dilaton field,
inspired by the Kaluza–Klein theory with large extra dimensions is presented. The generalised Prasad–
Sommerfield solution is obtained. We show that the monopole may also have the dilaton cloud
configurations.

 

1.  Introduction

 

Recently there has been considerable interest in field theories with large extra spacetime
dimensions. In comparison to the standard Kaluza–Klein theory these extra dimensions
may be restricted only to the gravity sector of theory, while the Standard Model (SM)
fields are assumed to be localised in four-dimensional spacetime (Antoniadis 

 

et al.

 

 1998;
Arkani-Hamed 

 

et al.

 

 1999). It is a promising scenario from the phenomenological point of
view because it shifts the energy scale of unification from 10

 

19

 

 GeV to 10–100 TeV.
The gauge field theory is extended by inclusion of the dilatonic field in such theories.

These fields appear also in a natural way in Kaluza–Klein theories (Appelquist 

 

et al.

 

1987), superstring inspired theories (Witten 1985; Ferrata 

 

et al.

 

 1989) and in theories
based on the noncommutative geometry approach (Chamseddine and Fröhlich 1993).

As previous studies have already shown, the inclusion of a dilaton in a pure Yang–
Mills theory has consequences already at the classical level. In particular the dilaton
Yang–Mills theories possess ‘particle-like’ solutions with finite energy which are absent
in the pure Yang–Mills case. Analogous equations have recently been obtained for the ’t
Hooft–Polyakov monopole model coupled to the dilatonic field (Lavreashvili and Maison
1992

 

a

 

, 1992

 

b

 

, 1997).

 

2.  The Dilatonic Gauge Field Theory

 

Dilatons appear in the higher dimensional theory after the process of spacetime com-
pactification. The main idea of the theory with large extra dimensions is that gravity is
realised in the more dimensional spacetime (the bulk), while matter is confined to four-
dimensional spacetime (the brane). To be clear and simple, we consider six-dimensional
gravity. Let us now consider the action integral of Einstein–Yang–Mills–Higgs theory in
six-dimensional spacetime:

 (1)
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where 

 

g

 

6

 

 = 

 

det

 

(

 

g

 

MN

 

) and 

 

M 

 

= {

 

µ

 

, 

 

i

 

}, 

 

N 

 

= {

 

ν

 

, 

 

j

 

} with 

 

x

 

M

 

 = {

 

x

 

µ

 

, 

 

y

 

i

 

}, 

 

i

 

 =1, 2. The metrical
tensor in the six-dimensional spacetime can be written:

 (2)

According to the above definition we can write:

 (3)

In equation (2)

 (4)

represents the four-dimensional metric in the Jordan frame, while 

 

g

 

–

 

µν

 

 is in the Einstein
frame. We consider the Lagrangian of the Einstein–Yang–Mills–Higgs field as follows:

 (5)

 (6)

 (7)

where 

 

κ

 

6

 

 is the six-dimensional gravitational coupling and 

 

L

 

, 

 

L

 

g

 

 and 

 

L

 

YMH

 

 describe the
total Lagrange function, gravity in six-dimensional spacetime and the Yang–Mills–Higgs
field parts on the brane embedded in six-dimensional space respectively. In general a non-
vanishing cosmological constant (

 

Λ

 

 

 

≠

 

 0) is possible. This case leads to the interesting
monopole solution (Lugo and Shaposhnik 1999; Lugo 

 

et al.

 

 2000). In our paper we shall
focus our attention on the 

 

Λ

 

 = 0 case. All calculations should include 

 

g

 

MN

 

 (equation 2), so
for example 

 

D

 

µ

 

 = 

 

g

 

µν

 

D

 

ν

 

. Let us compactify the six-dimensional spacetime to the four-
dimensional Minkowski one on the torus (

 

M

 

6

 

 

 

→

 

 

 

M

 

4

 

 

 

×

 

 

 

S

 

1

 

 

 

×

 

 

 

S

 

1

 

). In this paper we assume
that the extra dimensions are compactified to a two-dimensional torus with a single radius

 

r

 

2

 

. The six-dimensional action may be written as:

 (8)

where 

 

�

 

d

 

2

 

y 

 

= (2

 

π

 

r

 

2

 

)

 

2

 

 and 

 

L

 

 is the effective Lagrange function in four-dimensional space-
time. The six-dimensional gravitational coupling 

 

κ

 

6

 

 = 8

 

π

 

G

 

6

 

 is conveniently defined as

where 

 

M

 

 is the energy scale of the compactification (

 

∼

 

10 – 100 TeV). Compactification of
the six-dimensional gravity on the torus gives the Lagrangian (8) for the four-dimensional
gravity as

 (9)

ξ

ξ
µν

δ

ξ

µν µν
ξ

δ

κ

µν
µν

µ
µ ΦΦ

π

κ
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in the Einstein frame, where

 (10)

is the four-dimensional coupling constant or 

 

κ

 

 = 8

 

π

 

G

 

N

 

 = 8

 

π

 

M

 

−

 

2

 

Pl

 

. From equation (10) we
get

 (11)

Cosmological considerations (Hall and Smith 1999) give a bound of 

 

M

 

 

 

∼

 

 100 TeV
which corresponds to 

 

r

 

2

 

 

 

∼

 

 5.1 

 

×

 

 10

 

−

 

5

 

 mm from equation (11). Compactification of gravity
on five-dimensional spacetime is rather unphysical (

 

r

 

2

 

 

 

∼

 

 10 km), however an interesting
five-dimensional spacetime compactification has been proposed recently (Randal and
Sundram 1999

 

a

 

, 1999

 

b

 

). The Planck mass 

 

M

 

Pl

 

 in (11) is no longer a fundamental con-
stant, but may change during the evolution of the Universe (Flanagen 

 

et al.

 

 1999). For a
four-dimensional Minkowski spacetime (

 

g

 

–

 

νµ

 

 = 

 

η

 

µν

 

)

 (12)

The last term in (12) can be transformed into the first by differentiating by parts. The
parameter 

 

f

 

0

 

 [or re-scaling of the 

 

ξ

 

(

 

x

 

) field] is determined by the Planck mass (at the
present time) as

 (13)

to produce the   

 

��

 

  term in the dilaton field in (16). The 

 

f

 

0

 

 parameter determines the dilaton
scale 

 

f

 

0

 

. At the present time 

 

f

 

0

 

 is rather high, so the interaction with dilatons can be
neglected. However, in the early Universe when the Planck mass 

 

M

 

Pl

 

 was smaller (for
details see Flanagen 

 

et al.

 

 1999), the value of 

 

f

 

0

 

 was also smaller.
As a result of compactification of the six-dimensional Lagrangian we get the Lagrange

function for the Yang–Mills–Higgs fields. Fluctuations around the four-dimensional
Minkowski

 (14)

will produce an interaction with Kaluza–Klein dilatons of

 (15)

with a typical mass scale 

 

M

 

 (for 

 

n

 

i

 

 

 

≠

 

 0).
In this paper we shall apply this approach to the simplest 

 

SO

 

(3) gauge field theory. The

 

SO(3) gauge field theory has nice monopole solutions (’t Hooft 1976a, 1976b) which have
produced difficulties in cosmology and were the reason for introducing the idea of infla-
tion. The main idea of this paper is to examine how the monopole solution looks in the
dilatonic gauge field theory inspired by Kaluza–Klein gravity on a TeV scale.

The dilatonic gauge field theory may be described by the Lagrangian [defined by
equation (8) in the first approximation when g–νµ = ηµν in the Minkowski spacetime]

κ κ
π

π

ξ ξ∂ ∂ ∂ ∂µ
µ ξ µ

µ ξ

π
GeV×

µν µνµνη

/µν µν πexp ( )



656 D. Karczewska and R. Manka

 (16)

where for SO(3) theory we have

 (17)

with the SO(3) field strength tensor Fµν
a  = ∂µWν

a − ∂νWµ
a  + gεabcWµ

b W c
µ . The SO(3)

gauge symmetry rotates the Higgs field Φ a. The covariant derivative is given by DµΦ a =
∂µΦ a − gεabcWµ

bΦ c. Now we have Dµ = ηµνDν. The Higgs potential has degenerate true
vacuums forming the sphere S2 (ΦaΦa = v2). The Euler–Lagrange equations for the
Lagrangian (9) are scale-invariant:

 (18)

 (19)

 (20)

 (21)

These transformations change the Lagrange function in the following way:

 (22)

This symmetry can be formulated equivalently as a scaling symmetry on the coordinates,
and the dilaton is often denoted as a Goldstone boson for dilatations. The origin of the
symmetry of the equations of motion is easily understood from the Kaluza–Klein origin
of the action. The scale transformations are equivalent to a rescaling of the internal
dimensions.

3.  The Dilatonic Monopole

The monopole scalar field configuration

 (23)

where

 (24)

describes the ‘hedgehog’ structure na and scalar spherically symmetric field H(r). The
SO(3) gauge field is described by the K(r) field:

 (25)

The dilaton field is described by the S(x) function:

 (26)

µ
µ

µν
µν

µ
µ ξ ΦΦ Φ

ξ∂ ξ∂ ξ

Φ
λ

Φ Φ ν

µ µ µ/

ξ ξ ξ

Φ Φ Φ

/
µ µ µ

/

Φ

ε

ξ
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(if we introduce the dimensionless variable x = gvr). The field Euler–Lagrange equations
generated by the Lagrange function (16) for H(x), K(x) and S(x) are

 (27)

 (28)

 (29)

In the dilatonic monopole we have two independent dimensionless constants:

 (30)

 (31)

The mass (or the lowest energy) of the monopole in the rest frame is

 (32)

with the energy density given by

 (33)

Inside the monopole [according to equations (27)–(29)] the asymptotical behaviour when
x → 0 is given as

 (34)

 (35)

 (36)

where u, t, a are local parameters and b must be determined as

 (37)

ε

α

εα

ε
λ

α

πν

α

ε

∋

α
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Far from the monopole core, if r → ∞ (x → ∞), both functions H(x) and K(x) should
describe the normal vacuum (Φ aΦ a = v2) with H → x and K → 0 according to the H, K
function definitions (23) and (25), remembering that x = gvr. In this limit the energy dens-
ity (33) has a simple limit

The monopole mass in this limit may be rewritten as

The first term vanishes if the dilaton field obeys the Bogomolny equation

This equation has a nice solution in the uniform normal vacuum (Bizon 1993)

 (38)

When r → ∞ the dilaton field should disappear in the true vacuum. This demand gives
S(∞) = 0. So, when r → ∞ we have the asymptotic behaviour of the solutions

 (39)

 (40)

 (41)

Even when S(∞) ≠ 0 it may be removed by the dilaton transformation (19). We may solve
the differential equations (27)–(29) by the iteration method, expanding them with respect
to ε:

 (42)

 (43)

 (44)

In the first step (n = 0) we obtain the equations

 (45)

ρ α

ρ

α α

πν

πν πν∫
∫

α

α α

ε

α
α

ε

ε

α ε
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 (46)

 (47)

leading to the Prasad–Sommerfield (1975) solution [without the dilaton field S(x)]. When
α → ∞ we have the Prasad–Sommerfield solution and we can easily find for H0(x) and
K0(x)

 (48)

 (49)

Finding a nice analytical solution for the dilaton field (see the dotted line in Fig. 3)

 (50)

is a crucial point of this paper. The leading term for the dilaton field at infinity will be the
Coulomb one

where QD is the dilatonic charge which originates from the global scale transformation
(18)–(21). The similarity is striking, but we should remember that an electric charge
comes from the exp(ieα) ∈ U(1) gauge symmetry. The global scale transformation (18)–
(21) is generated by the exponential transformation exp(u/f0). However, the asymptotic
behaviour at x → 0 in (36) admits QD = 0.

We present the numerical solutions of the coupled set of differential equations (27)–
(29) in the next section.

4.  Numerical Solutions

To solve the monopole equations numerically, we need a starting point (Press et al. 1992).
To find the starting conditions we can use the solutions found from the variational
procedures or from the Prasad–Sommerfield approximation (48)–(50). The trial solutions
depending on the variational parameters must be postulated in such a way as to fulfill the
boundary conditions close to the centre (34)–(36) of the monopole and far outside (39)–
(40). We postulate the trial solutions

 (51)

 (52)

α
α

α

tanh

sinh

sinh

cosh sinh

cosh
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 (53)

where O(3) are corrections of the third order. For these functions the monopole mass was
calculated and the trial function with minimal energy was found. For the monopole with-
out dilatons we get the Mmon mass of monopole [if S(x) = 0]:

The trial functions give the dilaton configuration close to the monopole case without
dilatons. The minimal variational configurations for such a dilatonic monopole for QD = 0
and v = 1016 GeV are presented in Table 1. This shows that the mass of the dilatonic
monopole depends on the parameter α (f0) and reaches the local minimum (for α ∼ 1)
lower than for the monopole without dilatons.

For the dilatonic monopole the numerical method was independently verified using the
Chebyshev polynomial expansion (Michaila 1999). The monopole solutions for H(x) and
K(x) are known very well so our attention is focused on the dilaton solution S(x)
especially. The behaviour of the H(x) and K(x) solutions determined by the boundary
conditions is the same as it is in the presence of the dilaton field.

The Chebyshev method allows us to calculate the exact solution of the differential
equations for the discrete set of points. The trial function provides the starting data for the
numerical solution of the ordinary differential equation (ODE) (the shooting method, see
Press et al. 1992) or the Chebyshev functions method. After this preliminary numerical
calculation the method based on the Chebyshev polynomial was used.

Clenshaw and Norton (1963) proposed almost forty years ago an integration method
based on Chebyshev polynomials of the first kind of degree j :

 (54)

Since then, these methods have become standard. Since the Chebyshev polynomials are
orthogonal this allows us to rewrite the function f (x) as

 (55)

where (for j = 0)

 (56)

GeV

arccoscos

α

α

Table 1. Dependence of the monopole mass and parameters u, t and z on the parameter α 

α u t z Mdil (1015 GeV)

2.37 × 105 0.2396 0.6021 2.46903 16.4125

2.37 × 103 0.2396 0.6021 2.46886 16.4107

2.37 0.2591 0.5769 2.2637 15.0284

1 0.2879 0.5389 1.92221 14.4402

0.9 0.2937 0.5327 1.8099 14.4913

0.8 0.3011 0.52609 1.7035 14.6313
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and (for j ≠ 0)

 (57)

The grid of n points xk are zeros of the Chebyshev polynomial tj(x). This decomposition
allows us to present the derivative of the function f(x) as

α

Fig. 1. Dependence of the gauge field K(x) on the x parameter. The dotted line
corresponds to the Prasad–Sommerfield solution (49), the solid one to the variational
solution (52), and the dashed line presents the solution of the first iteration.

Fig. 2. Dependence of the Higgs field H(x)/x on the x parameter. The dotted line
corresponds to the Prasad–Sommerfield solution (48), the solid one to the variational
solution (51), and the dashed line presents the solution of the first iteration.
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 (58)

where the matrix

 (59)

and c0 = n, cj = n/2 (at j ≠ 0). This fact transforms the ordinary differentional equation:

 (60)

into an appropriate linear equation:

 (61)

So, we can have an exact solution for a discrete number of points. This method may be
also used for the nonlinear equation

 (62)

If we have a starting function f0 then we expand f around f0:

 (63)

and approximate (62) with (60) and then solve numerically. The solution may be treated
now as a starting function for the next iteration, and so on. The iteration can continue until
an arbitrary precision is reached.

A perturbation around ε produces the series of differential equations

ε

Fig. 3. Profile of the dilaton cloud S(x). The solid line presents the Chebyshev
numerical solution Sc(x) and the dotted line is the Prasad–Sommerfield solution S0(x)
in equation (50).
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 (64)

where the vector is

fn = {Hn(x), Kn(x), Sn(x)}.  (65)

For example, when n = 1 the first equation (a = 1) corresponds to p1b = 0, q11 = 2K0
2 (x)/

x2, q12 = 2H0(x)K0(x)/x2, r1 = exp(−2S0(x)/α)(H 0
2 (x) − x2)H0(x)/x2, and so on.

In the monopole case the starting functions are those obtained by the variational
method. After expanding around trial functions (51)–(52) we obtain a system of differ-
ential equations of the type (60). After that the numerical solution may be obtained on the
grid of the xk . The numerical solution for the dilaton field found by the Chebyshev
numerical method is presented in Fig. 3 (solid line).

5.  Conclusions

The aim of this paper was to present a numerical study of the classical monopole solutions
of the SO(3) theory coupled to the dilaton fields. We have shown that a monopole is sur-
rounded by the dilaton cloud S(x). In field theories with large extra spacetime dimensions
the Planck mass is no longer a fundamental constant and may have changed during the
evolution of the Universe. As a consequence, the parameter f0 changes too. We have
shown that the dilatonic monopole reaches the minimal mass when f0 ∼ v with the mass
slightly lower than for a monopole without dilatons.

There is an analytical solution in the Prasad–Sommerfield limit.
The spherically symmetric dilaton solutions coupled to the gauge field or gravity are

interesting in their own right and may moreover influence the monopole catalysis.
However, in the theory inspired by the Kaluza–Klein theory with large extra dimen-

sions a new interaction with massive (∼M) Kaluza–Klein gravitons also takes place. In
four-dimensional spacetime the monopole solution is stable due to the monopole topo-
logical charge. Now the interaction with Kaluza–Klein gravitons hµν

n (x) may cause
disintegration of the monopole.
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